发酵工程进展

合集下载

发酵工业现状与发展趋势

发酵工业现状与发展趋势
图4 柠檬酸生产工艺
3、分离提取工艺水平
(1)味精分离提取工艺 味精企业中采取的分离提取工艺有等电离交和浓缩等电两种
图5 等电离交工艺流程
图6 浓缩等电工艺流程
目前,行业内正在推广应用“新型浓缩等电结晶工艺偶联 膜处理技术”。
*一次结晶收率达到90%以上 *无污染物排放 *生产闭路循环 *提高产品质量 *降低水耗、能耗及生产成本
184 89 61.5 19 706 1059.5
2008年 年用水 (万吨) 14720 5340 1230 1425 8472 39659
用水(吨/ 吨产品)
80 60 20 75 12
发酵 产量 浓废液量 产品 (万吨) (吨/吨)
味精 184
12
柠檬酸 89
10
酵母 19
35
合计 292
55
图2 我国发酵工业产业布局
5、自主创新能力显著增强
研发投入持续增长 自主创新网络体系形成
管理体系标准化
6、节能减排初见成效
在国家产业政策的正确引导下,发酵工业企业已经越来越认 识资源综合利用和节能减排的重要性和必要性,努力提高原料转 化率、副产品的综合利用率,加大对生产过程中产生的废水、废 渣和废气的治理和回收利用,并取得了一定的成绩。
3、能耗较高、污染较重
发酵工业是能耗较高的产业,我国水平与国际先进水平相比,差距较大。 生产过程用水量大,由于企业的生产水平和技术装备不同,耗水量差距较 大。
表8浓度有机废水2007年发生量
主要 产品
味精 柠檬酸 酶制剂 酵母 淀粉糖 合计
年产量 (万吨)
图8 柠檬酸废水处理工艺流程
(三)存在的主要问题
发酵工业在快速发展过程中,也暴露了诸多问题,突出表现为以 下几个方面:

现代发酵工程技术在食品领域的应用研究进展

现代发酵工程技术在食品领域的应用研究进展

现代发酵工程技术在食品领域的应用研究进展摘要:随着科学技术的不断进步,人们对生活的需求也逐渐增加。

目前,生物技术的发展已成为人们关注的话题。

生物工程主要由细胞工程、基因工程、酶工程和发酵工程等组成,在现实生活中得到广泛应用。

发酵工程是基因工程和细胞工程的产物。

实际应用在食品工业、工业发展、医药研发等方面具有不可替代的作用。

论述了发酵工程在我国食品工业中的应用和发展。

关键词:发酵工程;食品领域;应用研究前言:现代生物技术是利用微生物生长和相应的代谢活动在生产各种有用材料的一种工程,发酵工程在整个生物工程技术中占有重要地位,主要包括培育优良的菌种和发酵生产。

谢产品,微生物的生产,天然物质的转化,等等。

发酵工程微生物有效地应用于高新技术的工业生产过程中,现代生物技术的影响非常广泛,如新食品、饮料配料、稳定剂、制造或相关领域的衍生物等。

1发酵工程的发展阶段1.1农产手加工因为在过去,社会经济不发达,人们主要是农业生产,然后发酵工程只在家里或作坊里发酵,发酵生产也就是我们所说的自然手工加工。

当时,因为科技不发达,人们只能通过存在于微生物的性质,进行了处理,但这种方法只用于生产,因为微生物纯自然的许多问题,如萃取效率高,存活率低,甚至可能是生病了,等等。

这也极大地制约了食品领域发酵工程的发展。

1.2近代发酵工程20世纪20年代,由于技术的兴起,工业、食品和医药的需求,传统的生产方式并不满足。

因此,人们使用化学和化学工程技术从农业化学和化学工程中学习来规范发酵过程。

采用机械生产和化学训练,代替传统的手工操作,不仅提高了生产效率,还使发酵工程在发酵生产中取得了第一个历史性的进步。

1.3现代发酵工程通过发酵工程的不断发展,人们逐渐意识到化学工程的模式处理发酵工业生产的问题,玩很难达到预期的效果,化学可能生产的微生物对人体有害的化学物质,严重影响了人们的健康。

因此,它很快被生物工程所取代。

这种生物工程技术是利用微生物的基因,有效地改造它,达到人们想要的效果,满足人们生活的需要。

生物发酵工程的研究进展

生物发酵工程的研究进展

生物发酵工程的研究进展生物发酵工程已经成为当今世界生物技术领域的重要分支之一,不断推动着人类的发展和进步。

随着科技的不断革新和创新,生物发酵工程也在不断的研究和探索,取得了许多重要的进展。

一、生物发酵工程的概念和分类生物发酵工程是指利用微生物、生物体细胞或其代谢产物作为催化剂进行化学反应的工程技术。

根据发酵生产的物质而分为发酵制酸、发酵制碱、发酵制酒、发酵制醋、发酵制酪、发酵制酵母和发酵制药等几个方面。

二、生物发酵工程的技术特点生物发酵工程具有广泛的适应性和高效的生物转化功能,具有很多传统工业无法比拟的优势。

接下来将从几个方面探讨生物发酵工程的技术特点。

(一)高效性生物发酵工程使用微生物菌株进行催化,能够在操作简单的情况下获得高质量、高产率的产品,并且使用的成本相对较低。

(二)环保性生物发酵工程与传统工业相比,在各种环保指标上都有极大的优势,例如,可通过深度处理提高水质小模索度的开发,降低废气排放量等。

(三)可控性生物发酵工程能够通过调节菌落生长条件,如温度、pH值、浓度等因素,能够对反应过程进行管控,从而达到适宜反应的水平,并且,在该过程中会保持非常高的能量利用率。

(四)生物多样性将生物体作为催化剂进行反应,具有非常强的学科交叉性,在不同的学科和领域上有着很高的应用价值。

三、生物发酵工程的应用生物发酵工程在生产中有着广泛的应用,包括生产食品、饮料、药品、生物燃料以及化学品等。

(一)食品和饮料以发酵工艺生产的食品和饮料有很高的口感和营养价值,如酸奶、面包、啤酒、葡萄酒、酱油、醋、陈皮酒、的士高等。

(二)药品生物发酵工程在生物制药和分子生物学等领域中广泛应用,已发展成为一门高质量医药的主导技术,大量的生体反应在生物制药工程中得到体现。

(三)化学品生物发酵工程在化学工业中也有着特殊的应用价值。

可根据该学科的特性生产纤维素、纤维素的生物质制品和产生高附加值化的废弃物等。

四、生物发酵工程的未来生物发酵工程在未来几年将会得到进一步的拓展和发展。

生物发酵工程与酶工程的研究进展

生物发酵工程与酶工程的研究进展

生物发酵工程与酶工程的研究进展生物发酵工程和酶工程是生物技术领域中的两个重要分支,它们在工业生产、医药研发、环境治理等方面发挥着重要作用。

本文将分析近年来这两个领域的研究进展。

一、生物发酵工程的研究进展生物发酵工程是指将微生物、细胞或其代谢产物应用于工业、农业、环保等领域的生产过程。

其主要研究内容包括发酵微生物的筛选、培养和代谢调控等方面。

近年来,生物发酵工程在产业升级、绿色化生产等方面取得了许多进展。

1. 发酵菌株的筛选和基因改造发酵菌株的选择是发酵工程成功的关键之一。

近年来,基于高通量筛选技术的发酵菌株选择方法得到了广泛应用。

同时,通过基因工程技术对微生物代谢通路进行调控,提高产物水平,同时减少废物排放,实现了绿色化生产。

例如,人工合成新酶、构建复合菌群等技术手段已经成为生物发酵工程研究的新热点。

2. 发酵条件的优化和控制发酵条件的优化和控制是提高发酵产物水平和改善发酵过程稳定性的关键措施。

近年来,基于机器学习、人工智能的优化算法得到了广泛应用。

同时,利用传感器和自动控制技术,可以实现对发酵过程的实时监测和控制,提高发酵的产出率和产品质量。

3. 应用范围的拓展生物发酵工程在食品、饮料、医药等领域的应用已经非常广泛,但这些领域的发酵产物不可避免会涉及到一些争议,如转基因食品的安全性等。

因此,近年来研究人员还在考虑如何将发酵工艺应用于化妆品、纺织品和生物燃料等领域,以拓展其应用范围。

二、酶工程的研究进展酶工程是指利用酶催化剂的特异性和高效性进行生物反应,以解决工业、医药等领域中的问题。

酶催化反应本身是非常简单高效的,近年来,研究人员通过基因工程和生物化学手段进一步提高了酶的活性、特异性和稳定性。

1. 酶催化反应的优化酶催化反应通常是以环境温和、反应速度快、副反应少等优势著称的。

近年来,研究人员通过基因工程和蛋白工程技术,对酶的催化活性和特异性进行了进一步提高。

同时,通过对酶结构的解析和模拟,也能够更好地预测反应产物的结构和性质。

发酵工程的发展史

发酵工程的发展史

发酵工程的发展史如下是有关发酵工程的发展史:发酵的定义是通过微生物(或动植物细胞)的生长培养和化学变化,大量产生和积累专门的代谢产物的反应过程。

近百年来,随着科学技术的进步,发酵技术发生了划时代的变革,已经从利用自然界中原有的微生物进行发酵生产的阶段进入到按照人的意愿改造成具有特殊性能的微生物以生产人类所需要的发配产品的新阶段。

现代意义上的发酵工程是一个由多学科交叉、融合而形成的技术性和应用性较强的开放性的学科。

约9000年前,我们的祖先就会利用微生物将谷物、水果等发酵成酒精饮料。

一、传统(古老)发酵技术的追溯在几千年前,人们就开始从事酿洒、酱、醋,奶酪的发酵生产,并积累了许多有关发酵的经验,但当时人们是知其然而不知所以然。

据考古发掘证我国在龙山文化(跟今4000-4200年)已有酒器出现先秦的《周礼天宫》一书中记载有主管王室、官用造酒事的“酒正”、“酒人”等官职说明酿酒已成为专门的职业。

3000年前,中国已有用长霉的豆腐治疗皮肤病的记载,我们今天知道,这可能是抗生素的缘故。

国外酿酒的传说则可推溯到更早,相传埃及和中亚两河流域在公元前40-30世纪就已开始酿酒,烘制面包。

二、纯培养技术的建立1857年,巴斯德通过著名的曲颈瓶试验,彻底否定了生命的自然发生说。

在此基础上,他提出了加热灭菌法,后来被人们称为巴氏消毒法成功地解决了当时困扰人们的牛奶、酒类变质问题。

巴斯德还研究了酒精发酵、乳酸发酵、醋酸发酵等,并发现这些发酵过程都是由不同的发酵菌引起的,从而奠定了初步的发酵理论。

1897年德国的毕希纳进一步发现腐碎了的酵母仍能使精发酵而形成酒精,并将此具有发酵能力的物质称为酶,揭开了发酵现象的本质。

1905年德国的罗伯特·柯赫等首先应用固体培养基分离培养出炭疽芽孢杆菌、结核芽孢杆菌、霍乱芽孢杆菌等病原细菌,建立。

一套研究微生物纯培养的技术方法此后,随着纯种微生物的分离及培养技术的建立,以及密闭式发酵罐的设计成功,使人们能够利用某种类型的微生物,在人工控制的环境条件下。

发酵工程研究的新进展

 发酵工程研究的新进展

发酵工程研究的新进展前言:近些年,在有关技术领域中微生物的发酵技术已得到了非常广泛的应用,特别在医药行业内应用十分普遍,人们不断深入的研究微生物的发酵工艺意义重大。

为此,本文对发酵工程的发展进程及发酵工艺进一步优化的方法进行了讨论,为发酵工程的发展提供参考。

关键词:发酵;方法;发展1.发酵工程的发展发酵工程作为最早从事微生物学的研究领域,在过去的几百年来为人类的生活、生存和社会的发展作出了重大的贡献。

发酵技术的发展经历了自然发酵阶段、纯培养厌氧发酵技术的建立、通气搅拌发酵技术的建立、代谢调控发酵技术的建立、现代发酵工程技术的建立几个阶段。

发酵工程是个传统领域,与现在的生物工程(基因工程)相比处于劣势,普遍认为,通过一些操作过程的控制和菌种的筛选难以达到基因工程那样迅捷的效果。

但近些年,发酵工程不断地通过整合其它学科及领域的优点来发展自己,发展较为迅速。

1.1发酵工程上游方面发酵的上游工程包括优良种株的选育,最适发酵条件(pH、温度、溶氧和营养组成)的确定,营养物的准备等。

在菌种选育方面与基因工程相结合,通过将供体微生物的基因提取出来或者人工合成基因,按照人们的愿望,进行严密的设计,经过体外加工重组,使受体细胞获得新的遗传性状,最终大量的获得基因药物、酶制剂、氨基酸等产品,在产品的特异性上更具选择性,比如,食用真菌富硒产品的开发等应用实例。

1.2发酵工程过程控制方面在过程控制中,与微生物学、微生物生理学、计算机工程、控制工程、化工工程等学科相结合,将过程操作变量与微生物代谢活动结合起来。

基于微生物反应原理的培养基组成优化、基于微生物代谢特性的分阶段培养、基于代谢通量分析的发酵优化等策略的利用,促进了发酵过程的控制。

华东理工大学的多角度控制策略就是将化工领域的策略运用到微生物学领域的典型范例,并在制药领域取得很大的成就。

1.3发酵工程下游方面:目前,很多产品都能通过发酵生产出来,将其从发酵液中高效的分离出来成为技术应用的关键,这也是发酵工程最需要解决和优化的问题。

发酵工程研究进展_

发酵工程研究进展_

发酵工程研究进展发酵工程研究进展姓名:黄永杰学号:201107002129 班级:生物工程1101班1.发酵工程技术的发展趋势与方向发酵工程是泛指利用微生物制造或生产某些产品的过程。

它包括厌氧发酵的生产过程(如酒精、乳酸、丙酮丁醇等)和有氧发酵的生产过程(如氨基酸、柠檬酸、抗生素等)。

发酵技术是人类最早通过实践掌握的生产技术之一,产品也很多,以传统食品来说,东方有酱、酱油、醋、白酒、黄酒等,西方有啤酒、葡萄酒、奶酪等。

这些发酵食品都是数千年来凭借人类的智慧和经验,在没有亲眼看到微生物的情况下,巧妙地利用微生物生产的产品。

1.1发酵工程技术的发展发酵技术的发展经历了如下几个阶段:(1)自然发酵阶段:这个阶段为从史前到19世纪末,主要特征为人类利用自然接种的方法进行传统酿造食品的生产。

(2)纯培养厌氧发酵技术的建立:这个阶段始于19世纪末,20世纪初,主要特征为人类在显微镜的帮助下,把单一的微生物进行纯培养,在密闭容器中进行厌氧发酵生产酒精等工业产品。

(3)通气搅拌发酵技术的建立:这个阶段始于20世纪40年代,其技术特征为,成功地建立起深层通气进行微生物发酵的一整套技术,有效地控制了微生物有氧发酵的通气量、温度、pH和营养物质的供给,使得抗生素、柠檬酸、酶制剂等好氧发酵产品的生产成为可能,是现代发酵工业的开端。

(4)代谢调控发酵技术的建立:这个阶段始于20世纪60年代,其技术特征为,以生物化学和遗传学为基础,研究代谢产物的生物合成途径和代谢调节机制,选择巧妙的技术路线,人为地控制目的代谢产物的大量合成,从而得到所需产品。

(5)现代发酵工程技术的建立:这个阶段始于20世纪70年代,其主要技术特征表现在如下几个方面:①原生质体融合技术、基因工程技术的发展和在微生物菌种选育方面的应用,为发酵工程技术带来了方法上、手段上的重大变化和革命。

②计算机控制发酵技术,固定化细胞技术,发酵工程优化控制技术,先进的提取、分离、纯化技术以及现代化的发酵与提取设备的应用,使发酵工业得到了迅速的发展,并展现了广阔的前景。

生物发酵工程的最新研究成果

生物发酵工程的最新研究成果

生物发酵工程的最新研究成果生物发酵工程是一种利用微生物、酶等生物催化原理进行生产的工程技术。

随着科技不断进步,生物发酵工程也在不断发展壮大。

下面,让我们来看一下生物发酵工程的最新研究成果。

一、新型菌种的发掘在生物发酵工程中,一种好的菌种是至关重要的。

近年来,科学家们通过高通量筛选技术,发掘出了一系列潜在的生物发酵菌种。

其中,一些新型或改良的微生物,如Lactobacillus reuteri等,具有较大的潜力。

Lactobacillus reuteri是一种含有多种多糖水解酶和蛋白酶的乳酸杆菌。

它可以生长在多种环境中,具有耐酸性和抗性,因此广泛应用于多种生物发酵工程中,如发酵牛奶、豆奶、啤酒等。

此外,最新研究表明,Lactobacillus reuteri还可以用于预防哺乳期儿童的胃肠道疾病。

二、新型生物反应器的开发目前,传统的生物反应器(如罐式反应器)已经无法满足大规模生产需求。

因此,研究人员致力于寻找新型生物反应器。

其中,一种最有潜力的是现代自组装技术制备的自组装反应器。

其优点是不需要繁琐的机械工作,具有生物兼容性和模块化的特点。

由于自组装反应器具有可扩展性和可重复性,它能够显著提高生产效率和质量。

三、基于系统生物学的生产优化生产过程中,影响产品质量和产量的因素很多。

传统方法常常是单一地解决问题,而不能综合考虑整个生产过程。

目前,利用系统生物学理论和方法,可以建立整个生产过程的生物数学模型,并进行生产流程优化。

例如,通过研究细胞的膜通透性和物质吞噬能力,可以优化这些特性,进一步提高生产效率。

此外,系统生物学还可以利用基因编辑技术,优化微生物株系,进一步提高产量。

四、基于人工智能的生产流程优化近年来,人工智能也进入了生物发酵工程领域。

利用机器学习和深度学习等技术,可以对生产过程的数据进行分析和处理。

通过对历史数据和实时数据进行计算,可以调整生产流程,从而实现更好的生产效率和质量。

此外,还可以利用人工智能技术进行生产排程和产品加工,进一步提升生产效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发酵工程进展
摘要:
发酵(fermentation),一般是指各类微生物分解有机物产生各种代谢产物的过程。

发酵工程(fermentation engineering)是指利用微生物制造工业原料或工业产品的技术[1]。

发酵可以在有氧或无氧的环境下进行,有氧包括抗生素、醋酸、氨基酸以及维生素等的发酵,无氧主要用于酒精发酵,也就是我们常说的酿酒。

本文简要介绍发酵工程今年来的进展。

关键词:发酵菌株优化
1简介
发酵工程是生物工程的重要组成部分,是发酵技术工程化的发展,它的核心主要是利用微生物,包括新构建的“工程微生物”在内的特定性状和功能,借助于工程技术手段将微生物发酵过程与化学工程有机结合起来而实现规模生产,大量制取各类有价值产品,从而建立起一个完整的相互配套的综合性工程技术体系[2]。

发酵工程的大兴发展对于生物的产业化有重要的意义,只有产业化才能相对应的商业化,
从而商业化促进产业化,进而在提高人民生活质量的同时,促进生物特别是微生物的蓬勃发展。

而且生物发酵可以应运于各个行业,包括食品、化工、轻工、农林业、医药卫生、能源、环保以及其他行业。

发酵工程进展说白了就是在促进产业化发展,不断实现技术改造、更新创新,向高度人工控制和自动化方向转移,向高效合成简单分离转移中我们所使用的方法和成果。

随着生物技术的进步发展,发酵工程被很大程度的促进提高了。

主要是以下三方面育种技术、发酵过程优化以及下游处理的提高。

特别是新型的基因工程DNA重组技术,在定向、快速培育微生物类型方面取得了重大的成就。

2.发酵工程菌株的选择
发酵工程菌株的培育选择直接关系到发酵结果的好坏。

选择的标准为产物一定要浓度高、质量高,最好分泌于胞外。

一般来说发酵菌株的选择还需要满足容易进行基因改良,如DNA重组;能进行代谢调控,能利用易得廉价原料,如淀粉、糖蜜、甲醇、纤维素物质等;发热量低,需氧量少,适当的发酵温度和细胞外形;不致病,不产生内毒素。

工业发酵中高浓度产物都是胞外产物。

这是因为胞内产物大量积累会造成细胞损伤乃至死亡。

只有将产物分泌到胞外,才能解除产物的反馈抑制,达到高浓度。

同时胞外产物的提取较胞内产物更方便容
易且更经济。

利用DNA重组技术于大肠杆菌中生产异源蛋白时,就有上述问题。

由于大肠杆菌属于革兰氏阴性细菌,只能将产物转运到间区和细胞外膜,这就导致在下游处理过程中,我们会花费更多的劳力物力进行分离加工,又由于大肠杆菌多产生的需要的异源代谢产物多为包涵体,这就很大程度的影响了产物的活性。

与此相反,革兰氏阳性菌的芽孢杆菌,链霉菌,酵母菌和丝状真菌则能分泌较多的蛋白和酶于胞外,并且具有较高的生物活性,所以受到越来越多人的关注[3]。

3.固态发酵
固态发酵(solid state fermentation, SSF)是指培养基呈固态,虽然含水,但没有或几乎没有自由流动水的状态下进行的一种或多种微生物发酵过程,底物(基质)是不溶于水的聚合物,它不仅可以提供微生物所需碳源、氮源、无机盐、水及其他营养物,还是微生物生长的场所[4]。

现代发酵技术的首要条件是纯种培养,不允许自然界的其他微生物进入,造成杂菌污染,加上现代工业对大规模集约型生产的要求,使固态发酵的生产应用处于停滞不前,几乎被排斥到现代工业之外。

固态发酵含有不溶于水的固体、少量的水分及空气,微生物生成的热导致水分蒸发,使发酵体系具有汽液固不均匀三相,存在严重的浓度梯度及传热、传质困难,这样很难控制pH、水活度、最佳反应温度等,使产量大大下降。

近些年来,由于能源危机和环境问题
日益严重,以及生产技术的不断提高和完善,固态发酵领域的研究出现了巨大的变化[5]。

固态发酵也有自己的优点。

a.原料成本低,多为天然基质或者工业生产的副产物,来源广泛。

b.工艺先对简单,基质的含水量低,可减少反应器的体积。

同时,无废水和废气的产生,发酵后的产物能够很好的降解,不低环境造成污染。

c.发酵过程中不需要严格的执行无菌操作。

固体颗粒间隙中存在的空气可谓微生物生长提供氧气,通风量小,不需要无菌空气。

d.投资少,能耗低,技术较简单[6]。

目前固态发酵可测或可调的参数主要有:培养基含水量、空气湿度、CO2和O的含量、pH值、温度和菌体生长量等。

目前常用的固态发酵设备有浅盘发酵器、箱式发酵装置、转鼓式发酵器、旋转圆盘式发酵机、搅拌式发酵反应器、压力脉动固态发酵反应器[7]。

固态发酵技术在传统功能食品和酒类酿造方面得到了广泛应用,如酱油、米酒、豆豉、黄酒和白酒等。

从传统固态发酵发展到现代固态发酵,该技术在生产抗生素、酶制剂、精饲料、有机酸、生物活性物质等方面发挥了重大作用,并进一步扩大到生物转化、生物燃料、生物防治、垃圾处理及生物修复等领域,固态发酵作为潜在的技术引起人们的密切关注[8]。

4.DNA重组技术
20世纪70年代发展起来的重组DNA技术,在全球科学家们的共
同努力下,目前已经发展成为一门成熟的应用技术,不仅对一批抗生素的合成基因进行了克隆表达、分析,而且提高了抗生素的单位产量,逐渐形成了微生物菌种改良的一个新领域——以基因工程技术改良菌种,有望克服育种工作的盲目性、随机性,提高育种效率[15]。

DNA在发酵工程上的应用,可以表述为以重组DNA技术制备,对编码多需要蛋白的基因进行遗传修饰,再利用质粒或者病毒载体将目的基因导入适当的微生物或细胞,并在其中表达并翻译成蛋白,经过提取和纯化等步骤获得,用于预防、治疗、诊断并具有生物学活性的蛋白质产品[9]。

改良菌种的新型基因工程技术
a.组合生物合成技术,指应用基因重组技术重新组合微生物合成产物的基因丛,产生一些新的基因丛,从而合成许多新的非天然的化合物,为筛选提供丰富的资源[10]。

b.基于微排的基因组技术,指依据已研究的目的基因的DNA 序列,设计和合成针对每个基因的寡核苷酸引物,并连接到芯片的微孔,通过样品杂交、扫描获得相关的信息,应用计算机处理,从而发现重要的数据[11]。

c.RNA聚合酶功能修饰技术:RNA聚合酶的功能与抗生素生物合成基因丛的表达可能存在一定的关系,通过修饰RNA 聚合酶的功能可能调节某些抗生素的生物合成水平[12、13]。

现代发酵工程主要有以下儿个特点:
( l) 不完全依赖地球的有限资源, 而着眼于再生资源的利用, 不
受原料的限制(2) 生物反应所需的温度较低,生产步骤简化, 实行生产过程的连续性,大大节约能源,缩短生产周期, 降低成本, 减少对环境的污染(3) 可开辟一条安全有效、生产价格低廉、纯净的生物制品的新途径(4) 能解决传统技术或常规方法所不能解决的许多重大难题, 并为能源、环境保护提供新的解决办法.(5) 可定向创造新品种、新物种,适应多方面的需要, 造福于人类.(6) 投资小, 收益大, 见效快[14].
参考文献
[1] 孙毅. 发酵工程研究的新进展[J]. 科技情报开发与经济,2006,07:2+93.
[2] 罗明典. 发酵工程若干方面的研究进展[J]. 食品与发酵工业,1993,04:72-77.
[3]焦瑞身. 发酵工程的进展[J]. 生物工程进展,1993,05:16-33.
[4]Pandey A. Process Biochem, 1992, 27: 109~ 117.
[5]徐福建,陈洪章,李佐虎. 固态发酵工程研究进展[J]. 生物工程进
展,2002,01:44-48.
[6] 戴超,冷云伟,宗雯雯. 固态发酵技术的研究进展[J]. 江苏调味副食
品,2008,02:25-28.
[7]黄达明,吴其飞,陆建明,管国强. 固态发酵技术及其设备的研究进展[J]. 食品与发酵工业,2003,06:87-91.
[8]李浪,杨旭,薛永亮. 现代固态发酵技术工艺、设备及应用研究进展[J]. 河南工业大学学报(自然科学版),2011,01:89-94.
[9]高凯,任跃明,王兰,郭中平,王军志. 关于我国药典重组DNA技术产品总论的思考[J]. 中国生物工程杂志,2014,05:107-115.
[10]胡海峰,朱宝泉,龚炳永.生物活性物质的筛选与新药研究[J]囯外药学抗生素分册(worldnotes on antibiotics),1998,19(6):401-408
[11]岑沛霖,蔡谨。

工业微生物学[M],北京:化学工业出版社,2005,123.
[12]Xue Q,Ashley G,Hutchinson CR,et al. A multiplasmid approach topreparing large libraries of polyketides [J]. Biochemistry,1999,96(21):117402-117451.
[13]栾兴社,王贵宏,张华英. 应用于发酵工业的DNA重组技术[J]. 山东食品发酵,1995,02:35-41.
[14]李彬. 现代发酵工程展望[J]. 商洛师范专科学校学报,2003,04:48-51+54.。

相关文档
最新文档