第七章 微生物的代谢

合集下载

第七章 第二节、微生物代谢与生长

第七章  第二节、微生物代谢与生长
苏氨酸脱氨酶 苏氨酸 α-酮丁酸 异亮氨酸
反馈抑制
其它实例:谷氨酸棒杆菌的精氨酸合成
2.分支代谢途径中的反馈抑制:
在分支代谢途径中,反馈抑制的情况较为复杂,为了避免在 一个分支上的产物过多时不致同时影响另一分支上产物的供 应,微生物发展出多种调节方式。主要有: 同功酶的调节, 顺序反馈,协同反馈,积累反馈调节等。
五、微生物的代谢调控
• 微生物代谢过程中的自我调节 • 酶活性的调节 • 酶合成的调节
☆微生物自我调节代谢的方式
1.控制营养物质透过细胞膜进入细胞
如:只有当速效碳源或氮源耗尽时,微生物才合 成迟效碳源或氮源的运输系统与分解该物质的酶 系统。
2.通过酶的定位控制酶与底物的接触 3.控制代谢物流向:
1、有氧呼吸
概念:是以分子氧作为最终电子(或氢)受体的氧化 过程;是最普遍、最重要的生物氧化方式。 途径:EMP,TCA循环 特点:必须指出,在有氧呼吸作用中,底物的氧化 作用不与氧的还原作用直接偶联,而是底物在氧化 过程中释放的电子先通过电子传递链(由各种电子 传递体,如NAD,FAD,辅酶Q和各种细胞色素组成) 最后才传递到氧。
在工业发酵和科研中通常采取一定的措施缩短延滞期:
①通过遗传学方法改变种的遗传特性使迟缓期缩短; ②利用对数生长期的细胞作为“种子”;
③尽量使接种前后所使用的培养基组成不要相差太 大;
④适当扩大接种量等方式缩短迟缓期,克服不良的 影响。
2.对数期
特点:细菌数量呈对数增加;生长速度常数R最大;酶系活跃, 细菌代谢旺盛;群体中的细胞化学组成及形态、生理特征一 致,且细菌的形态、大小、染色性均典型,对外界环境因素 的作用比较敏感。
影响指数期微生物增代时间的因素 菌种;营养成分;营养物的浓度 发酵工业上尽量延长该期,以达到较高的菌体密度; 实验室研究细菌生物学性状和做药敏试验选取用对数期细菌 为佳(多数为8~18h培养的培养物)

第七章微生物的遗传和变异

第七章微生物的遗传和变异
酶活性的改变:
大肠埃希菌
乳糖
环境无乳糖,则不产生三种酶
含链霉素培基 痢疾杆菌 依赖链霉素株 ( 耐药菌株 )
耐药性改变:
二、微生物遗传和变异的物质基础 真核微生物的遗传物质: 原核微生物的遗传物质: 病毒的遗传物质:
一、微生物的遗传变异现象
形态与结构变异 菌落形态变异 毒力变异 酶活力变异 抗药性变异
形态改变1
3-6% NaCl 鼠疫杆菌────→多形态性(衰残型) 琼脂培基
青霉素、溶菌酶 正常形态细菌 L型变异 抗体或补体 (部分或完全失去胞壁)
正常霍乱弧菌
霍乱弧菌L型
形态改变2
42-43℃ 炭疽杆菌────→失去形成芽胞能力, 毒性减弱 10-20天 0.1%石炭酸 变形杆菌(有鞭毛) (无鞭毛)
1923年: 胆汁、甘油、马铃薯培养基 牛型结核杆菌 卡介苗 (有毒) 13年(230代) (弱毒,保持抗原性)
毒力改变2
β-半乳糖苷酶 半乳糖苷渗透酶 半乳糖苷转酰酶
中国科学院武汉病毒所菌种保藏中心
单位 缩写
单位名称
单位 缩写
单位名称
各国主要菌种保藏机构
(二) 菌种的复壮 使衰退的菌种恢复原来优良性状。是指在菌种已发生衰退的情况下,通过纯种分离和生产性能测定等方法,从衰退的群体中找出未衰退的个体,以达到恢复该菌原有典型性状的措施。
纯种分离
生物学性状检测 生产性能检测
国内外菌种保藏机构
KIM
德国微生物研究所菌种收藏室
NCIB
英国国立工业细菌收藏所
MIG
德国发酵红叶研究所微生微生物收藏室
CMI
英联邦真菌研究所
RKI
德国科赫研究所

第七章微生物的次级代谢及其调节

第七章微生物的次级代谢及其调节

第七章微生物的次级代谢及其调节授课内容:第一节次级代谢与次级代谢产物第二节次级代谢产物的生物合成第三节次级代谢的特点第四节次级代谢的生理功能第七章微生物的次级代谢第一节次级代谢与次级代谢产物一、次级代谢的概念微生物在一定的生长时期(一般是稳定生长期),以初级代谢产物为前体,合成一些对微生物的生命活动没有明确功能的物质过程。

是某些微生物为了避免在代谢过程中某种代谢产物的积累造成的不利作用而产生的一类有利于生存的代谢类型。

这一过程的产物称为次级代谢产物。

也有把初级代谢产物的非生理量的积累,看成是次级代谢产物,例如微生物发酵产生的维生素、柠檬酸、谷氨酸等。

二、次级代谢产物的类型(一)根据产物的作用分类根据次级代谢产物的作用可以分为抗生素、激素、生物碱、毒素及维生素等类型。

1、抗生素:这是微生物、植物和动物所产生的,具有在低浓度下有选择地抑制或杀灭其他微生物或肿瘤细胞的功能的一类次级产物。

目前从自然界发现和分离的抗生素已有5000种;通过化学结构的改造,共制备了约3万余种半合成抗生素。

青霉素、链霉素、四环素类、红霉素、新生霉素、多粘霉素、利福平、放线菌素(更生霉素)、博莱霉素(争光霉素)等达数百种抗生素已进行工业生产。

以青霉素类、头孢菌素类、四环素类、氨基糖苷类及大环内酯类最常用。

2、激素:微生物产生的一些可以刺激动、植物生长或性器官发育的一类次级物质。

例如赤霉菌产生的赤霉素。

3、维生素:作为次生物质,是指在特定条件下,微生物产生的远远超过自身需要量的那些维生素,例如丙酸细菌产生维生素B;分枝杆菌产生吡哆素和烟酰胺;假单胞菌产生生物素;12以及霉菌产生的核黄素和β-胡萝卜素等。

4、生物碱:大部分生物碱是由植物产生的碱性含氮有机物。

麦角菌可以产生麦角菌生物碱。

5、色素:是一类本身具有颜色并能使其他物质着色的高分子有机物质。

不少微生物在代谢过程中产生各种有色的产物。

例如由黏质赛氏杆菌产生灵菌红素,在细胞内积累,使菌落呈红色。

微生物学 微生物的代谢

微生物学 微生物的代谢

第四章真核微生物1.试比较细菌、放线菌、酵母菌和霉菌细胞壁成分的异同,并讨论它们的原生质体制备方法。

*答:细胞壁成分的异同细菌分为G+和G-,G+肽聚糖含量高,G-含量低;G+磷壁酸含量较高,而G-不含磷壁酸;G+类脂质一般无,而G-含量较高;G+不含蛋白质,G-含量较高。

放线菌为G-,其细胞壁具有G-所具有的特点。

酵母菌和霉菌为真菌,酵母菌的细胞壁外层为甘露聚糖,内层为葡聚糖;而霉菌的细胞壁成分为几丁质、蛋白质、葡聚糖。

原生质体制备方法: G+菌原生质体获得:青霉素、溶菌酶;G-菌原生质体获得:EDTA鳌合剂处理,溶菌酶;放线菌原生质体获得:青霉素、溶菌酶;霉菌原生质体获得:纤维素酶。

2.试图示并说明真核微生物“9+2”型鞭毛的构造和生理功能。

*鞭毛(flagella),长100-200 μm,以挥鞭方式推动细胞运动。

鞭毛由伸出细胞外的鞭杆、嵌埋在细胞质膜上的基体以及把这两者相连的过渡区共3部分组成。

鞭杆的横切面呈9+2型,即中心有一对中央微管,其外有9个微管二联体,整个鞭杆由细胞质膜包裹。

每条微管二联体由A,B两条中空的亚纤维组成,其中A亚纤维是一完全微管,而B亚纤维则有10个亚基围成,所缺3个亚基与A亚基纤维共用。

通过动力蛋白臂与相邻的微管二联体的作用,可使鞭毛作弯曲运动。

3.试简介真核细胞所特有的几种细胞器的结构及主要功能答:(线粒体、溶酶体、叶绿体、高尔集体、液泡、内质网、微体、膜边体、氢化酶体、几丁质酶体。

)膜边体又称须边体或质膜外泡,为许多真菌所特有。

它是一种位于菌丝细胞四周的质膜与细胞壁间,由单层膜包裹的细胞器。

膜边体可由高尔基体或内质网特定部位形成,各个膜边体能互相结合,也可与别的细胞器或膜相结合,功能可能与分泌水解酶或合成细胞壁有关。

几丁质酶体又壳体,一种活跃于各种真菌菌体顶端细胞中的微小泡囊,内含几丁质合成酶,其功能是把其中所含的酶源源不断地运输到菌丝尖端细胞壁表面,使该处不断合成几丁质微纤维,从而保证菌丝不断向前延伸。

生物化学第七章脂类代谢(共82张PPT)

生物化学第七章脂类代谢(共82张PPT)

乙 醛 酸 体
线
粒 体
三酰甘油
甘油
脂肪酸
3-磷酸甘油




乙酰 CoA
三羧酸 循环
丙酮酸
植物和 微生物
乙醛酸 循环
糖原(或淀粉) 1,6-二磷酸果糖
磷酸二羟丙酮 PEP
草酰乙酸
苹果酸
延胡索酸
琥珀酸
第二节 脂肪的合成代谢
一、甘油的生物合成 二、脂肪酸的生物合成
三、三酰甘油的生物合成
一、甘油的生物合成(细胞质中)
OO
H-C-C~ OH 乙醛酸
异柠檬酸 裂解酶
COOCH2 CH2 COO-
琥珀酸
2乙酰 CoA + NAD+ 琥珀酸+ 2CoASH + NADH +
H+
草酰乙酸
糖异生
对于一些细菌和藻 类,乙醛酸循环使它们 能够仅以乙酸盐作为能 源和碳源生长。
在脂肪转变为糖的 过程中,乙醛酸循环 起着关键的作用,它 是连结糖代谢和脂代 谢的枢纽。
β-羟脂酰CoA
NAD +
脱氢酶
O || R-C~ScoA
+
O || CH3C~SCoA
脂酰CoA
乙酰CoA
NADH 硫解酶
CoASH
OO ||
RβC-C酮H酯2C酰-SCCooAA
如:软脂酸(棕搁酸,C15H31COOH)的β-氧化过程
4、β-氧化过程中能量的释放及转换效率
例:软脂酸
CH3(CH2)14COOH
磷酸甘油酯酰转移酶
三、三酰甘油的 生物合成
磷酸酶
二酰甘油酯酰转移酶
溶血磷脂酸 磷脂酸

第七章微生物的生长与环境条件ppt课件

第七章微生物的生长与环境条件ppt课件

根据公式:G = (t2 - t1 )/3.3 ·lg (x2 /x1)
t2 - t1 = (4 - 0)× 60 min = 240 min
x2 = 108
x1 = 104
lg(x2 /x1 ) = lg108 ~ lg104 = 8 - 4 = 4
代入上式 G = 240/3.3 × 4 = 240/13.2 = 18 min
二、孢子生长
无性孢子繁殖 孢子的生长包括: 孢子肿胀(外源肿胀,不需营养;内源肿胀,需要营养); 萌发管形成; 菌丝生长。
有性孢子繁殖 第一阶段是质配(plasmogamy) 第二阶段为核配(karyogamy) 第三阶段是减数分裂(meiosis)
第三节 环境条件对微生物生长的影响
生长是微生物与外界环境因素共同作用的结果。环境条件的 改变,在一定限境条件的某些改 变;当环境条件的变化超过一定极限,则导致微生物的死亡。 研究环境条件与微生物之间的相互关系意义重大。本节将较 多地涉及各种物理、化学因素对微生物生长的抑制与致死的 影响。
用最高稳定期的培养物接种
抑制DNA合成法
利用代谢抑制剂阻碍DNA合成相当一段时间,然后再解除 其抑制,也可达到同步化的目的。试验证明:氨甲蝶呤、 5-氟脱氧尿苷、羟基尿素、胸腺苷、脱氧腺苷和脱氧鸟 苷等,对细胞DNA合成的同步化均有作用。
总之,机械法对细胞正常生理代谢影响很少;而诱导同步分裂 虽然方法多,应用较广,但对正常代谢有时有影响,而且对其 诱导同步化的生化基础了解很少,化学诱导同步化的本质还是 一个尚待研究的问题。
在对数生长期内,细菌数目的增加是按指数级数增加的,即 20 →2 1 →22 →23 ……2n 这里的指数 n 为细菌分裂的次数或者增殖的代数,也就是一 个细菌繁殖n代产生2n 个细菌。 如果在对数期开始时间 t1的菌数为 x1 ,繁殖 n 代后到对数 期后期t2的菌数为 x2,则代时(Generation time,G)(即 每增加一代所需要的时间)应为:

代谢ppt课件

代谢ppt课件
在发酵条件下有机化合物只是部分地被氧化,故 8
发酵(fermentation) 在工业生产中常把好氧或兼性厌氧微生物 在通气或厌气的条件下的产品生产过程统 称为发酵。
9
异养微生物的生物氧化
发酵过程的氧化是与有机物的还原偶联在一起;被 还原的有机物来自于初始发酵的分解代谢,即不需 要外界提供电子受体。
光合色素:光合生物所特有的色素,是 将光能转化为化学能的关键物质。
无氧呼吸的最终电子受体不是氧,而是 象NO3-, NO2-,SO42-,S2O32-,CO2等这类外 源受体。
无氧呼吸也需要细胞色素等电子传递体, 并在能量分级释放过程中伴随着磷酸化 作用,也能产生较多的能量用于生命活 动。但由于部分能量随电子转移传给最 13
无氧呼吸
无氧呼吸的氧化底物一般为有机物,如葡 萄糖、乙酸和乳酸等。它们被氧化为CO2, 有ATP生成。
无氧呼吸的特点是底物按常规途径脱氢后,经
部分呼吸链递氢,最终由氧化态的无机物(个
别是有机物延胡索酸)受氢。
无机盐呼吸 无氧呼吸
硝酸盐呼吸
NO2-,N2O,NO,N2 NO3- SO32-,S3O62-,S2O32-,H2S
硫酸盐呼吸
硫呼吸
S2-
SO42-
S0 产乙酸细菌
CH3COOH
碳酸盐呼吸 产甲烷菌
基质(底物)水平磷酸化:厌氧微生物和兼 性厌氧微生物在此过程中,产生一种含高自 由能的中间体,如含高能键的1,3-二磷酸甘 油酸。这一中间体将高能键交给ADP,使 ADP磷酸化而生成ATP。
氧化磷酸化:好氧微生物在呼吸时,通过电 子传递体系产生ATP的过程叫氧化磷酸化。
3
代谢概论
有机物
最初能源

详细版第七章微生物的代谢.ppt

详细版第七章微生物的代谢.ppt

.精品课件.
8
2. HMP途径 (己糖一磷酸途径、戊糖磷酸途径)
6C6H12O6
.精品课件.
5葡糖-6-磷酸
35ATP
6CO2 9
特点
1)是一条葡萄糖不经EMP途径和TCA循环而彻底氧化产能、 产还原力[H]和许多中间代谢产物的途径;
2)进行一次周转需要六分子的葡萄糖同时参与,但实际只 消耗一分子的葡萄糖;
还原态无机物 化能自养型
通用能源ATP
ATP的结构
.精品课件.
3
一、化能异养微生物的生物氧化和产能
1. 生物氧化的定义
发生在活细胞内的一系列产能性氧化反应的总称。
燃烧
生物体外的氧化
.精品课件.
4
2. 生物氧化的形式:加氧、脱氢或失去电子; 3. 生物氧化的过程:脱氢、递氢、受氢 4. 生物氧化的结果: 产ATP、还原力[H]和小分子代 谢产物
比较各类无机盐呼吸的特点
➢ 硫呼吸
➢ 铁呼吸
➢ 碳酸盐呼吸
➢ 有机物呼吸
➢ 延胡索酸呼吸
➢ 甘氨酸呼吸 ➢ 氧化三甲胺呼吸
.精品课件.
C6H12O6
.精品课件.
2丙酮酸 2ATP 2NADH2
7
特点
1)是大多数生物所共有的基本代谢途径;
2)有氧和无氧条件下都能进行; 有氧条件下,该途径与TCA途径连接; 无氧条件下,丙酮酸被还原,形成乳酸等发酵 产物;
3)该途径是糖代谢和脂类代谢的连接点(如磷酸二
羟丙酮可还原成甘油,进入脂类代谢 ;
(一)底物脱氢的四条途径
.精品课件.
5
底物脱氢的四条途径
.精品课件.
6
1.
途径 EMP
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——以Fe3+、Mn2+许多有机氧化物等作为末 端电子受体的无氧呼吸。 延胡索酸 琥珀酸 + 1 ATP 。 被砷、硒化合物污染的土壤中,厌氧条件下生 长一些还原硫细菌。
利用Desulfotomaculum auripigm化和微生物清污
硫呼吸 (硫还原)
—— 以元素S作为唯一的末端电子受体。
电子供体:乙酸、小肽、葡萄糖等
碳酸盐呼吸(碳酸盐还原)
——以CO2、HCO3- 为末端电子受体 产甲烷菌 — 利用H2作电子供体(能源)、CO2为 受体,产物CH4; 产乙酸细菌 — H2 / CO2 进行无氧呼吸,产物为乙酸。
其他类型无氧呼吸
硝酸盐作用
同化性硝酸盐作用:
NO3- NH3 - N 异化性硝酸盐作用: R - NH2
无氧条件下,利用NO3-为最终氢受体
NO3- NO2 NO N2O N2
硝酸盐还原酶
亚硝酸还原酶 氧化亚氮还原酶 氧化氮还原酶
反硝化意义:
1)使土壤中的氮(硝酸盐NO3-)还原成氮气而消失,降低土壤的肥力; 2)反硝化作用在氮素循环中起重要作用。

2 无氧呼吸(厌氧呼吸)
特点: a 常规途径脱下的氢,经部分呼吸链传递; b 氢受体:氧化态无机物(个别:延胡索酸) c 产能效率低。 硝酸盐呼吸(反硝化作用)即硝酸盐还原作用特点: a 有其完整的呼吸系统; b 只有在无氧条件下,才能诱导出反硝化作 用所需的硝酸盐还原酶A、亚硝酸还原酶等 c 兼性厌氧 细菌:铜绿假单胞、地衣芽孢杆菌等。
硫酸盐呼吸(硫酸盐还原)
——厌氧时,SO42- 、SO32-、S2O32- 等为末端电 子受体的呼吸过程。
特点:
a、严格厌氧; b、大多为古细菌 c、极大多专性化能异氧型,少数混合型; d、最终产物为H2S; SO42- SO32- SO2 S H2S e、利用有机质(有机酸、脂肪酸、醇类)作 为氢供体或电子供体; f、环境: 富含SO42-的厌氧环境(土壤、海水、污水等)
相关文档
最新文档