对风机偏航系统的理解
风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍2012-12-15资讯频道偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。
使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。
以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。
电机组的安全运行。
舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。
形式。
1.偏航系统的技术要求1.1. 环境条件在进行偏航系统的设计时,必须考虑的环境条件如下:1). 温度;2). 湿度;3). 阳光辐射;雨、冰雹、雪和冰;4).5). 化学活性物质;机械活动微粒;6).盐雾。
风电材料设备7).近海环境需要考虑附加特殊条件。
8).应根据典型值或可变条件的限制,确定设计用的气候条件。
选择设计值时,应考虑几气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。
不影响所设计的风力发电机组偏航系统的正常运行。
1.2. 电缆必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效,电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。
的。
阻尼1.3.偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振,阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。
只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。
确定。
阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。
1.4. 解缆和纽缆保护偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。
风力发电机及偏航系统

风力发电机及偏航系统引言:风力发电是一种利用风能将其转化为电能的发电方式。
它是一种环保、可再生的能源,可以帮助减少对传统化石燃料的依赖,并减少排放。
风力发电机是风力发电的核心设备,而偏航系统是确保风力发电机能够高效运行的关键部件。
本文将从风力发电机的原理、构造和工作原理以及偏航系统的功能、原理和优化等方面进行阐述,以帮助读者更好地理解风力发电机及偏航系统的工作原理与应用。
一、风力发电机1.原理2.构造3.工作原理当风力吹过风力发电机的叶片时,叶片产生升力,并形成一个扭转力矩。
这个扭转力矩通过轴传递给发电机,进而带动发电机转子旋转。
转子内部的磁场与绕组相互作用,产生感应电动势,从而产生电能。
二、偏航系统1.功能偏航系统是风力发电机中的重要部分,其主要功能是使风力发电机始终面向风向,以利用风能的最大化。
偏航系统可以通过调整发电机的方向来适应风的变化,确保叶片始终相对于风的方向。
2.原理偏航系统通常由风向传感器、控制器和驱动器等组成。
风向传感器负责感知风的方向,控制器根据风向数据和预设参数进行判断和计算,驱动器则通过调整发电机的方向来控制风力发电机的偏航。
3.优化为了提高风力发电系统的效益,偏航系统的优化也尤为重要。
通过采用更先进的风向传感器、控制算法和驱动器技术,可以提高偏航系统的准确性和响应速度,进而提高风力发电机的发电效率。
结论:风力发电机及偏航系统是风力发电的重要组成部分,其工作原理和优化对风力发电系统的效益起到至关重要的作用。
理解和掌握风力发电机及偏航系统的原理和应用,对于推广和应用风力发电具有重要的指导意义。
随着技术的不断进步,风力发电的效率和可靠性将继续提升,为可持续发展和环境保护做出积极贡献。
风力机偏航系统

限位开关
大齿圈
接近开关
17
18
当然风向变化是一个连续的过程,并不一定瞬时从东南风就 变为南风了,而是一个逐渐变化的过程。
15
机舱是可以顺时针旋转也可以逆时针旋转的,在偏航 过程中,机舱不能总是朝向一个方向旋转,因为机舱底 部大齿圈内部布置着多根电缆,机舱旋转电缆也就跟着 扭转,所以为了防止电缆扭转破坏特地控制机舱同一方 向旋转圈数不得超过650度(从0度开始,0度为安装风 电机组时确定的位置)。这种控制方法就是靠偏航接近 开关和限位开关来实现的,接近开关一左一右共两个, 负责记录机舱位置,当机舱达到+650度或-650度时 发出信号,控制系统控制偏航电机反向旋转解缆。限位 开关是作为极限位置开关使用的,当机舱继续旋转达到 700度时,限位开关被触发而使得风电机组快速停机。
这时,由风速风向仪测得风向变化,并传给控制系统存储 下来,控制系统又来控制偏航驱动装置中的四台偏航电机往 风速变化的方向同步运转,偏航电机通过减速齿轮箱带动小 齿轮旋转。小齿轮是与大齿圈相啮合的,与偏航电机、偏航 齿轮箱统一称为偏航驱动装置,上图可以看出,偏航驱动装 置通过螺栓紧固在主机架上,而大齿圈通过88个螺栓紧固在 塔筒法兰上,不可旋转,那么只能是小齿轮围绕着大齿圈旋 转带动主机架旋转,直到机舱位置与风向仪测得的风向相一 致。
3
尾舵对风
许多农用的多 叶风轮风力机也采 用尾舵对风,有些 尾舵是两叶张开的 样式,对风有较大 的阻力,以抗衡多 叶风轮的阻力,保 证稳定的对风。
4
尾舵对风
5
侧风轮对风
侧风轮对风结构在机舱后部两侧有两个侧风轮(舵轮),两个侧风轮一 般在同一个转轴上,转轴水平并与风力机风轮主轴垂直。在风力机准确对风 时两侧风轮面与风向平行,侧风轮不会旋转;当风力机未对风时侧风轮与风 有夹角就会旋转,并通过齿轮、蜗杆蜗轮推动机舱转动直至风力机风轮对风 后停止。
偏航系统

4.3 偏航系统偏航系统是风力发电机组特有的伺服系统,是风力发电机组电控系统必不可少的重要组成部分。
它的功能有两个:一是要控制风轮跟踪变化稳定的风向;二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解除缠绕。
风力机偏航的原理是通过风传感器检测风向、风速,并将检测到的风向信号送到微处理器,微处理器计算出风向信号与机舱位置的夹角,从而确定是否需要调整机舱方向以及朝哪个方向调整能尽快对准风向。
当需要调整方向时,微处理器发出一定的信号给偏航驱动机构,以调整机舱的方向,达到对准风向的目的。
风力机发电机组的偏航系统是否动作,受到风向信号的影响,而偏航系统及其部件的运行工况和受力情况也受到地形状况影响。
本章主要阐述偏航控制系统的功能、原理、以及影响偏航系统工作的一些确定的和不确定的因素。
4.3.1 偏航系统的工作原理偏航系统的原理框图如图4-11 所示,工作原理为:通过风传感器将风向的变化传递到偏航电机控制回路的处理器里,判断后决定偏航方向和偏航角度,最终达到对风目的。
为减少偏航时的陀螺力矩,电机转速将通过同轴联接的减速器减速后,将偏航力矩作用在回转体大齿轮上,带动风轮偏航对风。
当对风结束后,风传感器失去电信号,电机停止工作,偏航过程结束。
图4-11 偏航系统硬件设计框图4.3.1 偏航控制系统的功能偏航控制系统主要具备以下几个功能:(1)风向标控制的自动偏航;(2)人工偏航,按其优先级别由高到低依次为:顶部机舱控制偏航、面板控制偏航、远程控制偏航;(3)风向标控制的90°侧风;(4)自动解缆;4.3.2 偏航系统控制原理风能普密度函数为:432222||1K i W i W S S V ωφωππφ=⎡⎤⎛⎫⎢⎥+ ⎪⎢⎥⎝⎭⎣⎦(1) 其中,1()2i i ωω=-⋅∆,风波动频率;ω∆—积分步长;K S —表面张力因数; φ—风波动范围因数;W V —平均风速。
平均风速W V 附近的瞬时风速()Wv t 为:1()2co s()n W i i i v t t ωφ==⋅+∑(2)对于时变量i 而言,i φ为自由独立变量,0<i φ<2π,n 为积分步长数量。
风力发电机偏航系统的工作原理

风力发电机偏航系统的工作原理风力发电机偏航系统是风力发电机的重要组成部分,它的主要作用是使风力发电机能够根据风向自动调整转向,使叶片始终对准风的方向,从而最大限度地捕捉到风能。
风力发电机偏航系统的工作原理可以简单地描述为以下几个步骤:1. 风向检测:风力发电机偏航系统首先需要准确地检测到风的方向。
通常,系统会使用一个或多个风向传感器来测量风的方向,并将这些信息传输给控制系统。
2. 信号处理:一旦风向传感器测量到风的方向,这些信号就会被传输到控制系统中进行处理。
控制系统会根据这些信号来确定风的方向,以便后续的调整。
3. 偏航控制:确定了风的方向后,控制系统会通过调整发电机的转向来使叶片对准风的方向。
通常,风力发电机偏航系统使用液压或电动机来实现转向的调整。
控制系统会根据风向信号来控制液压系统或电动机,使风力发电机转向。
4. 转向调整:一旦控制系统调整了风力发电机的转向,风力发电机就能够始终面向风的方向。
这样,风力发电机的叶片就能够最大限度地捕捉到风的能量,并将其转化为电能。
5. 反馈控制:风力发电机偏航系统通常还会包括反馈控制,以确保风力发电机能够稳定地对准风的方向。
反馈控制可以根据风向传感器的信号来实时调整风力发电机的转向,以保持其对准风的方向。
总结起来,风力发电机偏航系统的工作原理是通过风向传感器检测风的方向,控制系统根据这些信号来调整风力发电机的转向,使其始终面向风的方向。
这样,风力发电机就能够最大限度地捕捉到风的能量,并将其转化为电能。
风力发电机偏航系统的工作原理的实现离不开风向传感器、控制系统以及液压或电动机等关键组件的配合。
通过这些关键组件的协同工作,风力发电机偏航系统能够实现稳定的转向调整,从而提高风力发电机的发电效率。
风机偏航系统介绍

机械式
传统式
共振式
偏航系统常见故障
一、齿圈齿面磨损的原因: 1、齿轮的长期啮合运转;2、相互啮合的齿轮齿侧间隙
中渗入杂质;3、润滑油或润滑脂严重缺失使齿轮副处于干 摩擦状态。 二、液压管路渗漏的原因:
1、管路接头松动或损坏;2、密封件损坏。 三、偏航压力不稳的原因:
1、液压管路出现渗漏;2、液压系统的保压蓄能装置出 现故障;3、液压系统元器件损坏。 四、异常噪音的原因:
偏航驱 动电机
侧面轴承
偏航驱动 减速器
偏航 滑板
偏航轴承
偏航轴承的形式可以分为外齿和内齿形式,外齿又分为 带轴承和不带轴承的。
外齿不带轴承齿圈
偏航计数器 偏航轴承
接近开关
主机架
偏航大齿圈
侧面轴承
划垫保持装置 锁紧螺母
调整螺栓
径向滑板
滑盘
顶部圆盘
导向板
弹簧垫 调节螺栓
偏航爪室
滑板
润滑管
滑板由 PETP塑料制成
外齿带轴承齿圈
偏航内齿圈
偏航计数器
❖ 任务:
▪ 第一,在机舱偏航超出 限制时,检测到被触发 的硬件开关。
▪ 第二,发出一个信号来 测量机舱的精确位置。 这个信号是在旋转编码 器内可选的编码器来发 出的。
在偏航系统的偏航动作失效后,电缆的扭绞达到 威胁机组安全运行的程度而触发该装置,使机组进行 紧急停机。
1、润滑油或润滑脂严重缺失;2、偏航阻尼力矩过大; 3、齿轮副齿轮损坏;4、偏航驱动装置中油位过低。
五、偏航定位不准确的原因:
1、风向标信号不准确;2、偏航系统的阻尼力矩过大或 过小;3、偏航制动力矩达不到机组的设计值;4、偏航系 统的偏航齿圈与偏航驱动装置的齿轮之间的齿侧间隙过大。
风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍一、引言随着可再生能源的快速发展,风力发电成为了新兴的清洁能源选择之一、风力发电机组的偏航系统是其核心组成部分之一,它能够使风力发电机组在不同风向下旋转,实现最大风能有效利用。
本文将详细介绍风力发电机组偏航系统的原理、构成和工作过程。
二、原理1.风向感知:通过风速传感器和风向传感器,实时感知风的强度和方向。
2.控制系统:根据风向传感器的反馈信息,计算出偏航控制参数,并传递给执行机构。
3.执行机构:根据控制系统的指令,调整风轮的朝向,使其与风向保持一致。
三、构成1.传感器:风力发电机组偏航系统中的传感器主要包括风速传感器和风向传感器。
风速传感器用于感知风的强度,而风向传感器则用于感知风的方向。
2.控制系统:控制系统是风力发电机组偏航系统的核心部分,主要包括控制算法和控制器。
控制算法根据风向传感器的反馈信息计算出偏航控制参数,而控制器则将这些参数传递给执行机构。
3.执行机构:执行机构负责调整风力发电机组的朝向,使其与风向保持一致。
常见的执行机构包括偏航控制器、偏航电机等。
四、工作过程1.感知风向:风力发电机组偏航系统通过风向传感器感知风的方向。
2.计算控制参数:根据风向传感器的反馈信息,控制算法计算出偏航控制参数。
3.传递控制参数:控制器将计算得到的偏航控制参数传递给执行机构。
4.调整朝向:执行机构根据控制参数的指令,调整风力发电机组的朝向,使其与风向保持一致。
5.持续监测:风力发电机组偏航系统持续监测风的方向,根据实时的风向信息进行调整,实现持续稳定的发电。
五、总结风力发电机组偏航系统是风力发电的关键技术之一,它能够在不同风向下实现最大风能有效利用。
本文详细介绍了风力发电机组偏航系统的原理、构成和工作过程。
通过合理的感知、计算和调整机制,风力发电机组能够始终面向风向,实现高效稳定的发电效果。
随着风力发电技术的不断发展,风力发电机组偏航系统也将不断完善,为可再生能源的发展做出更大的贡献。
偏航系统浅谈

偏航系统浅谈摘要风作为自然的产物,风能具有能量密度低、随机性和不稳定性等特点。
因此,控制技术是机组安全高效运行的关键,偏航控制系统成为水平轴风力发电机组的重要组成部分。
本文简述了风机偏航系统,其中包括偏航系统的功能、组成及工作原理等。
其次还介绍了偏航系统常见故障点的分析。
关键词:偏航系统组成工作原理常见故障点目录一、引言 (4)二、偏航系统的功能 (5)三、偏航系统的组成 (6)四、偏航系统工作原理 (7)(一) 测量 (7)(二)偏航识别 (8)(三)偏航执行过程 (8)五、偏航系统的维护 (8)(一)偏航减速器的运行检查: (8)(二)润滑油加注: (9)(三) 偏航小齿轮与外齿圈的啮合间隙 (9)1.偏航轴承: (9)2.偏航刹车: (10)3.紧固螺栓: (10)六、偏航系统常见故障点分析 (10)(一) 机械方面原因: (10)1.检查偏航电机 (10)2.检查偏航齿轮箱 (10)3.检查偏航驱动小齿轮 (10)4.检查偏航轴承 (10)5.检查刹车器安装对中性 (11)(二)电控方面原因: (12)(三)液压方面原因: (12)七、结束语 (13)参考文献 (14)偏航系统浅谈一、引言随着不可再生资源的消耗,可再生利用的新能源在全球得到广泛关注。
风能以其巨大的储量、广泛的分布、便捷地采集得到发达国家和部分发展中国家的青睐。
偏航系统在作为风电控制系统的重要组成部分,主要应用于水平轴的风力发电机组。
其作用在于当风向变化时,能够快速平稳地对准风向,以便获得最大的风能。
二、偏航系统的功能风力发电机组的偏航系统也可以成为对风系统,由于风向经常改变,如果叶轮扫风面和风向不垂直,不但功率输出减少,而且载荷情况也更加恶劣.偏航系统的功能就是跟踪风向的变化,驱动机舱围绕塔架中心线旋转,使风轮扫风掠面与风向保持垂直。
偏航系统的功能就是跟踪风向的变化,驱动机舱围绕塔架中心线旋转,使风轮扫风掠面与风向保持垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对风机偏航系统的理解
作者:国电联合动力技术(连云港)有限公司技术部张超产
偏航系统的作用
偏航系统是风力发电机组特有的伺服系统。
它主要有两个功能:一是使风轮跟踪变化稳定的风向;二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解缆。
偏航控制系统
偏航系统是一个随动系统,风向仪将采集的信号传送给机舱柜的PLC的I/O板,计算10分钟平均风向,与偏航角度绝对值编码器比较,输出指令驱动四台偏航电机(带失电制动),将机头朝正对风的方向调整,并记录当前调整的角度,调整完毕电机停转并启动偏航制动。
偏航控制系统框图如下图所示:
下文将对偏航控制系统的各机构进行分析:
1、风速仪
风力发电机组应有两个可加热式风速计。
在正常运行或风速大于最小极限风速时,风速计程序连续检查和监视所有风速计的同步运行。
计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速和停机风速。
测量数据的差值应在差值极限1.5m/s以内。
如果所有风速计发送的都是合理信号,控制系统将取一个平均值。
2、风向标
风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。
一般采用两个风向标,以便互相校验,排除可能产生的误信号。
控制器根据风向信号,起动偏航系统。
当两个风向标不一致时,偏航会自动中断。
当风速低于3m/s时,偏航系统不会起动。
3、扭揽开关
扭缆开关是通过齿轮咬合机械装置将信号传递PLC进行处理和发出指令进行工作的。
除了在控制软件上编入调向记数程序外,一般在电缆处安装行程开关,当其触点与电缆束连接,当电缆束随机舱转动到一定程度即启动开关。
以国内某知名公司生产的1.5MW风机为例,当机身在同一方向己旋转2转(720度),且风力机不处在工作区域(即10分钟平均风速低于切入风速) 系统进入解缆程序。
解缆过程中,当风力机回到工作区域(即10分钟平均风速高于切入风速),系统停止解缆程序,进入发电程序,但当机身在同一方向己旋转2.5转(900度)偏航限位动作扭缆保护,系统强行进入解缆程序,此时系统停止全部工作,直至解缆完成。
当风速超过25 m/s时,自动解缆停止。
自动解除电缆缠绕可以通过人工调向来检验是否正常。
当调向停止触点由常闭进入常开状态时,风机自动解除电缆缠绕,此时风力发电机应不处于维修状态,因此自动调向功能在维修状态时无法使用。
4、偏航编码器
偏航编码器是一个绝对值编码器,可以准确记录偏航位置。
因为绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。
这样,编码器的抗干扰特性、数据的可靠性大大提高了。
5、软启动器
软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。
这种电路如三相全控桥式整流电路,使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。
待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸
管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。
软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。
图1 软启动器控制电机的主电路图
图1为软启动器控制电机的主电路图,图2为电机启动电压变化曲线,图三为软启动器的接线图和电气图。
图2 电机启动电压变化曲线
图3 软启动器的接线图和电气图
6、偏航机构
偏航系统是由回转支撑轴承、弹簧阻尼装置和四台电机驱动的齿轮传动机构组成的。
带有内齿的偏航轴承用螺栓连接在塔筒顶部,外环与机舱座连接,内环与塔架法兰连接。
在偏航系统中驱动机构一般都是由电机加减速机构成,电机是偏航的动力来源,减速机是将电机输出的高速转变成低速的机构,那么在一般的偏航系统中偏航刹车部分一般由两部分组成,一个是安装在驱动电机后端的电机电磁制动器,一部分是安装在偏航轴承附近的液压偏航。
偏航时10个刹车盘处于半释放状态,偏航系统压力约45bar; 自动解缆时刹车盘处于全释放状态。
(end)
为了使风机的桨叶转子工作事始终朝向某个方向,在风机内安设了偏航系统。
精密的测风仪器将检测信号传输给电脑的软件,经过分析后驱动偏航系统的电机和齿轮箱使风机尽可能的减少风能损失,增加有效工作时间。
偏航刹车主机室的转动方向应该是按照指令的方向转动的。
当偏航电机转动的时候,液压刹车系统处于释放状态,当偏航电机停止转动时,液压刹车系统处于刹车状态,将主机室固定在相应的位置上。
在偏航系统中包括电缆防缠绕检测器,防止在主机室根据风向在转动时使内部的电缆通过缠绕而损坏。
如果电缆遭到缠绕,那么在主机室下次转动时,根据电缆缠绕的情况,主机室将向相反的方向转动,使得被缠绕的电缆重新回复到原来的位置上。
偏航驱动偏航系统的驱动部分由三个交流电机和行星式齿轮箱组成。
偏航驱动部件安装在主机托盘的下方,一个过渡小齿轮连接在偏航轴承外齿环和在塔身上的固定齿环之间。
为了使风机的桨叶转子工作事始终朝向某个方向,在风机内安设了偏航系统。
精密的测风仪器将检测信号传输给电脑的软件,经过分析后驱动偏航系统的电机和齿轮箱使风机尽可能的减少风能损失,增加有效工作时间。
偏航刹车主机室的转动方向应该是按照指令的方向转动的。
当偏航电机转动的时候,液压刹车系统处于释放状态,当偏航电机停止转动时,液压刹车系统处于刹车状态,将主机室固定在相应的位置上。
在偏航系统中包括电缆防缠绕检测器,防止在主机室根据风向在转动时使内部的电缆通过缠绕而损坏。
如果电缆遭到缠绕,那么在主机室下次转动时,根据电缆缠绕的情况,主机室将向相反的方向转动,使得被缠绕的电缆重新回复到原来的位置上。
偏航驱动偏航系统的驱动部分由三个交流电机和行星式齿轮箱组成。
偏航驱动部件安装在主机托盘的下方,一个过渡小齿轮连接在偏航轴承外齿环和在塔身上的固定齿环之间。