通信原理仿真实验报告

合集下载

通信仿真实验报告

通信仿真实验报告

通信仿真实验报告一、实验目的本次实验旨在通过通信仿真软件对一些典型通信系统进行仿真实验,通过实验数据分析和结果对比,加深对通信系统原理的理解。

二、实验设备和软件1. 通信仿真软件:MATLAB/Simulink2.实验设备:个人电脑3.其他实验所需设备:无三、实验内容1.AM调制与解调2.FM调制与解调3.FSK调制与解调4.PSK调制与解调5.QPSK调制与解调四、实验步骤1.AM调制与解调实验首先,使用MATLAB/Simulink搭建AM调制系统。

将一个正弦信号作为载波信号,用一个矩形脉冲信号进行调制,调制结果通过一个图示仪表进行查看。

然后,再搭建相应的AM解调系统,将调制后的信号经过解调系统,恢复为原始的矩形脉冲信号。

通过调整调制信号的幅度、频率等参数,观察调制和解调系统的输入输出波形变化情况,分析调制和解调的效果。

2.FM调制与解调实验同样使用MATLAB/Simulink搭建FM调制系统,将一个正弦信号作为载波信号,用一个矩形脉冲信号进行调制。

调制结果通过一个图示仪表进行查看。

接着,搭建相应的FM解调系统,将调制后的信号经过解调系统,恢复为原始的矩形脉冲信号。

通过调整调制信号的幅度、频率调制指数等参数,观察调制和解调系统的输入输出波形变化情况,并进行分析比较。

3.FSK调制与解调实验使用MATLAB/Simulink搭建FSK调制系统,将两个正弦信号分别作为两种调制信号,用一个矩形脉冲信号进行调制。

调制结果通过一个图示仪表进行查看。

接着,搭建相应的FSK解调系统,将调制后的信号经过解调系统,恢复为原始的矩形脉冲信号。

通过调整调制信号的幅度、频率等参数,观察调制和解调系统的输入输出波形变化情况,并进行分析比较。

4.PSK调制与解调实验使用MATLAB/Simulink搭建PSK调制系统,将一个正弦信号作为载波信号,用一个矩形脉冲信号进行调制。

调制结果通过一个图示仪表进行查看。

接着,搭建相应的PSK解调系统,将调制后的信号经过解调系统,恢复为原始的矩形脉冲信号。

通信原理设计实验报告(3篇)

通信原理设计实验报告(3篇)

第1篇一、实验目的1. 理解通信原理的基本概念和原理。

2. 掌握通信系统中的信号传输、调制解调、信道编码和解码等基本技术。

3. 通过实验验证通信原理在实际系统中的应用,提高实际操作能力。

二、实验内容1. 信号传输实验(1)实验目的:验证信号传输过程中的基本特性,如幅度调制、频率调制、相位调制等。

(2)实验原理:通过改变输入信号的幅度、频率和相位,观察输出信号的相应变化,分析调制和解调过程。

(3)实验步骤:① 设计信号传输系统,包括调制器、传输信道和解调器;② 选择合适的调制方式,如AM、FM、PM等;③ 通过实验验证调制和解调过程,分析输出信号的特性;④ 分析实验结果,总结调制和解调过程中的关键因素。

2. 调制解调实验(1)实验目的:研究调制解调技术在通信系统中的应用,掌握调制解调的基本原理和方法。

(2)实验原理:通过实验验证调制解调过程,分析调制解调器的性能指标,如调制指数、解调误差等。

(3)实验步骤:① 设计调制解调系统,包括调制器、解调器和信道;② 选择合适的调制方式和解调方式,如AM、FM、PM、PSK、QAM等;③ 通过实验验证调制解调过程,分析调制解调器的性能指标;④ 分析实验结果,总结调制解调过程中的关键因素。

3. 信道编码和解码实验(1)实验目的:研究信道编码和解码技术在通信系统中的应用,掌握信道编码和解码的基本原理和方法。

(2)实验原理:通过实验验证信道编码和解码过程,分析编码和解码的性能指标,如误码率、信噪比等。

(3)实验步骤:① 设计信道编码和解码系统,包括编码器、信道和解码器;② 选择合适的信道编码方式,如BCH码、RS码等;③ 通过实验验证信道编码和解码过程,分析编码和解码的性能指标;④ 分析实验结果,总结信道编码和解码过程中的关键因素。

4. 通信系统综合实验(1)实验目的:综合运用通信原理中的各种技术,设计一个简单的通信系统,并验证其性能。

(2)实验原理:将上述实验中的技术综合应用于通信系统,验证系统的整体性能。

通信原理硬件仿真试验报告试验一我的要点

通信原理硬件仿真试验报告试验一我的要点

实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB码的编码规则。

3、掌握从HDB码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB(AMI)编译码集成电路 CD22103二、实验内容1、用示波器观察单极性非归零码(NRZ、传号交替反转码(AM)、三阶高密度双极性码(HDB)、整流后的AMI码及整流后的HDB码。

2、用示波器观察从HDB码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB AMI译码输出波形。

三、实验步骤1、熟悉信源模块和HDB3编译码模块的工作原理,使直流稳压电源输出+5V, -12V 电压。

2、用示波器观察数字信源模块上的各种信号波形。

接通信源单元的+5V电源,用FS作为示波器的外同步信号,进行下列观察:(1、示波器的两个通道探头分别接 NRZ-OUT和BS-OUT对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2、用K1产生代码X 1110010(x为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3、用示波器观察HDB编译单元的各种波形。

(3)将 K1、K2、K3 置于 0111 0010 0000 1100 0010 0000 态,观察并记录对应的AMI码和HDB码。

AMI 码:HDB3码:(4)将K1、K2、K3置于任意状态,K4置A或H端,CH1接NRZ-OUT CH2分别接(AMI) HDB3-D BPF BS-R和NRZ,观察这些信号波形。

观察时应注意:当输入码为.0101 0101 1111 1111 0000 0000 时输出波形(AMI) HDB3-D码的波形:AMI、HDB码是占空比等于 0.5的双极性归零码,AMI-D HDBD是占空比等于0.5的单极性归零码。

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

通信原理软件仿真实验报告

通信原理软件仿真实验报告

西安邮电大学《通信原理》软件仿真实验报告实验名称:《通信原理》软件实验院系:通信与信息工程学院专业班级:电科1003学生姓名:易海博学号:03102085(班内序号)13指导教师:李莉报告日期:2012年11月3日实验一● 实验目的:1、正弦信号的产生;2、双极性不归零码的产生;3、单极性不归零码的产生;4、四进制数字信号的产生;5、模拟滤波器的设计;6、单位冲激信号的产生;7、直流信号的产生;8、高斯白噪声的产生;9、矩形脉冲序列的产生; 10、低通带限型信号的产生。

● 仿真设计电路及系统参数设置:1、正弦信号的产生:振幅5V ,频率100Hz ,初相为452、双极性不归零码的产生:幅度±10V ,频率100Hz3、单极性不归零码的产生:幅度2V ,频率100Hz4、四进制数字信号的产生:幅度±1V 、±3V ,频率100Hz5、模拟滤波器的设计: 1、低通滤波器:最高截止频率200Hz ,极点个数为62、带通滤波器: 6、单位冲激信号的产生:增益为1,出现时刻0.7s ,即()0.7t δ-7、直流信号的产生:幅度5V8、高斯白噪声的产生:功率谱密度6110/W Hz -⨯9、矩形脉冲序列的产生:幅度2V ,频率100Hz (周期0.01s ),脉宽0.002s (占空比20%)10、低通带限型信号的产生:最低截止频率300Hz ,最高截止频率3400Hz仿真波形及实验分析:1、正弦信号的产生:2、双极性不归零码的产生:3、单极性不归零码的产生:4、四进制数字信号的产生:5、模拟滤波器的设计:1、低通滤波器:2、带通滤波器:6、单位冲激信号的产生:7、直流信号的产生:8、高斯白噪声的产生:9、矩形脉冲序列的产生:10、低通带限型信号的产生:实验分析:1、在产生图形的时候,一定要选好时钟频率,用书上给出的时钟频率,有时候得到的图形不是很清晰,这时候可以适当的调小时钟频率,得到清晰的图样。

通信原理实验报告答案(3篇)

通信原理实验报告答案(3篇)

第1篇一、实验目的1. 理解通信系统的基本原理和组成。

2. 掌握通信系统中的调制、解调、编码、解码等基本技术。

3. 熟悉实验仪器的使用方法,提高动手能力。

4. 通过实验,验证通信原理理论知识。

二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。

2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。

3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。

三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。

2. 信号源:提供调制、解调所需的信号。

3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。

四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。

(2)将信号源信号输入调制器,观察调制后的信号波形。

(3)调整解调器参数,如解调方式、解调频率等。

(4)将调制信号输入解调器,观察解调后的信号波形。

2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。

(2)将调制信号输入解调器,观察解调后的信号波形。

(3)调整调制器参数,如调制方式、调制频率等。

(4)将解调信号输入调制器,观察调制后的信号波形。

3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。

(2)将信息信号输入编码器,观察编码后的数字信号。

(3)设置解码器参数,如解码方式、解码长度等。

(4)将编码信号输入解码器,观察解码后的信息信号。

4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。

(2)将信号源信号输入传输线路,观察传输过程中的信号变化。

(3)调整传输线路参数,如衰减、反射等。

(4)观察传输线路参数调整对信号传输的影响。

五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。

2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。

通信原理仿真——多径信道仿真实验

通信原理仿真——多径信道仿真实验

多径信道仿真实验报告一、AM 、DSB 调制及解调要求:用matlab 产生一个频率为1Hz,功率为1的余弦信源()m t ,设载波频率10c Hz ω=,02m =,试画出:AM 及DSB 调制信号的时域波形;12345678910tAM 时域波形图12345678910tDSB 时域波形图01002003004005006007008009001000NAM 频谱图1002003004005006007008009001000NDSB 频谱图● 采用相干解调后的AM 及DSB 信号波形;1002003004005006007008009001000AM 波1002003004005006007008009001000-1.5-1-0.50.511.5DSB 波● AM 及DSB 已调信号的功率谱;10020030040050060070080090010005105AM 波功率谱0100200300400500600700800900100051015x 104DSB 波功率谱调整载波频率及m0,观察分的AM 的过调与DSB 反相点现象。

在接收端带通后加上窄带高斯噪声,单边功率谱密度00.1n ,重新解调。

%% 加噪解调noise=wgn(1,length(sAM),0、2); %高斯噪声h2=fir1(100,[2*8、9/100,2*11、1/100]); %带通滤波器设计znoise=conv(noise,h2); %窄带高斯噪声sAM2=sAM+znoise(101:end);sDSB2=sDSB+znoise(101:end);spAM2=sAM2、*ct;spDSB2=sDSB2、*ct;b=fir1(100,0、12*2);sdAM2=filter(b,1,spAM2);sdAM_2=2、*sdAM2-m0;sdAM__2=sdAM_2(50:end); %去暂态figure(6);plot(sdAM__2,'r');hold on;plot(mt);legend('加噪解调后','原信号');title('AM波');% 同理画DSB1002003004005006007008009001000-2-1.5-1-0.500.511.52AM 波1002003004005006007008009001000-2-1.5-1-0.500.511.52DSB 波二、SSB 调制及解调要求:用matlab 产生一个频率为1Hz,功率为1的余弦信源,设载波频率10c Hz ω=,,试画出:● SSB 调制信号的时域波形;12345678910-1-0.500.51tSSB 下边带时域波形1002003004005006007008009001000010*******400NSSB 下边带频谱图● 采用相干解调后的SSB 信号波形;1002003004005006007008009001000-1.5-1-0.50.511.5SSB 波● SSB 已调信号的功率谱;0100200300400500600700800900100024681012144SSB 波功率谱在接收端带通后加上窄带高斯噪声,单边功率谱密度00.1n =,重新解调。

通信原理实验仿真报告

通信原理实验仿真报告

实验一. A率13折线编码一、 A率13折线编码简介1、A率13折线的产生A率13折线的产生是从不均匀量化的基点出发,设法用13段折线逼近A=87.6的A率压缩特性。

具体方法是:把输入x轴和输出y轴用两种不同的方法划分。

对x轴在0~1(归一化)范围内不均匀分成8段,分段的规律就是每次以二分之一对分,第一次在0到1之间的1/2处对分,第二次在0到1/2之间的1/4处对分,其余类推。

对y 轴在0~1(归一化)范围内采用等分法,均匀分成8段,每段间隔均为1/8。

然后把x,y各对应段的交点连接起来构成8段直线,得到近似A=87.6的A率压缩特性。

这种近似中会得到13段(正负)斜率不同的折线,所以称其为A率13折线。

2、A率13折线的编码M==个量在13折线编码中,普遍采用8位二进制码,对应有82256化级,即正、负输入幅度范围内各有128个量化级。

这需要将13折线中的每个折线段再均匀分为16个量化级,由于每个段落长度不均⨯=个不均匀的量化匀,因此正或负输入的8个段落被划分成816128级。

按折叠二进制码的码型,这8位码的安排如下:极性码段落码段内码其中,第一位表示采样点的极性,第二到第四位表示采样点所在段落。

第五到第八位表示每段内的一个均匀量化级。

3、13折线幅度码及其对应电平表一4、段内码表二二、1、流程图1)编码2)译码2、编程思路编码根据电平的极性判断C1码,正为1,负为0。

——>根据电平范围可按照表一判断出段落码C2C3C4——>用电平值减去段落起始电平,除以相应的量化间隔,将得到的十进制数转换成二进制数,根据表二就可以判断出相应的段内码C5C6C7C8.译码根据C1来判断电平的极性,1为正,0为负。

——>量化段序号i=4*C2+2*C3+C4+1,则根据表一判断出起始电平I(i)——>j=8*C5+4*C6+2*C7+C8,段内码对应的电平值为I1(i)=j*ΔV(i)Δ—>译码后电平值为I(i)+ I1(i)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信原理仿真实验报告
学院通信工程学院
班级1401014班
分组
参数
姓名
学号
目的:
(1)熟悉()通信系统的工作原理、电路组成和信息传输特点;
(2)熟悉上述通信系统的设计方法与参数选择原则;
(3)掌握使用参数化图符模块构建通信系统模型的设计方法;
(4)熟悉各信号时域波形特点;
(5)熟悉各信号频域的功率谱特点。

实验内容一:
(1)使用m序列为数字系统输入调试信号,采用正弦载波,码速率及载波频率参见附表;
(2)采用模拟调制或数字检控实现2PSK调制;
(3)通过相干解调完成2PSK解调,恢复初始m序列;
(4)从时域观测各信号点波形,获得接收端信号眼图;
(5)观测各信号功率谱;
(6)完成串并及并串转换模块设计;
实验内容二:
(7)通过不少于三个频率正弦信号叠加而成的模拟信号作为系统真实输入信号,并采用PCM编码方法实现数模转换;
(8)模拟输入信号转换形成的数字信号通过2PSK调制解调系统实现数字频带传输;
(9)通过PCM解码恢复初始模拟信号;
(10)从时域重点观测模拟信号点波形;
(11)从频域重点观察模拟信号功率谱。

方案:
通信模拟信号的数字传输通信系统的组成框图如图1所示。

系统输入的模拟随机信号m(t),经过该通信系统后要较好地得到恢复。

推荐方案:
推荐的模拟信号数字频带传输通信系统的组成框图如图2所示。

通过PCM 方式完成数模与模数变换,采用2/BPSK调制方式完成基本数字频带传输。

在2PSK中,通常用初始相位0和 分别表示二进制“1”和“0”。

因此,2PSK信号的时域表达式为:
即发送二进制符号“1”时(an取+1),e2PSK(t)取0相位;发送二进制符号“0”时(an取-1),e2PSK(t)取 相位(也可以反之)。

这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制(绝对)相移方式。

已调信号e2PSK(t)典型波形如下图。

2PSK信号的调制器原理方框图
模拟调制的方法:
2PSK信号的解调器(想干解调)原理方框图和波形图:
2PSK仿真结果及分析电路图:
时域波形:
输入信号:
与载波相乘后的波形:
经过带通滤波器后的波形:
经过低通滤波器后的波形:
眼图:
输出波形:
功率谱图:
输入信号:
经带通滤波器后的信号:
经低通滤波器后的信号:
输出信号:
带通幅频特性曲线:
低通幅频特性曲线:
图符参数设置表:
PCM仿真结果及分析:电路图:
串并
3 Poles
Fc = 1e+3 Hz
Quant Bits = None InitCndtn = 0
DSP Mode Disabled。

相关文档
最新文档