第一章 质点运动学1

合集下载

第1章 质点运动学

第1章 质点运动学

100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z

大学物理第1章质点运动学

大学物理第1章质点运动学

则有
ax 2 R cost;
a y 2 R sint
加速度的大小
2 2 2 2 2 2 a ax a2 ( R cos t ) ( R sin t ) R y
根据矢量的点积运算,分别计算
v r [(R sint )i (R cost ) j ] [(R cost )i ( R sint ) j ] 0 2 2 v a [(R sint )i (R cost ) j ] [( R cost )i ( R sint ) j ] 0
大学物理
第一章 质点运动学
1.1 运动学的一些基本概念 1.1.1、参考系(reference frame)和坐标系(coordinate) 参考系:为了描述物体的运动而选取的参考标准物体。 (运动描述的相对性) 坐标系:直角坐标系、自然坐标系、极坐标系、球坐标系等. 说明 在运动学中,参考系的选择是任意的;在动力学中则不然 1.1.2、时间和空间的计量 1、时间及其计量 时间表征物理事件的顺序性和物质运动的持续性。时间测量的 标准单位是秒。1967年定义秒为铯—133原子基态的两个超精细 能级之间跃迁辐射周期的9192631770倍。量度时间范围从宇宙 年龄1018s(约200亿年)到微观粒子的最短寿命 10-24s.极限的时 间间隔为普朗克时间10-43s,小于此时间,现有的时间概念就不适 用了。
运动学中的两类问题
1、已知质点的运动学方程求质点的速度、加速度等问
题常称为运动学第一类问题.
r r (t )
微分
v, a
2、由加速度和初始条件求速度方程和运动方程的问题称 为运动学的第二类问题.
a , v0 , r0

第1章-质点运动学

第1章-质点运动学

位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率

大学物理——第1章-质点运动学

大学物理——第1章-质点运动学
沿逆时针方向转动角位移取正, 沿顺时针方向转动角位移取负.
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C

力学舒幼生第一章质点运动学

力学舒幼生第一章质点运动学
d v
通过积分,可以得到轨道方程 r r()
33
例 狐狸沿圆周跑,狗从圆心出发,速度都 为v,圆心、狗、狐狸始终连成一直线。
求狗的速度、加速度和轨道方程。
狐狸的角速度 d v
dt R

狗有横向和纵向速度
v r,vr v2v2
狗的横向和纵向加速度
a2d dd d r t trd d2 2t,ard d22 rtr d d t2


A (r ,,t) A re r A e
与直角坐标系的变换
xrco ,syrsin
27
正交基矢与极坐标的微分关系
正交基矢只依赖 ,与 r 无关
当θ变化时,正交基矢同时改变方向 满足微分关系
der
de
de de r
e
er
d r(t)

参考空间:沿左右、前后、上下三对方向无限扩展, 构成三维平直空间
参考系:参考空间+测量时间的时钟
z 坐标系:在参考空间中任选一点作为原点, 可建立各种坐标系。
时间的零点也可任选
O
y
x
相对运动的参考系
两个参考系之间若有相对运动,
他们观测同一个运动物体 是否会得到相同的距离和时间?
v
z
O
y
x
质点
由繁到简 将物体模型化为一个点——质点
dt dt
加速度
v(t)
dR
d
R


⊙k
a d v d R d R R v d td t d t a 心 v , a 切 R
22
曲线的曲率和曲率半径
曲率 d dl

第一章 质点运动学

第一章 质点运动学
16
物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学

y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j

第一章_质点运动学

第一章_质点运动学
v
dv − 1 ) t dt , ( − 1 .0 s − 1 ) t = (−1.0s ∫0 v = v0e ∫v0 v
dy ( −1.0 s −1 ) t v= = v0 e dt
dv a= = ( − 1.0s −1 ) v dt
o
v0
∫0 d y = v 0 ∫0 e
y t
(-1.0s ) t
(2) 运动方程 )
x ( t ) = (1m ⋅ s ) t + 2m
y (t ) = ( 1 m ⋅ s −2 )t 2 + 2 m 4
1 -1 2 y = ( m ) x − x + 3m 4
y/m
6
−1
由运动方程消去参数 t 可得轨迹方程为
轨迹图
t = − 4s
t = 4s
t = − 2s 4
位移的物理意义 A) 确切反映物体在空间位置的变化 与路径无关, 确切反映物体在空间位置的变化, 与路径无关, 只决定于质点的始末位置. 只决定于质点的始末位置 B)反映了运动的矢量性和叠加性 )反映了运动的矢量性和叠加性. 了运动的矢量性和叠加性
第一章
质点运动学
∆ r = ∆ xi + ∆ yj + ∆ zk
z
2
r
r= r = x +y +z
第一章
质点运动学
位矢
r 的方向余弦
cos α = x r cos β = y r cos γ = z r
y
β
P
r
P
α , β , γ 分别是
r
o
和Ox轴, Ox轴
z
γ
α
x
Oy轴和Oz轴之间的夹角。 Oy轴和Oz轴之间的夹角。 轴和Oz轴之间的夹角

(完整版)大学物理01质点运动学习题解答

(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。

解:答案是 D。

2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。

简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。

3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。

简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。

4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学 教学基本要求
一 掌握位置矢量、位移、加速度等描述质点运 动及运动变化的物理量 . 理解这些物理量的矢量性、 瞬时性和相对性 . 二 理解运动方程的物理意义及作用 . 掌握运用 运动方程确定质点的位置、位移、速度和加速度的方 法,以及已知质点运动的加速度和初始条件求速度、 运动方程的方法 . 三 能计算质点作圆周运动时的角速度、角加 速度、切向加速度和法向加速度 . 四 理解伽利略速度变换式, 并会用它求简单的质 点相对运动问题 .
2 2
2
讨论 位移与路程
(A)P1P2 两点间的路程 s ' 是不唯一的, 可以是 s或 是唯一的. 而位移r (B) 一般情况, 位移 大小不等于路程.
y
r (t1 )
O
s
'
p1 r
r (t2 )
s
p2
(C)什么情况 r s?
r s
z
x
不改变方向的直线运动; 当 t 0 时 r s .

速度
1 平均速度
在t 时间内, 质点从点 A 运动到点 B, 其位移为
y
B
r (t t)
s r
A
r r (t t ) r (t ) ( xB xA )i ( yB y A ) j o xi yj
r (t)
P2
r
r xi yj zk z 2 2 2 r x y z
注意
P ( x1 , y1 , z1 ) 1 P2 ( x2 , y2 , z2 )
x
r r
2
位矢长度的变化
2 2
r x2 y2 z 2 x1 y1 z1
平均速度大小
2 瞬时速度
当 t 简称速度
0 时平均速度的极限值叫做瞬时速度,
当 t 0 时, dr ds ds v et dt
r dr v lim t 0 t dt x y v lim i lim j t 0 t t 0 t
z
z (t )
o
x

注:运动方程包含了质点运动的全部信息,是运动 学的核心。
轨迹方程:
从运动方程中消去时间参数所得到的坐标之间的关系。 例如:
r 3 sin ti 3 cos tj 6 6

6 t t
——运动方程
写成分 量式

x 3 sin y 3 cos

6
x y 9
2 2
可见运动方程也是轨迹的参数方程
3 位移(位移矢量) y
y
rA
A
r
B
rB
x
x
o
r ( xB xA )i ( yB y A ) j xi yj
r rB rA
rB rA r
经过时间间隔 t 后, 质点位置矢量发生变化, 由 始点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的 位移矢量 r . 位移矢量也简称位移.
第一章 质点运动学
1-1 质点运动的描述 一 参考系 质点
1 参考系 为描述物体的运动而选择的标准物叫做参考系.
2 质点
忽略物体形状和大小的一种物理模型。

位置矢量 运动方程
位移
y P(x,y,z)
1 位置矢量
r
(位矢)
在坐标系中,描述物体在任 一时刻空间位置的物理量。 在直角坐标系里:
r
x
⒈定义:由坐标原点O指向 物体所在P点的有向线段。
v vx vy
三维空间中:
dx dy dz v i j k dt dt dt
vx i v y j v z k
s 平均速率 v t
速度的性质:
瞬时速率
ds v dt
⑴矢量性: 2 2 2 v vx v y v z 大小: 方向:沿轨道的切向,并指向运动方向。 ⑵相对性:
x
t 时间内, 质点的平均速度
x y r i j v t t t
平均速度
r xi yj
或 其中:
v vx i v y j
v 与 r 同方向.
vx 、vy是平均速度在ox、oy轴上的分量
x 2 y 2 v ( ) ( ) t t
y
若质点在三维空间中运动,
yB yA
rA
A
r
B
则在直角坐标系 Oxyz 中其位
移为
rB
xA xB xB x A
yB y A
o
x
r ( xB x A )i ( yB y A ) j ( zB z A )k
xi yj zk
y y cos r r
r
x
z
j γ. α i o k
x
z
z z cos r r
位矢的性质:
Y`
⑴矢量性:
方向:由O点指向P点。 ⑵相对性: 同一时刻,某一质点的位矢, 相对于不同的坐标系而不同。
Y o` o
P X` X
op o' p oo'
⑶瞬时性:
rop rop' roo'
o
z
位矢在坐标轴上投影x.y.z

y
y
P (x,y,z) β
位矢可表示为:
r op xi yj zk
其中:i、 j、 k分别为ox、oy、 oz坐标轴的单位矢量。
位矢大小: r op x 2 y 2 z 2 r 方向余弦: x x cos r r
r
=
r B rA
y

r B rA
A
不等
rA
Δr rB c Δr
B x
o
⑵位移的大小是否等于路程,即
r ? S
(△S代表路程)(答案 :单向直线运动时相等。) ⑶位移大小的极限是否等于路程的极限,即
lim r dr ? lim s
(答案 :相等。)
速度:
作 业
P23 习题1-6、1-8
先抄题目,再做作业!
当质点做曲线运动时, 质点在某一点的速度方向 就是沿该点曲线的切线方向.
x y v lim i lim j t 0 t t 0 t
在直角坐标系下
y
vy
v
vx
dx dy x v i j v i v j o x y dt dt 其中vx 、 vy 是在坐标轴上的分量,叫速度分量。 dx dy 哪么分速度应为: v x i vy j dt dt

dx 2 dy 2 ( ) ( ) dt dt
y
讨论
rA
A
Δr rB c Δr
B
o
x
2、瞬时速度的大小是否等于速率? 3、速度分量Vx<0意味着什么?
dr 4 v dt
那么是否
d x y v dt
2
2
dr dt
(答案:2、相等。 3、速度方向沿X轴负向。4、不对)
[例]质点的运动方程为 讨论质点的运动性质。 解: 运动方程的矢量式: o y ω x
(D)位移是矢量, 路程是标量.
问题:
⑴位矢之差的大小是否等于位矢大小的差, 即
r
=
r B rA

r B rA
⑵位移的大小是否等于路程,即
r ? S
⑶位移大小的极限是否等于路程的极限,即
lim r dr ? lim s
⑴位矢之差的大小是否等于位矢大小的差, 即
相对于不同的参考系,速度不同。(除光速外) ⑶瞬时性:
v v(t)
讨论
注意
dr dr dt dt
y A
rA rB c Δr
Δr
B x
o
1、一运动质点在某瞬时位于位矢 处,其速度大小为
r ( x, y )的端点
dr (A) dt dr (C) dt
dr (B) dt
(D)
位移的大小为
4 路程( s ): 质点实际运动轨迹的长度.
x 2 y 2 z 2 r
位移的物理意义
A) 确切反映物体在空间 位置的变化, 与路径无关,只 决定于质点的始末位置. B)反映了运动的矢量性 和叠加性.
y
r (t1 )
O
P r 1
r (t2 )
s
同一质点在不同时刻的位矢,相对于同一坐标 系一般不同。
2 运动方程
位矢随时间变化的函数关系
质点运动方程:
r r (t ) x(t )i y(t ) j z (t )k
x x(t )
或写成分量式
y
y (t )
P(x,y,z,t) r (t )
x(t )
y y (t ) z z (t )
相关文档
最新文档