本安设计计算书

合集下载

本安电路设计技巧

本安电路设计技巧

本安电路设计技巧以下是 7 条关于“本安电路设计技巧”的内容:1. 嘿,你知道吗,选对元件可是本安电路设计的关键呀!就好比搭积木,得选好每一块合适的积木,不然整个城堡可就不稳啦!比如在设计中,选用低功耗的元件,像那些省电的小宝贝,就能大大提升安全性呢!你想想,要是用了个吃电厉害的家伙,得多让人头疼呀!2. 布线啊,那可是个精细活儿!就跟绣花似的,得小心翼翼。

你可别小看这布线,它就像血管一样重要呢。

如果乱七八糟地布线,那不就跟血管堵塞了一样危险嘛!所以啊,得好好规划,让电流能顺畅地跑起来呀,这一点可千万不能马虎哟!3. 接地!接地!这可不是随便说说的。

它就如同给电路穿上了一双安稳的鞋子。

你想想,要是电路没了这双“鞋”,还不得摇摇晃晃呀!比如说,良好的接地能有效消除静电干扰,这多重要呀,咱可不能掉以轻心,对吧?4. 隔离也是超级重要的哦!它就像给电路建了一道防火墙。

比如把危险的部分和安全的部分隔离开来,危险就没法轻易地跑到另一边去捣乱啦!这样就能保证整个电路系统的安全啦,是不是很神奇呀?5. 本安电路的防护措施,那简直就是电路的保镖呀!就像你出门得带把伞以防下雨一样,有了这些防护,心里才踏实呀。

像加个过流保护装置之类的,一旦电流乱来,它就立马出手,太靠谱啦,你说到底是不是这么回事儿呀?6. 调试环节可不能小瞧呀!这就像是给电路做体检。

不仔细检查检查,怎么能知道有没有毛病呢?你瞧瞧,要是没好好调试,等到出问题了,那可就麻烦大啦!所以呀,得认真对待调试,把那些潜在的问题都揪出来,可别偷懒哦!7. 伙伴们,别忘了要整体考虑呀!本安电路设计可不是孤立的,它就像一个团队,每个部分都得相互配合好。

不能这里强那里弱的,要全面兼顾。

就好像一个球队,每个队员都得发挥好才行呢!所以呀,一定要有整体思维,这样才能设计出优秀的本安电路呀!我觉得呀,本安电路设计就得用心对待每一个细节,这样才能真正实现安全可靠的电路呀!。

本安电路设计原理

本安电路设计原理

本安电路设计原理本安电路设计是一种针对危险环境中使用的电子设备进行的安全性设计。

本安电路设计的主要目标是确保在潜在的爆炸性环境中,电子设备不会成为点燃源,从而保障人身安全和设备自身的完好。

以下是本安电路设计的几个主要方面:1.电路分析在进行本安电路设计时,首先需要对电路进行详细的分析。

这包括确定电路的拓扑结构、元件参数、功耗等。

在选择电路元件时,应优先考虑具有本安认证的元件,以确保电路的安全性。

2.元件选择与布置在进行元件选择和布置时,需要考虑潜在的爆炸性环境中的温度、湿度、压力等参数,以及元件之间的相互影响。

应选择符合本安认证的元件,并按照相关标准进行布局,以降低电路的风险。

3.隔离与耦合技术隔离和耦合技术是本安电路设计的关键。

隔离是为了将电路中的不同部分进行物理上的隔离,以防止电位传递和潜在的点火源的产生。

耦合则是在保证电路正常工作的前提下,尽可能减少电路之间的相互影响。

4.防爆与防护措施防爆和防护措施是本安电路设计的重点之一。

防爆措施包括选择适合的元件、降低工作温度、避免过载等。

防护措施则包括对电路进行屏蔽、加装保护罩等,以减少外部环境对电路的影响。

5.接地与屏蔽技术接地和屏蔽技术是本安电路设计中非常重要的环节。

接地是为了将电路中的不同部分连接在一起,以形成一个统一的电位参考点。

屏蔽则是为了减少电磁干扰对电路的影响,保证电路的稳定性。

6.电路测试与验证在进行本安电路设计时,需要对电路进行严格的测试和验证。

这包括功能测试、性能测试、环境适应性测试等。

在测试过程中,应严格按照相关标准进行,确保电路的安全性和稳定性。

7.设计文档与标注为了方便后续的维护和使用,需要对本安电路设计进行详细的文档编写和标注。

这包括电路原理图、PCB布局图、元件清单等。

在设计文档中,应详细说明电路的设计思路、元件选择、测试结果等。

8.可靠性评估与优化在完成本安电路设计后,需要对电路进行可靠性评估和优化。

这包括对电路进行寿命预测、环境适应性评估、可靠性试验等。

本质安全电路设计要求

本质安全电路设计要求
可靠性。
保护电路设计
过流保护
过压保护
在电路中增加过流保护电路,当电流超过 一定值时自动切断电路,以保护电路和负 载。
在电路中增加过压保护电路,当电压超过 一定值时自动切断电路或降低输出电压, 以保护电路和负载。
过热保护
静电保护
在电路中增加过热保护电路,当温度超过 一定值时自动切断电路或降低输出功率, 以防止元器件过热损坏。
选择合适的拓扑结构
根据设计目标,选择合适的电路拓扑结构,如 降压型、升压型、反激型等。
元器件选型
根据拓扑结构和设计参数,选择合适的元器件, 如电阻、电容、电感、开关管等。
原理图设计
使用电路设计软件,绘制电路原理图,并进行仿真 验证。
PCB设计
根据原理图,进行PCB设计,包括布局、布线、过 孔等。
实物制作与测试
漏电或短路。
耐压测试
在电路两端施加高于正常工作电 压的电压,以测试电路的耐压能
力和绝缘性能。
电流测试
测量电路中的电流大小,确保电 流在允许范围内,防止过流引起
的故障。
评估指标及标准
安全性评估
评估电路在正常工作和非正常工作条件下的安全 性,包括电击、火灾等风险。
可靠性评估
评估电路的可靠性,包括元器件的寿命、电路的 耐久性等。
性能评估
评估电路的性能指标,如电压、电流、功率等参 数是否符合设计要求。
常见故障类型及排查方法
元器件故障
检查元器件是否损坏或老化, 如电阻、电容、二极管等。
连接故障
检查电路连接是否良好,如焊 点、接线端子等是否松动或脱 落。
电源故障
检查电源是否正常,如电源电 压是否稳定、电源线路是否短 路等。
负载故障

安装工程量计算书(3篇)

安装工程量计算书(3篇)

第1篇一、工程概况本项目为XX大厦安装工程,位于XX市XX区,总建筑面积为100,000平方米。

大厦共地上30层,地下3层,主要功能为办公、商业及酒店。

本次安装工程包括强电、弱电、消防、空调、给排水、通风等系统。

二、计算依据1. 国家及地方相关法律法规、标准规范;2. 设计图纸;3. 施工组织设计;4. 材料设备清单;5. 工程量计算规则。

三、计算方法1. 按照设计图纸、施工组织设计、材料设备清单,对工程量进行分类、统计;2. 根据国家及地方相关法律法规、标准规范,确定工程量计算规则;3. 对各类工程量进行计算,汇总形成安装工程量计算书。

四、计算内容1. 强电系统(1)低压配电箱:30台,每台安装工程量为5平方米;(2)电缆桥架:300米,每米安装工程量为10平方米;(3)电缆:5000米,每米安装工程量为5平方米;(4)插座:2000个,每个安装工程量为0.5平方米;(5)开关:1000个,每个安装工程量为0.3平方米。

2. 弱电系统(1)电话线:1000米,每米安装工程量为1平方米;(2)网络线:1000米,每米安装工程量为1平方米;(3)监控摄像头:100个,每个安装工程量为1平方米;(4)门禁系统:100个,每个安装工程量为1平方米;(5)背景音乐:100个,每个安装工程量为1平方米。

3. 消防系统(1)消防报警主机:1台,安装工程量为10平方米;(2)消防探测器:1000个,每个安装工程量为0.5平方米;(3)消防喷淋头:1000个,每个安装工程量为0.5平方米;(4)消防泵:1台,安装工程量为10平方米;(5)消防水池:1座,安装工程量为100平方米。

4. 空调系统(1)空调机组:30台,每台安装工程量为50平方米;(2)风管:5000米,每米安装工程量为10平方米;(3)新风机组:10台,每台安装工程量为20平方米;(4)排风机:10台,每台安装工程量为10平方米;(5)空调水管:1000米,每米安装工程量为5平方米。

教你学会仪表回路本安计算及本安回路设计

教你学会仪表回路本安计算及本安回路设计

教你学会仪表回路本安计算及本安回路设计在石油、石化等过程行业中,可能出现潜在的爆炸性环境,在实践中必须对系统中的现场相关设备采取相应的防爆措施。

自控仪表设备采用的防爆技术主要有:本安(Ex i)、隔爆(Ex d)、增安(Ex e)、正压(Ex p)、浇封(Ex m)等各类型。

在众多的防爆技术中,本安防爆技术作为一种以抑制点火源能量为防爆手段的安全技术,以其结构简单、体积小、质量轻,可带电维护、标定和更换零件等优点,目前在各个行业的工程项目中已得到了广泛应用。

在某化工项目中业主提出:根据以往的项目经验,如果没有对本安回路进行严格的计算,在生产过程中仍然会有30%左右的回路存在安全隐患。

即使目前国内对本安计算无特殊要求,业主仍要求在项目设计过程中对每条本安回路进行严格的本安回路计算,本安回路计算的依据是国际电工委员会IEC 60079-14:2007的相关规定。

本安回路设计基本要求:通过控制电路的电参数(如减小电感和电容等储能元件参数),或降低电路电流和电压,使电路达到本安防爆要求;电路中元器件要有足够的功率,连接导线应具有足够截面,以使电路在各种故障条件下可能产生的高电压和大电流不会破坏元件性能,通过元件的可靠性来保证电路的可靠性。

这就要求对本安回路中相应的电气元件参数进行计算,即本安回路计算,以达到相关安全规范的要求,使安全生产更有保证。

1、本安防爆技术简介本安防爆技术的基本原理是以限制能量的原则达到防爆的目的,本安技术在回路正常或异常情况下,可靠地将电路中的能量限制在一个允许的范围内,以保证电气设备发生短路、元器件损坏等情况下,不至于引起其周围可能存在的危险气体的爆炸。

本质安全防爆系统简称本安回路系统,由三部分组成:现场本安设备、本安电缆及关联设备,如图1所示。

系统回路以安全栅为界分为本质安全电路和非本质安全电路。

从安全栅通过本安电缆连接到现场仪表所构成的电路为本安电路;从安全栅到DCS以及到供电电源的电路为非本安回路。

本安设计计算书

本安设计计算书

1 本质安全型先导电路隔爆兼本质安全型磁力起动器微机保护系统的传统先导电路,由于存在自起动和本安性能差等缺点,使得保护系统运行并不理想。

通过反复实验—从本安变压器及本安电源电压的选择到各个电子元器件的确定,参考有关文献设计了适用于矿用隔爆兼本安型磁力起动器微机保护系统的本安先导电路,如图1所示。

图1 本质安全先导电路Fig.1 Intrinsically safe pilot circuit图中本安先导电路由两部分组成,其中上半部分为本安先导信号产生电路,下半部分为先导信号处理电路。

本安先导信号产生电路中T1为先导电源变压器,它将220V交流转换为本安电路所要求的电压,FU为变压器二次测回路中的熔断器,SA、SB分别为远方启动和停止按钮,VD1为远控二极管,R1、R2、R3为信号取样电阻,k1、k2、k3为远控按钮的连接端子,KM为主电路接触器的常开辅助触点,作先导电路的自保接点。

隔爆兼本安型电磁起动器控制信号的先导电路使用的是外接电源,外接电源必需经过隔离变压器与煤矿井下电网连接。

向安全火花电路供电的隔离变压器,要求原绕组与向安全火花型电路供电的副绕组之间,需设有铜质接地屏蔽层,屏蔽层的厚度应不小于0.1mm。

屏蔽层的引出端子需与原绕组引出线端子放在同一侧。

变压器的铁芯及屏蔽层必须可靠接地,才能起到与电网的隔离作用。

原绕组与向安全火花电路供电副绕组的引出端子要分布在变压器的两侧。

设计安全火花型电路的电源,应考虑最严重的故障情况,即电源的短路电流不应超过安全火花电流允许值。

电源的短路电流值应按最大可能出现的电源电压计算,外接电源变压器电压应按高于电网额定电压值10%计算。

由上图电路可以看出,尽管电路负载是电阻性负载,但电路电源经半波整流后,电源常含有电感成份,特别是对于低压输出的变压器,还存在漏电感。

因此,在设计变压器时结构必须紧凑,原、副绕组绕在同一芯柱并密绕,选用磁阻小的铁芯材料,这样漏电感就大为减小。

模板专项安全方案计算书

模板专项安全方案计算书

模板专项安全方案计算书计算说明:1.本计算依据[施工图纸]、[建筑工程模板施工手册]、[建筑扣件式钢管脚手架安全技术规范]及[静力结构计算手册]等相关资料。

2.本计算为顶板模板计算;本区为地面层,最大支撑高度为16m ,顶板厚150mm ,主梁截面尺寸主要有2700×2400mm 、2400×2400mm 、2200×1900mm 、2400×1900mm 、2400×1600mm 、500×1900mm 、500×1600mm 等。

根据市场材料供应情况:100×100mm 木方实际的最小截面为85×85mm ,50×100mm 木方实际的最小截面为45×85mm ,本计算均取最小截面尺寸85×85mm 、45×85mm 的木方为计算参数。

3.顶板模板的设计3.1、面板设计:选用12mm 厚竹胶板。

3.2、龙骨设计:主龙骨采用100×100mm 木方,间距900mm ;次龙骨采用50×100mm 木方,间距200㎜。

3.3、支撑设计:全部采用碗扣脚手架,立杆间距900×900mm ,水平杆步距1200mm 。

4.梁模板的设计4.1、面板设计:梁底模、侧模均采用18mm 厚覆膜多层板。

4.2、龙骨设计:梁底主龙骨采用100×100mm 木方、间距600mm ,次龙骨采用100×100mm木方、间距200mm ,梁侧模次龙骨采用50×100mm 木方、间距300mm ,主龙骨采用100×100mm 木方,间距600mm 。

4.3、主梁侧模用M16穿墙螺栓固定,穿梁螺栓距梁底200mm ,间距600×600mm ,外套PVC套管。

4.4、支撑设计:梁底支撑采用碗口架,立杆上部安装U 型可调顶托,立杆间距沿梁长向600mm 。

本安电路设计方法

本安电路设计方法

本安电路设计方法本文将介绍一种常用的电路设计方法——本安电路设计方法。

本安电路是一种特殊的电路设计,用于在危险环境中工作的电气设备。

这些环境可能存在爆炸性气体、蒸汽或粉尘,因此需要采取特殊的安全措施来保护人员和设备的安全。

本安电路设计方法是根据国际电工委员会(IEC)发布的标准制定的,旨在确保电气设备在危险环境中的安全运行。

本安电路设计方法的核心原则是将电气设备分为两个区域:危险区和安全区。

危险区是指可能存在爆炸性气体或粉尘的区域,而安全区是指相对安全的区域。

在本安电路设计中,危险区和安全区之间通过隔离器件进行隔离。

隔离器件可以是隔离变压器、隔离隔离器、光耦等。

这些隔离器件可以有效地将危险区和安全区之间的电气信号进行隔离,从而降低因电气故障引起的爆炸风险。

本安电路设计方法还需要考虑电气设备的功率和电流。

在危险区中,通常会限制电气设备的功率和电流,以降低爆炸风险。

因此,在设计本安电路时,需要仔细计算和选择电气设备的功率和电流参数,以确保其在工作过程中不会超过规定的限制。

本安电路设计方法还需要考虑电气设备的防护等级。

防护等级是指电气设备的防护能力,以防止外部物体和水进入设备内部,引起故障或危险。

在危险区中,电气设备的防护等级通常要求更高,以应对可能存在的爆炸性气体和粉尘。

因此,在设计本安电路时,需要选择符合要求的防护等级的电气设备。

在实际应用中,本安电路设计方法还需要进行安全性能验证和测试。

安全性能验证是指通过实验和测试验证本安电路设计的可靠性和安全性。

这些测试通常包括电路的电气性能测试、抗干扰测试和环境适应性测试等。

只有通过这些测试,才能确保本安电路设计符合安全要求。

总结起来,本文介绍了一种常用的电路设计方法——本安电路设计方法。

本安电路设计方法是一种用于在危险环境中工作的电气设备的设计方法,旨在确保设备和人员的安全。

该方法将电气设备分为危险区和安全区,并通过隔离器件进行隔离。

在设计本安电路时,需要考虑功率、电流和防护等级等因素,并进行安全性能验证和测试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 本质安全型先导电路
隔爆兼本质安全型磁力起动器微机保护系统的传统先导电路,由于存在自起动和本安性能差等缺点,使得保护系统运行并不理想。

通过反复实验—从本安变压器及本安电源电压的选择到各个电子元器件的确定,参考有关文献设计了适用于矿用隔爆兼本安型磁力起动器微机保护系统的本安先导电路,如图1所示。

图1 本质安全先导电路
Fig.1 Intrinsically safe pilot circuit
图中本安先导电路由两部分组成,其中上半部分为本安先导信号产生电路,下半部分为先导信号处理电路。

本安先导信号产生电路中T1为先导电源变压器,它将220V交流转换为本安电路所要求的电压,FU为变压器二次测回路中的熔断器,SA、SB分别为远方启动和停止按钮,VD1为远控二极管,R1、R2、R3为信号取样电阻,k1、k2、k3为远控按钮的连接端子,KM为主电路接触器的常开辅助触点,作先导电路的自保接点。

隔爆兼本安型电磁起动器控制信号的先导电路使用的是外接电源,外接电源必需经过隔离变压器与煤矿井下电网连接。

向安全火花电路供电的隔离变压器,要求原绕组与向安全火花型电路供电的副绕组之间,需设有铜质接地屏蔽层,屏蔽层的厚度应不小于0.1mm。

屏蔽层的引出端子需与原绕组引出线端子放在同一侧。

变压器的铁芯及屏蔽层必须可靠接地,才能起到与电网的隔离作用。

原绕组与向安全火花电路供电副绕组的引出端子要分布在变压器的两侧。

设计安全火花型电路的电源,应考虑最严重的故障情况,即电源的短路电流不应超过安全火花电流允许值。

电源的短路电流值应按最大可能出现的电源电压
计算,外接电源变压器电压应按高于电网额定电压值10%计算。

由上图电路可以看出,尽管电路负载是电阻性负载,但电路电源经半波整流后,电源常含有电感成份,特别是对于低压输出的变压器,还存在漏电感。

因此,在设计变压器时结构必须紧凑,原、副绕组绕在同一芯柱并密绕,选用磁阻小的铁芯材料,这样漏电感就大为减小。

本文中的变压器采用带绕式C 型铁心,双包密绕、双层屏蔽,这样漏电感可以忽略,认为先导电路为电阻性电路。

本安电源变压器原边电压为220V , 它由主回路电源电压1140V/660V 变换而来,该变压器经过两级隔离,更好地符合了本安电源的要求。

由于本安先导信号产生电路仅提供一个反映存在先导信号的直流电压降,在满足电压降的基础上,不需要考虑电源输出功率,所以很容易限制远控电缆流过的电流。

在确定电源电压之前先考虑因远控电缆k 3-b 段发生接地故障时的情况,此时12V 直流电源经R 3接地,这种情况下电路为一个简单的电阻性电路,查图可知对应12V 电源电压最小引爆电流i i min 为4.5A 左右。

以4.2 A 考虑,按i b 等级计算,由式(1)可得设计最大允许电流max i 为2.8A 。

为了防止大电流常时接地产生热效应,我们按允许电流为12~25mA 设计, 由此可知电阻R 3的取值范围为470Ω~1000Ω。

运算放大器电源电压为直流12V , 如果比较电压定为9V ,那么直流电压降至少要达到3.5V 以保证运算放大器可靠的翻转。

要达此电压,电源电压要大于交流8V ,经过试验证明电源电压取交流8V~12V 为宜。

现按8V 来设计本安电路,并分析其本安性能。

8.25
.12.45.1min max ===i i i A (1) 本安电路为半波整流电路,电源变压器电压按高于网络额定值10%计算,直流电压为8×1.1×0.45=3.96V 。

考虑控制电缆的电感,将其作为电感性电路来设计,按最大使用长度200m 计算,设控制电缆单位长度的电感为5μH/m ,则电缆的电感L=5×200=1000μH 。

由电感电路最小引爆电流与电感关系曲线查得最小引爆电流为1.05A ,考虑安全系数取1.5,得最小引爆电流为700 mA ,而该电路正常工作时最大工作电流为12 mA ,因此,电路在正常状态下是安全的。

现考虑远控二极管被短接情况,此时电路为交流回路,实测电流为15 mA ,此值根据交直流火花能量折算关系,远小于设计最大允许电流,所以该电路在短路故障状态下也是安全的。

相关文档
最新文档