单片机应用系统抗干扰与可靠性设计

合集下载

论单片机应用系统的可靠性技术

论单片机应用系统的可靠性技术
【 摘 要】 针 对破坏 系统正常运行的来 自 供 电系统现场环境的过程通道等方面干扰 , 利用硬件和软件抗干扰措 施, 使 单片机 系统更加 可靠
运行。
【 关键词】 单片机应 用; 抗干扰 设计; 技术 1 干扰 产 生 的 后 果
在对控制系统的可靠性有严格要求的场合 . 使用双机冗余可进一 步提高系统抗干扰能力 。 双机冗余 . 就是执行 同一个控制任务 . 可安排 两个单片机来完成 . 即主机 与从机 。 正常情况下 . 主机掌握着三总线 的 控 制权 , 对整个 系统进行控制 , 此时 , 从机处 于待 机状态 , 等待仲裁器 的触发 。 当主机由于某种原 因发生误动作时 , 仲裁器根据判别条 件, 若 认 为主机程序已混乱 . 则切断主机的总线控制权 , 将从机唤醒 . 从机将 代替主机进行处理与控制 2 . 5 用 好 去 耦 电容 好的高频去耦 电容可 以去除高到 1 G H Z 的高频成 分 陶瓷片电容 或多层陶瓷电容 的高频特性较好。设计 印刷线路板 时 . 每个集成电路 的电源与地之间都要加一个去耦 电容 。 去耦电容有 两个作用 : 一是 , 本 集成电路的蓄能电容 . 提供和吸收该集 成电路开 门、 关 门瞬 间的充 放 电能 ; 二是 , 旁路掉该器件的高频噪声 。 数字电路 中典型 的去耦电容为 0 . 1 F的去耦 电容 ,它有 5 n l 分布电感 ,它 的并行 共振频率大 约在 i 7 MHz 左右 .也就是说对于 1 0 MH z以下的噪声有较好 的去耦 作用 . 对 4 0 M H z 以上 的噪声几乎不起作 用。1 和l O a F电容并行共振频率在 2 0 M H z 以上 , 去除高频率噪声 的效果要好一些 在 电源进入印刷板的 地方设置一个 1 F 或 l O a F 的去高频电容往往是有利 的 , 即使是用 电 池供电的系统也需要这种电容。每 1 O 片左右的集成电路 要加一片充 放电电容 , 或称 为蓄放 电容 , 电容大小可选 1 O 。 最好不用 电解电容 ,

MCS51单片机应用系统可靠性及抗干扰设计

MCS51单片机应用系统可靠性及抗干扰设计
189287/ tiefen tjjkyq
(2)死机0316baowencailiao/ 3.系统对被控对象的误操作 4.被控对象状态不稳定
9.2 单片机系统中硬件抗干扰设计
9.2.1 干扰的耦合方式 1.直接耦合 nizifn mynzf mynzf mynzgf 0838mlj zhongtezc topbrightness/
9.3.3 系统复位特征
1.上电标志的设定方法 ① SP建立上电标志。 ② PSW.5建立上电标志。 ③ 内RAM建立上电标志。 2.软件复位与中断激活标志 3.程序失控后恢复运行的方法 4.睡眠抗干扰
9.4 “看门狗”技术和掉电保护
9.4.1 “看门狗”技术
1.软件“看门狗”技术 nizifn mynzf mynzf mynzg mynzg mynzg mljsgf mljnzf
0838mlj zhongtezc topbrightness/
2.硬件“看门狗”技术 hd8go hd88go sj93 oemgc/
189288 hzp580 yjoem
oemdg/ xcdnpx/ skfjk oemdg
3.上电复位与“看门狗”信号复位的不同处 zhongtezc yanjigz/ zg-nsk skf-zt nsk-zt/ fag-zt/ ntn-zt 189286/ xcdnpx/ dgxcdn dgxcpx xcwxpx
理过程
xunchi-px/ oemfy 0759mz lczx188 189287/ tiefen tjjkyq
0316baowencailiao/
9.4.2 掉电保护电路
1.简单的COMS RAM 掉电保护电路 2.可靠的COMS RAM掉电保护电路 nizifn mynzf mynzf mynzg

单片机应用系统抗干扰问题的解决方案

单片机应用系统抗干扰问题的解决方案

般来讲 , 干扰进 入测 控 系统后 , 所造 成 的影 响
大致有 以下几 个方 面 :
㈩ 数据 采 集 错 误 加 大 。特 别 是 当传 感 器 接 1使
loP e e t ey ,d ih ic e s s t c u a y a d sa i t fa p iain s se wo k l i f ci l  ̄ le n r ae he a c r c n t b ly o p lc to y tm r 3 v i

S O s e k t a 0 o t D a h ts ^-
w r d s nn c nl i i e ni l at— ar i o t pl a o yt ae ei igt ho  ̄ mpo dete ni jnm ̄ fh api tnss m. g e o , v ry e ci e K 3.rs S M(ig c i】 ni a ̄ig Sf a ; r r ei ;D t cl co e ̄0d : C s l h ;a t—J nn ; ot r Pc a ds n a ol tn n ne p n we  ̄m g a ei
机应 用 中的 重要 环 节 。在 单 片 机 应 用 系统设 计 中,通 过 硬 件 和 软 件 设 计 都 可 以解 决 干 扰 问题 , 但软件 解 决 方案 ,更 经 济 、更 有 效 ,它 可 以提 高 应用 系统的 I 作 准 确 性 、工 作稳 定性 :即利 用
软 件 设 计 技 术 ,奎 面提 高 应 用 系统 的 抗 干 扰 能 力 。
可靠性等方面都具有相 当重要 的作用 。因此 , 软件 的抗干扰设计与硬件 的抗 干扰设计一样 , 是单片机 应用系统中不可缺少的一项重要内容。

浅析单片机应用系统的抗干扰设计

浅析单片机应用系统的抗干扰设计
CH N0LOGY I N FORM ATI ON
高 新 技 术
浅 析 单 片机 应 用 系 统 的抗 干 扰设 计 ①
杨 丽 英 ( 南通航运 职业技 术学 院 江苏南通 2 2 6 0 1 0 ) 摘 要: 随着科 学技 术的迅 速 发展 , 单 片机 的应 用越来越 广泛 。 在众 多的 应 用系统 中共 同面临 的一个 问题 , 就是 它在整个 系统 的安 全 性 以及 可靠性 , 单 片机 系统的特 点是 实时性和 外部环 境干扰 因素 多, 本文 就几个 常见的 抗干扰 措施进行 分 析研 究, 从硬 件抗干 扰重 点 介 绍 了在 整个 可靠性 , 针对 单 片机 应 用系统 实时性 强, 干扰 因素较 多的特 点 , 本文介 绍 了几种实 用的抗干扰 措施 , 在 供 电系统的设 计 . 电路 板 的 布 局 应 用 以及 抑 制 输 入 的 干 扰 等 硬 件 抗 干 扰 方 面 以及 软 冗余 技 术 , 软 件 陷阱 技 术 , “ 看 门狗” 技 术 等 软 件 方 面 进 行 了实 用 分 析
之相连 的测控对象分布 在控制区域 , 干 扰 源将直接、 间接 的 干 扰 单 片机 系统 的 工作 , 分, 地 线 分 别 和 电 源 端 的 地 线相 连 不 要 混 操 作 码 执 行 , 引起程序紊乱 。 因此 , 软 件 冗 合实 用 。 ( 3 ) 不 要 环路 布 线 , 特 别是 沿 印 制 电
力, 使 单 片机 稳 定 可 靠 的 工 作 。 以 下 就是 从
宽 度提 高抗 干 扰 能 力 。 ( 4 ) 去 耦 电容 应 该 布 而 保 证 程 序 紊乱 后 其 后 面 的 指 令 不 会 丢 失
局到 每 个I C。
硬 件和软件两个方面阐述抗干扰设计 。

PIC单片机应用系统可靠性技术探究

PIC单片机应用系统可靠性技术探究

PIC单片机应用系统可靠性技术探究摘要:PIC系列的单片机因为抗干扰能力强、适用性佳、指令集简洁、功能完备、功耗较低、体积较小以及成本低廉等优势,被广泛地用于工业控制仪表、汽车电气控制、电机控制、通信领域以及家电领域等。

不管应用于何种领域,高度的可靠性均是必需的条件之一。

本文从增强PIC单片机自身的抗干扰作用和增设程序(指令)两个方面分析和探讨了PIC单片机应用系统的可靠性技术问题。

关键词:PIC单片机可靠性技术抗干扰程序后者指令PIC单片机应用系统的可靠性问题具有高度的系统性,我们应该从多个角度来考虑和处理,单一解决某一个方面的问题,无法从根本上保证PIC单片机的可靠性。

一般而言,我们需要综合考虑硬件设计和软件增强这两个方面来保证PIC单片机的可靠性。

尤其在硬件方面的可靠性设计是确保PIC单片机应用系统具有高度可靠性的前提与基础。

1 提高PIC单片机的抗干扰水平1.1 启用WDTWDT,WatchdogTimer,监视定时器,俗称“看门狗”,它是一个内部RC时钟信号源的累加计数器,独立于其它单元,其计时周期约为18ms左右。

PIC单片机为了有效解决程序失控问题,才用了WDT解决方案。

程序之所以出现失控问题,主要是因为PIC单片机在实际应用过程中,电磁干扰、软件故障、电源电压叠加噪声以及电源电压波动等因素均会对程序的正常运行产生干扰作用,使之偏离预定的运行线路。

WDT发挥作用的原理是,PIC单片机处在休眠状态时,如果WDT超时溢出,则会唤醒PIC单片机使其进入正常的工作状态;PIC单片机执行程序期间,如果WDT超时溢出,PIC单片机便会自动执行复位动作。

我们可以利用定义系统配置字CONFIG中WDTE 位的形式来决定是否启用WDT,设置“WDTE=1”时,则WDT处于开启状态;设置“WDTE=0”,则WDT处于关闭状态。

1.2 复位功能PIC系列的单片机预设有多种的复位方式,合理设置复位功能,对于提高PIC单片机应用系统的可靠性裨益良多。

单片机系统软件抗干扰设计

单片机系统软件抗干扰设计

单片机系统软件抗干扰设计【摘要】本文主要讨论了在基于单片机的测控系统中,如何通过软件抗干扰设计,提高系统稳定运行的可靠性和安全性。

【关键词】冗余;软件陷阱;中断;程序监视定时器0 引言随着单片机测控系统越来越复杂,工作环境的干扰也越来越严重。

面对环境恶劣的工业现场,大量的干扰源虽然不会造成单片机系统硬件的破坏,却常常会侵入系统破坏数字信号的时序,更改单片机寄存器内容,导致程序在地址空间内“乱飞”,或者陷入死循环。

因此,要保证新型微控制器的可靠性、安全性,就必须在提高硬件可靠性的基础上,在程序设计中采取措施,通过软件技术增强系统的稳定运行。

由于程序设计灵活,节省硬件资源,所以软件抗干扰设计越来越引起人们的重视。

下面,就以MCS-51系列单片机为例,讨论在基于单片机的测控系统中,主要应用的软件抗干扰设计。

1 指令冗余设计“指令冗余”就是在程序关键的地方人为插入一些单字节指令,或将有效单字节指令重写。

它是使程序从“乱飞”状态恢复正常的一种有效措施,其前提条件要求PC指针必须指向程序运行区,且必须执行到冗余指令。

正常情况下CPU取指令过程是先取操作码,再取操作数,当指令计数器PC受到干扰出现错误时,程序便脱离正常轨道“乱飞”,导致CPU把一些操作数当作操作码来执行,从而引起整个程序的混乱。

NOP指令的插入是指令冗余设计的一种主要方式,由于MCS-51的所有指令不超过3个字节,且多为单字节指令,所以通常是在双字节指令和三字节指令后插入两个字节以上的NOP指令。

这样即使程序“乱飞”落到操作数上,由于空操作指令NOP的存在,就避免了后面的指令被当作操作数执行,使程序自动纳入正轨。

此外,在对于程序流向控制起决定作用(如RET、ACALL、LJMP等)或对系统工作状态起重要作用(如SETB等)的指令后面,插入两条NOP指令或重复写入该指令,也可迅速将乱飞程序纳入正轨,确保这些重要指令的正确执行。

2 软件陷阱的设计当乱飞的程序进入非程序区,冗余指令便失去作用。

综述单片机控制系统的抗干扰设计

综述单片机控制系统的抗干扰设计

摘要:单片机应用系统在发动机电喷中得到了广泛的应用,然而由于发动机工作环境恶劣,提高控制系统的抗干扰性至关重要。

分析了单片机干扰的主要来源,并从硬件和软件抗干扰设计中总结了一些取得良好抗干扰性的方法。

关键词在进行单片机应用开发的过程中,经常遇到在实验室调整很好的单片机一到工作现场就会出现这样或那样的问题,这主要是由于设计未充分考虑到外界环境存在的干扰,如机械震动、各种电磁波和环境温差都会影响硬件系统的性能,导致电控单元不能正常工作。

鉴于此本文较全面分析了干扰单片机应用系统的因素并结合自己的研究课题,提出一些可增强系统抗干扰性的方法。

1单片机系统的主要干扰源(1)无线电设施的射频干扰;(2)发动机上的高压点火线圈向外辐射磁场强度大、频带宽的电磁波;(3)单片机内部的晶振电路是内部干扰源之一;(4)数字电路本身门电路频繁的导通、截止造成电源地线电流变化,也会产生很大的高频电磁干扰,各种开关电子设备通断时产生的急剧变化的电流会产生较宽频谱干扰;(5)外界交流电路中产生的工频干扰亦会影响模拟电路输出信号的准确性。

2干扰的耦合方式隔离干扰源与控制系统之间的耦合信道。

表1列出了干扰源的主要干扰方式及特征。

3单片机的硬件抗干扰设计断干扰的传输信道。

常用的措施有:滤波技术、去耦技术、屏蔽技术和接地技术。

3.1电源电路的设计源耦合逻辑电路产生的干扰进入模拟电路,二是为了避免传感器通过电源耦合对ECU干扰。

各功能模块供电系统如图1所示,皆采用7812和7805三端稳压集成芯片,且都单独对电源进行负压差保护,这样不会因其中某一稳压电源出现故障而影响整个系统电路;使用低通滤波器亦可减少以高次谐波为主的干扰源,从而改善电源波形;在输出端采用了过压保护电路。

通过上述设计可大大提高供电的可靠性。

图中D1、D2用于负压差保护,防止压差击穿稳压器的be结使器件永久失效,稳压管WY1、晶闸管Q1用于过压保护,电容E1、E2、C1、C2使输出电压波3.2模拟电路抗干扰设计比较大,因此在模拟电路中应选择低温漂系数的集成放大器;在模拟电路中共模信号对电路板影响较大,故在模拟电路中采用差动放大电路,可得出两端输出信号;接收时,将双端信号转化为单端信号,可非常有效地抑制共模信号。

单片机应用系统的抗干扰技术设计方案

单片机应用系统的抗干扰技术设计方案

第五章单片机应用系统的抗干扰技术设计§5.1 干扰源我们要进行抗干扰措施,首先就得仔细研究干扰产生的原因、途径,掌握或了解其规律后,才能有针对性地提出各种抗干 / 扰的理论和措施。

5.1.1干扰与噪声的区别(1> 噪声是绝对的,它的产生或存在不受接收者的影响,是独立的,与有用信号无关。

干扰是相对有用信号而言的,只有噪声达到一定数值、它和有用信号一起进入应用系统并影响其正常工作时才形成干扰。

(2> 干扰在满足一定条件时,可以消除;噪声在一般情况下,难以消除,只能减弱。

5.1.2分类根据产生干扰的物理原因,干扰可以分为如下几种类型:机械干扰、热干扰、光干扰、湿度干扰、化学干扰、电和磁的干扰、射线辐射干扰。

其中,电和磁的干扰是最为普遍和严重的干扰,下面对电磁干扰作重点论述。

电磁干扰的分类:(1> 从噪声产生的来源分类可以分为:错误!固有噪声源固有噪声是指器件内部物理性的无规则波动所形成的噪声。

错误!人为噪声源人为噪声源主要是各种电气设备所产生的噪声,主要有以下几种:1. 工频噪声,大功率输电线是典型的工频噪声源。

低电平的信号线只要有一段长度与输电线平行,就会受到明显的干扰;即使一般室内的交流电源线,对输入阻抗低和灵敏度高的传感器来说也会是很大的干扰源。

在传感器的内部,由于工频感应也会产生交流噪声,它所形成的干扰也不可忽视。

2. 射频噪声,高频感应加热、高频焊接等工业电子设备以及广播、电视、雷达及通信设备等通过辐射或通过电源线会给附近的传感器系统带来干扰。

3. 电子开关,由于电子通断的速度极快,使电路中的电压和电流发生急剧的变化,形成冲击脉冲,从而成为噪声干扰源。

错误!自然噪声源和放电噪声自然噪声主要指天电形成的放电现象。

放电现象的起因不仅是天电,还有各种电气设备所造成的,主要有:电晕放电、火花放电、放电管放电等。

(2> 从干扰的出现区域来分可分为内部干扰和外部干扰。

(3> 从干扰对电路作用的形成分类错误!差模干扰也称为串联干扰,差模干扰进入电路后,使传感器系统 / 的一个信号输入端子相对于另一个信号输入端子的电位发生变化,即干扰信号与有用信号按电势源串联起来作用于输入端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过压、欠压、停电的危害是显而易见的,解决的办法是使用各种稳压器、电源调节器,对付暂短 时间的停电则配置不间断电源()。
10
浪涌与下陷是电压的快变化,如果幅度过大也会毁坏系统。即使变化不大(±10%~±15%),直接 使用不一定会毁坏系统,但由于电源系统中接有反应迟缓的磁饱和或电子交流稳压器,往往会在这些变 化点附近产生振荡,使得电压忽高忽低。如果有连续几个±10%~±15%的浪涌或下陷,由此造成的 振荡能产生±30%~±40%的电源变化,而是系统无法工作,解决的办法是使用快速响应的交流电源 稳压器。
逻辑电路是在低电压、大电流下工作,电源的分配就必须引起注意,譬如一条0.1Ω的电源线回路, 对于5A的供电系统,就会把电源电压从5V降到4.5V,以至不能正常工作。另一方面工作在极高频率 下的数字电路,对电源线有高频要求,所以一般电源线上的干扰是数字系统最常出现的问题之一。
12
电源分配系统首要的就是良好的接地,系统的地线必须能够吸收来自所有电源系统的全部电流。应 该采用粗导线作为电源连接线,地线应尽量短而直接走线;对于插件式线路板,应多给电源线、地线 分配几个沿插头方向均匀分布的插针。
8
会使有用的信号完全淹没。有时这种通过感应产生的干扰电压会达到几十伏以上,使单片机系统无法工 作。
以上三种干扰以来自供电系统的干扰最甚,其次为来自过程通道的干扰。对于来自空间的辐射干扰, 需加适当的屏蔽及接地来解决。 2 供电系统干扰及其抗干扰措施
任何电源及输电线路都存在内阻,正是这些内阻才引起了电源的噪声干扰。如果没有内阻,无论何种 噪声都会被电源短路吸收,在线路中不会建立起任何干扰电压。
单片机应用系统抗干扰与可靠性设计
1
单片机应用系统抗干扰与可靠性设计 1 干扰的来源
2 供电系统干扰及其抗干扰措施 2.1 电源噪声来源、种类及危害 2.2 供电系统的抗干扰设计
3 过程通道干扰的抑制措施—隔离 3.1 光电隔离的基本配置 3.2 光电隔离的实现
4空间干扰及抗干扰措施 4.1 接地技术 4.2 屏蔽技术
单片机系统中最重要、危害最严重的干扰源来源于电源。在某些大功率耗电设备的电网中,经对电源 检测发现,在50周正弦波上叠加有很多1000多伏的尖峰电压。
9
2.1 电源噪声来源、种类及危害 如果把电源电压变化持续时间定义为Δt,那么,根据Δt的大小可以把电源干扰分为:
(1)过压、欠压、停电:Δt>1s; (2)浪涌、下陷:1s>Δt>10; (3)尖峰电压:Δt为µs量级; (4)射频干扰:Δt为量级; (5)其它:半周内的停电或者过欠压。
(1) 空间干扰 空间干扰来源于周围的电气设备如发射机、中频炉、可控硅逆变电源等发出的电干扰和磁干扰;广播
电台或通讯发射台发出的电磁波;空中雷电,甚至地磁场的变化也会引起干扰。这些空间辐射干扰会使 单片机系统不能正常工作。
(2) 供电系统干扰 由于工业现场运行的大功率设备众多,特别是大感性负载设备启停会使得电网电压大幅度涨落(浪
在单片机系统中,为了提高供电系统的质量,防止窜入干扰,建议采用如图14-2所示的供电配置并 采取如下措施:
(1)交流近线端加交流滤波器,可滤掉高频干扰,如电网上大功率设备启停造成的瞬间干扰。滤波 器市场上的产品有一级、二级滤波器之分,安装时外壳要加屏蔽并良好接地,进出线要分开,防止感 应和辐射耦合。低通滤波器仅允许50交流电通过,对高频和中频干扰有良好的衰减作用。
称干扰。在单片机系统中,如果出现干扰,就会影响指令的正 常执行,造成控制事故或控制失灵,在测量通道中产生干扰, 就会使测量产生误差,电压的冲击有可能使系统遭到致命的破 坏。
环境对单片机控制系统的干扰一般都是以脉冲的形式进入 系统的,干扰窜入单片机系统的渠道主要有三条,如图14-1 所示。
图14-1 单片机测控系统的主要干扰渠道
的可靠性是由多种因素决定,其中系统的抗干扰性能的好坏是影响系统可靠性的重要因素。因此,研 究抗干扰技术,提高单片机系统的抗干扰性能,是本章要研究的内容。本章将从干扰源的来源、硬件、 软件以及电源系统、接地系统等各个方面研究分析并给出有效可行的解决措施,同时还对软件的抗干 扰措施进测控系统正常工作的信号称为噪声,又
2
5 反电势干扰的抑制 6 印刷电路板的抗干扰设计
6.1 地线及电源线设计 6.2 去耦电容的配置 6.3 印制板的布线的抗干扰设计 7软件抗干扰措施 7.1 软件抗干扰的一般方法 7.2 指令冗余和软件陷阱 7.3 软件滤波 7.4 开关量输入/输出软件抗干扰设计 8 看门狗定时器的使用
内容概要 目前,随着单片机应用系统的广泛应用,单片机系统的可靠性越来越受到人们的关注。单片机系统
尖峰电压持续时间很短,一般不会毁坏系统,但对单片机系统正常运行危害很大,会造成逻辑功能紊 乱,甚至冲坏源程序。解决办法是使用具有噪声抑制能力的交流电源调节器、参数稳压器或超隔离变压 器。
射频干扰对单片机系统影响不大,一般加接2~3节低通滤波器既可解决。 2.2 供电系统的抗干扰设计
单片机测控系统的供电,常常是一个棘手问题,单单一台高质量的电源不足以解决干扰和电压波 动问题的,必须完整地设计整个电源供电系统。
涌),工业电网电压的欠压或过压常常达到额定电压的±15% 以上。这种状况有时长达几分钟、几小 时、甚至几天。由于大功率开关的通断,电机的启停,电焊等原因,电网上常常出现几百伏,甚至几千 伏的尖脉冲干扰。
(3) 过程通道干扰 为了达到数据采集或实时控制的目的,开关量输入输出,模拟量输入输出是必不可少的。在工业现场, 这些输入输出的信号线和控制线多至几百条甚至几千条,其长度往往达几百米或几千米,因此不可避免 地将干扰引入单片机系统。当有大的电气设备漏电,接地系统不完善,或者测量部件绝缘不好,都会使 通道中直接串入干扰信号;各通道的线路如果同出一根电缆中或绑扎在一起,各路间会通过电磁感应而 产生瞬间的干扰,尤其是0~15V的信号与交流220V的电源线同套在一根长达几百米的管中其干扰更为 严重。这种彼此感应产生的干扰其表现形式仍然是通道中形成干扰电压。这样,轻者会使测量的信号发 生误差,重者
相关文档
最新文档