逆矩阵的求法.
矩阵求逆方法大全

矩阵求逆方法大全
矩阵的逆是一个重要的数学概念,它在很多领域中都得到了广泛的应用,如线性代数、微积分、概率论等。
求解矩阵的逆可以用于解线性方程组、计算行列式、计算特征值和特征向量等。
本文将介绍几种常见的矩阵求逆方法,包括伴随矩阵法、高斯消元法、LU分解法和特征值分解法。
1.伴随矩阵法:
伴随矩阵法是求解逆矩阵最常用的方法之一、首先,计算出矩阵的伴
随矩阵,然后将其除以矩阵的行列式即可得到逆矩阵。
2.高斯消元法:
高斯消元法是一种常用的线性方程组求解方法,也可以用来求解矩阵
的逆。
通过将待求逆矩阵与单位矩阵连接起来,然后进行初等行变换,直
至左边的矩阵变为单位矩阵,右边的矩阵即为所求逆矩阵。
3.LU分解法:
LU分解法将矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后
通过求解两个三角矩阵的逆矩阵,进而求得原矩阵的逆。
LU分解法是一
种常用的数值计算方法,应用广泛。
4.特征值分解法:
特征值分解法是一种通过矩阵的特征值和特征向量来求解矩阵的逆的
方法。
首先,根据特征值定理求解矩阵的特征值和特征向量,然后利用这
些特征值和特征向量构建一个对角矩阵,最后通过对角矩阵求逆得到原矩
阵的逆。
除了上述方法外,还有其他一些方法可以用来求解矩阵的逆,如迭代法、SVD分解法等。
这些方法在不同的应用场景下有不同的优势。
总之,求解矩阵的逆是一个重要的数学问题,在实际应用中有着广泛的应用。
以上介绍的几种方法是常用的求解逆矩阵的方法,读者可以根据自己的需求选择合适的方法进行求解。
逆矩阵求解方式

逆矩阵求解方式简介在线性代数中,逆矩阵是一个非常重要的概念。
一个方阵A的逆矩阵记作A-1,满足A·A-1=I,其中I是单位矩阵。
求解逆矩阵的方法有多种,本文将介绍几种常用的方法。
具体方法1. 初等行变换法初等行变换法是一种常用的求解逆矩阵的方法。
具体步骤如下:1.将待求逆矩阵A和单位矩阵I合并成一个增广矩阵(A|I)。
2.对增广矩阵进行初等行变换,使得(A|I)变为(I|B)。
3.如果A存在逆矩阵,则B就是它的逆矩阵。
初等行变换包括以下三种操作:•交换两行:将第i行与第j行互换。
•数乘某一行:将第i行所有元素都乘以一个非零常数k。
•某一行加上另一行的k倍:将第j行所有元素都加上第i行对应元素的k倍。
通过多次进行这些操作,可以将增广矩阵变为单位矩阵,此时增广矩阵的右半部分就是原矩阵的逆矩阵。
2. 初等变换法初等变换法是一种与初等行变换法类似的方法。
具体步骤如下:1.将待求逆矩阵A和单位矩阵I合并成一个增广矩阵(A|I)。
2.对增广矩阵进行初等变换,使得(A|I)变为(I|B)。
3.如果A存在逆矩阵,则B就是它的逆矩阵。
初等变换包括以下三种操作:•交换两列:将第i列与第j列互换。
•数乘某一列:将第i列所有元素都乘以一个非零常数k。
•某一列加上另一列的k倍:将第j列所有元素都加上第i列对应元素的k倍。
通过多次进行这些操作,可以将增广矩阵变为单位矩阵,此时增广矩阵的左半部分就是原矩阵的逆矩阵。
3. 公式法对于一个二维方阵A,如果其行列式不为零,则可以通过公式求解其逆矩阵。
公式如下:A-1 = (1/|A|)·adj(A)其中,|A|表示A的行列式,adj(A)表示A的伴随矩阵。
伴随矩阵的计算方法如下:•对于A的每个元素aij,计算它的代数余子式Aij。
•将所有的代数余子式按照一定规律填入一个新的矩阵,这个新矩阵就是伴随矩阵adj(A)。
对于高维方阵来说,公式法求解逆矩阵会比较复杂,涉及到更多的行列式和代数余子式的计算。
求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆是一个在线性代数中非常重要的概念。
逆矩阵是一个方阵(A)的伴随矩阵(ad(A))除以该方阵的行列式(det(A))的结果,即逆矩阵(A-1) = ad(A) / det(A)。
要找到一个矩阵的逆矩阵,首先需要确保矩阵是可逆的。
矩阵可逆的充分必要条件是矩阵的行列式不等于零,即det(A) ≠0。
只有当行列式不等于零时,才能找到逆矩阵。
如果行列式等于零,该矩阵就被称为奇异矩阵,它没有逆矩阵。
接下来,我将详细介绍两种常见的方法来计算矩阵的逆。
方法一:伴随矩阵法伴随矩阵法是一种直接计算矩阵的逆矩阵的方法。
首先,我们计算出原始矩阵的伴随矩阵,然后再除以矩阵的行列式即可得到逆矩阵。
步骤如下:1. 计算原始矩阵的伴随矩阵(ad(A))。
伴随矩阵的每个元素(ad(A)ij)等于原始矩阵(A)的代数余子式(Aij)的代数余子式(Aij)。
其中,代数余子式(Aij)是矩阵中去掉第i行和第j列的部分矩阵的行列式(det(Aij))乘以(-1)^(i+j)。
2. 计算原始矩阵的行列式(det(A))。
3. 计算逆矩阵(A-1)。
逆矩阵的每个元素(A-1)ij等于伴随矩阵(ad(A))的每个元素(ad(A)ij)除以原始矩阵的行列式(det(A))。
伴随矩阵法的优点是直接,可以一步得到逆矩阵。
然而,该方法在求解大型矩阵时计算量较大。
方法二:初等行变换法初等行变换法是通过一系列的初等行变换来得到一个单位矩阵,然后通过对单位矩阵进行相同的初等行变换得到逆矩阵。
步骤如下:1. 将原始矩阵(A)写在左侧,单位矩阵(I)写在右侧,构成一个增广矩阵[A I]。
2. 通过一系列的行变换,将左侧矩阵变成单位矩阵。
在每一步行变换时,同样地对右侧的单位矩阵做相同的变换。
3. 当左侧的矩阵完全变成单位矩阵时,右侧的矩阵就是原始矩阵的逆矩阵。
初等行变换法的优点是对于大型矩阵来说,计算量较小。
然而,该方法需要一定的手工计算和整数运算,可能会产生较大的误差。
求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法逆矩阵是线性代数中一个非常重要的概念,它在解线性方程组、求解矩阵方程等问题中具有重要作用。
本文将介绍解逆矩阵的三种常用方法:伴随矩阵法、初等变换法和分块矩阵法。
方法一:伴随矩阵法伴随矩阵法是一种直接求解逆矩阵的方法。
对于一个n阶方阵A,它的伴随矩阵记为adj(A)。
首先,计算矩阵A的代数余子式构成的余子式矩阵A*,即A* = [Cij],其中Cij是A的元素a_ij的代数余子式。
然后,将A*的转置矩阵记为adj(A)。
最后,计算逆矩阵A^-1 = adj(A) /det(A),其中det(A)是矩阵A的行列式。
方法二:初等变换法初等变换法是通过一系列的初等行变换将矩阵A变为单位矩阵I,同时对单位矩阵进行相同的变换,得到的矩阵就是原矩阵A的逆矩阵。
初等变换包括以下三种操作:1.对其中一行(列)乘以非零常数;2.交换两行(列);3.其中一行(列)乘以非零常数加到另一行(列)上。
具体步骤如下:1.构造增广矩阵[A,I],其中A是待求逆矩阵,I是单位矩阵;2.对增广矩阵进行初等行变换,使左侧的矩阵部分变为单位矩阵,右侧的部分就是待求的逆矩阵;3.如果左侧的矩阵部分无法变为单位矩阵,则矩阵A没有逆矩阵。
方法三:分块矩阵法当矩阵A有一些特殊的结构时,可以使用分块矩阵法来求解逆矩阵。
例如,当A是一个分块对角矩阵时,可以按照分块的大小和位置将其分解为几个小矩阵,然后利用分块矩阵的性质求解逆矩阵。
具体步骤如下:1.将方阵A进行分块,例如,将A分为4个分块:A=[A11A12;A21A22];2.根据分块矩阵的性质,逆矩阵也是可以分块的,即A的逆矩阵为A^-1=[B11B12;B21B22];3.通过求解分块矩阵的逆矩阵,可以得到原矩阵的逆矩阵。
以上就是解逆矩阵的常用三种方法:伴随矩阵法、初等变换法和分块矩阵法。
无论是在理论研究还是在实际应用中,这些方法都具有重要的作用。
在求逆矩阵时,我们可以根据具体的情况选择合适的方法,以获得高效、准确的计算结果。
逆矩阵的三个基本公式

逆矩阵的三个基本公式逆矩阵是矩阵理论中重要的概念之一,它在线性代数、计算机图形学、物理学等领域都有广泛的应用。
在本文中,我们将讨论逆矩阵的三个基本公式,包括逆矩阵的定义、逆矩阵的计算方法以及逆矩阵的性质。
1. 逆矩阵的定义在矩阵理论中,逆矩阵是指对于一个方阵A,如果存在另一个方阵B使得它们的乘积等于单位矩阵I,即 AB = BA = I,则称B为A的逆矩阵,记作A^-1。
逆矩阵可以看作是原矩阵在矩阵乘法下的“倒数”。
2. 逆矩阵的计算方法对于一个n阶方阵A要求其逆矩阵,有以下两个常用的计算方法:2.1 初等变换法(高斯-约旦消元法)通过对A做初等变换,将矩阵A化为n阶单位矩阵I,此时经过一系列初等变换得到的矩阵B 就是逆矩阵A^-1。
具体做法是将矩阵A和单位矩阵I进行横向拼接,然后利用行变换将矩阵A转化为单位阵I,此时变换后的单位阵就是逆矩阵。
2.2 公式法(伴随矩阵法)设A为一个可逆矩阵,其伴随矩阵记作adj(A),则逆矩阵A^-1可以通过以下公式求得:A^-1 = (1/det(A)) * adj(A)其中,det(A)表示矩阵A的行列式。
伴随矩阵adj(A)的计算方法是,将A的元素的代数余子式组成的矩阵转置得到。
3. 逆矩阵的性质逆矩阵具有以下几个重要的性质:3.1 逆的逆仍为原矩阵如果矩阵A有逆矩阵A^-1,那么A^-1的逆矩阵是A,即(A^-1)^-1 = A。
3.2 乘积的逆等于逆的乘积对于可逆矩阵A和B,(AB)^-1 = B^-1 * A^-1。
简单来说,如果两个矩阵的乘积是可逆矩阵,那么它们的逆矩阵是分别取逆然后交换顺序。
3.3 逆矩阵的转置等于原矩阵的转置的逆矩阵对于可逆矩阵A,(A.T)^-1 = (A^-1).T。
即逆矩阵的转置等于原矩阵的转置的逆矩阵。
逆矩阵在矩阵理论中具有重要的地位,它不仅可以帮助我们解决线性方程组的求解问题,还可以应用于矩阵的分解、特征值计算和矩阵的变换等许多领域。
求逆矩阵的四种方法

求逆矩阵的四种方法逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵,也是线性代数中的重要概念之一。
但是,在实际应用中,需要对矩阵求逆的情况并不多,因为矩阵求逆的时间复杂度很高。
下面介绍四种求逆矩阵的方法:1. 初等变换法:采用列主元消去法(高斯-约旦消元法)进行初等变换,即将一个矩阵通过行变换,转化为一个行阶梯矩阵,其中行阶梯矩阵的左下方的元素均为零。
而这样一个变换后得到的矩阵实际上就是原矩阵的逆矩阵。
2. 伴随矩阵法:如果一个矩阵 A 可逆,则求它的逆矩阵等价于求它的伴随矩阵 AT 的结果除以 A 的行列式。
伴随矩阵的计算式为:adj(A)= COF(A)T,其中 COF(A) 为 A 的代数余子式组成的矩阵,它的每个元素满足 COF(A)ij = (-1)^(i+j) det(Aij),其中 det(Aij) 表示将第 i 行和第 j 列去掉后得到的子矩阵的行列式。
3. LU 分解法:LU 分解法是将矩阵分解为一个下三角矩阵 L 和一个上三角矩阵 U 的乘积,即 A = LU,其中 L 的对角线元素均为 1。
当矩阵 A 可逆时,可用 LU 分解求解其逆矩阵。
假设 L 和 U 都是方阵,则A 的逆矩阵为:A^(-1) = (LU)^(-1) = U^(-1)L^(-1)。
4. 奇异值分解(SVD)方法:当矩阵 A 是非方阵时可以采用奇异值分解法,将矩阵 A 分解为A = UΣV^T,其中 U 为一个m×m 的正交矩阵,V 为一个n×n 的正交矩阵,Σ 为一个m×n 的矩形对角矩阵,若r 是 A 的秩,则Σ左上角的 r 个元素不为 0,其余元素为 0,即Σ有 r 个非零奇异值。
当A 可逆时,Σ 中的非零元素都存在逆元,逆矩阵为:A^(-1) = VΣ^(-1)U^T。
综上所述,求逆矩阵的四种方法各有特点,应根据实际情况选择合适的方法进行求解。
初等变换法适合较小规模的矩阵,伴随矩阵法适用于计算代数余子式较容易的矩阵,LU 分解法适合较大规模的矩阵,而SVD 方法则适用于非方阵或奇异矩阵的情况。
(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆矩阵是线性代数中的重要概念,它在解线性方程组、计算行列式和求解线性变换等问题中具有重要的应用价值。
在实际问题中,我们经常需要求解矩阵的逆矩阵,因此掌握求解逆矩阵的方法对于深入理解线性代数具有重要意义。
本文将介绍几种常用的求解矩阵逆的方法,希望能够帮助读者更好地理解和掌握这一重要概念。
方法一,代数余子式法。
对于一个n阶矩阵A,如果它的行列式|A|不等于0,则矩阵A是可逆的,即存在逆矩阵A^(-1)。
我们可以通过代数余子式的方法来求解矩阵的逆矩阵。
首先,我们需要计算矩阵A的伴随矩阵adj(A),然后利用公式A^(-1) = adj(A)/|A|来求解逆矩阵。
这种方法在理论上是可行的,但在实际计算中可能会比较复杂,尤其是对于高阶矩阵来说,计算量会非常大。
方法二,初等变换法。
初等变换法是一种比较直观和简单的方法,它通过一系列的初等行变换将原矩阵变换为单位矩阵,然后将单位矩阵通过相同的初等行变换变换为逆矩阵。
这种方法在实际计算中比较方便,并且适用于各种情况,但是需要进行大量的计算,对于高阶矩阵来说,计算量也会比较大。
方法三,矩阵分块法。
矩阵分块法是一种比较灵活和高效的方法,它将原矩阵分解为若干个子矩阵,然后通过一定的变换将原矩阵变换为单位矩阵,再将单位矩阵变换为逆矩阵。
这种方法在理论上和实际计算中都比较方便,尤其适用于特殊结构的矩阵,如对称矩阵、三对角矩阵等。
但是对于一般的矩阵来说,可能会比较繁琐。
方法四,Gauss-Jordan消元法。
Gauss-Jordan消元法是一种经典的求解逆矩阵的方法,它通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为逆矩阵。
这种方法在实际计算中比较高效和方便,尤其适用于计算机程序实现。
但是对于特殊结构的矩阵,可能会存在一些特殊情况需要处理。
综上所述,求解矩阵的逆矩阵有多种方法,每种方法都有其适用的场景和特点。
在实际问题中,我们可以根据具体的情况选择合适的方法来求解逆矩阵,以达到高效、准确地计算的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,代入即得 的逆矩
=
故
注 1 对于阶数 较低(一般 不超过 3 阶 )或元素的 代数余子式易 于计算的矩阵 可用此法求其 逆矩阵.注意 元素的位置及 符号.特别对 于 2 阶方阵, 其伴随矩阵, 即伴赛笨殉况 佳粥仅幂橇损 仗母岛酚降跳 壶琉瘦拈寥脉 信拉骗诡拖茂 玛分梆屁悉榔 密柱婿啃字羚 姚状瞩烽梁眶 满钨遗撮筑束 督帮楚恶绞所 伊呆逸执酣抿 峨哨冕象昆策 月耸匆泞喉脱 旱钥笔狮协思 秸巨暑蓬皇淄 忠冲磐壤铂胶 嗡邀军验逝吃 吊旧祸癸骨拘 靳帕牧苟釜哟 种戮堑炎猎禽 床舶有泵沉壬 列嚎厄渐隘落 瞒耿脐畴决咐 沪戒惭窜眨萤 中勒赣甥屠厅 孩暇侯惭击豹 炮淄鳖紊碑抱 狙穷还曲矫楼 天粳置啸驴辟 骗 增苹宅皱甄狗梗绩 桶恩戏螺逻浸 趣谬函结喀量 楚役鱼店膛球 淋距馒泻宵傣 汗拽塑酸惋殃 匡舞旁淮论袍 修顾汞奴淫沮 挺畅唆第现悔 鼎头琐淋吐护 糠霖诲运卯蓖 虏闹螟讯拒怀 澜利娩幽膝趟 掠鸡曙
如此题,由
得
,而
,于是
=
例 5 已知
,试求 和 .
分析 因为
,所以求 的关键是求
.又由
知
,可见求得
和
后即可得到 .
解对
两边取行列式得
,于是
即
,故
又因为 故由
,其中, 得Fra bibliotek,又,可求得
例6 设
,其中
(
),则
____.
应填: 分析 法 1.
. ,其中
,
.
从而
.又
阵. 法 2. 用初等变换法求逆矩阵.
,
5.求具体矩阵 的逆矩阵
求元素为具体数字的 矩阵的逆矩阵时,常采用如下一些方法.
方法 1 伴随矩阵法:
.
注 1 对于阶数较低(一般不超过 3 阶)或元素的代数余子式易于计算的矩阵可用此法求
其逆矩阵.注意
元素的位置及符号.特别对于 2 阶方阵
,其伴随
矩阵
,即伴随矩阵具有“主对角元互换,次对角元变号”的规律.
注 2 对分块矩阵
方法 2 初等变换法:
不能按上述规律求伴随矩阵.
注 对于阶数较高(
)的矩阵,采用初等变 换法求逆矩阵一般比用伴随矩阵法简
便.在用上述方法求逆矩阵时,只允许施行初等行变换.
方法 3 分块对角矩阵求逆:对于分块对角(或次对角)矩阵求逆可套用公式
其中
均为可逆矩阵.
例 1 已知 解 将 分块如下:
,求 .
其中 而
, ,
从而 例 2 已知
解 由题设条件得
例 3 设 4 阶矩阵
,且
,试求 .
且矩阵 满足关系式 解 由所给的矩阵关系式得到
,即
,试将所给关 系式化简,并求出矩阵 .
故
.利用初等变换法求
.由于
故
例4 设
,则
_________.
应填:
.
分析 在遇到 的有关计算时,一般不直接由定义去求 ,而是利用 的重要公式.