2019年全国各地中考数学真题汇编:分式(含答案)

合集下载

2019年全国中考数学试卷分类汇编:分式与分式方程【含解析】

2019年全国中考数学试卷分类汇编:分式与分式方程【含解析】

数学精品复习资料分式与分式方程一、选择题1. (2014•四川巴中,第4题3分)要使式子有意义,则m 的取值范围是( ) A .m >﹣1B . m ≥﹣1C . m >﹣1且m ≠1D . m ≥﹣1且m ≠1考点:二次根式及分式的意义.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 解答:根据题意得:,解得:m ≥﹣1且m ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 2. (2014•山东潍坊,第5题3分)若代数式2)3(1-+x x 有意义,则实数x 的取值范围是( ) A.x ≥一1 B .x ≥一1且x ≠3 C .x >-l D .x >-1且x ≠3 考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:根据题意得:⎩⎨⎧≠-≥+0301x x 解得x ≥-1且x ≠3.故选B .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 3.(2014山东济南,第7题,3分)化简211mm m m -÷- 的结果是 A .m B .m 1 C .1-m D .11-m 【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A .4. (2014•浙江杭州,第7题,3分)若(+)•w=1,则w=( )W==0÷(﹣÷•,==C==由题意得,=.分)分式)))【分析】二、填空题1. (2014•上海,第8题4分)函数y=的定义域是x≠1.2. (2014•四川巴中,第12题3分)若分式方程﹣=2有增根,则这个增根是.考点:分式方程的增根.分析:分式方程变形后,去分母转化为整式方程,根据分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.解答:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1 点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. (2014•山东烟台,第14题3分)在函数中,自变量x的取值范围是.考点:二次根式及分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.(2014•湖南怀化,第12题,3分)分式方程=的解为x=1.5. (2014山东济南,第19题,3分)若代数式21-x 和123+x 的值相等,则=x . 【解析】解方程12321+=-x x ,的7=x ,应填7. 6.(2014•遵义13.(4分))计算:+的结果是 ﹣1 .==.7. (2014•年山东东营,第15题4分)如果实数x ,y 满足方程组,那么代数式(+2)÷的值为 1 .考点: 分式的化简求值;解二元一次方程组. 专题: 计算题.分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x 与y 的值,代入计算即可求出值. 解答: 解:原式=•(x+y )=xy+2x+2y ,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1. 故答案为:1点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8. (2014•江苏盐城,第13题3分)化简:﹣= 1 .9.(2014•四川宜宾,第10题,3分)分式方程﹣=1的解是x=﹣1.5 .10.(2014•四川南充,第11题,3分)分式方程=0的解是.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x+1+2=0,解得:x=﹣3经检验x=﹣3是分式方程的解.故答案为:x=﹣3点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(2014•四川凉山州,第25题,5分)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1 .解:=12.(2014•四川内江,第22题,6分)已知+=3,则代数式的值为﹣.=3+13.(2014•甘肃白银、临夏,第12题4分)化简:=.+﹣14.(2014•广州,第13题3分)代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】三、解答题1. (2014•上海,第20题10分)解方程:﹣=.2. (2014•四川巴中,第23题5分)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简,一元二次的解法,分式的意义.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:原式=÷=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式的值有意义.3. (2014•山东威海,第21题9分)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子由题意得,+=260则买甲粽子为:个,乙粽子为:4. (2014•山东枣庄,第19题4分)(2)化简:(﹣)÷.•(. 5. (2014•山东烟台,第19题6分)先化简,再求值:÷(x ﹣),其中x 为数据0,﹣1,﹣3,1,2的极差.考点:分式的化简,极差.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x ,代入计算即可求出值. 解答:原式=÷=•=,当x =2﹣(﹣3)=5时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6. (2014•山东烟台,第23题8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A ,B考点:分式方程的应用,一次函数的应用.分析: (1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A 行车a 辆,则B 型车(60﹣x )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值. 解答:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由题意,得,解得:x =1600.经检验,x =1600是元方程的根.答:今年A 型车每辆售价1600元;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.点评:本题考查了列分式方程解实际问题的运,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.7.(2014•湖南张家界,第18题,6分)先化简,再求值:(1﹣)+,其中a=.÷•,时,原式.8.(2014•湖南张家界,第22题,8分)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?×,9. (2014•江西抚州,第16题,5分)先化简:34211x xxx x---÷--(),再任选一个你喜欢的数x代入求值.解析:原式=x x x xx x x⎛⎫----⎪---⎝⎭2341112=x x xx x-+-⋅--244112=()xx--222=x-2取x=10代入,原式=8(注:x不能取1和2)10.(2014•山东聊城,第18题,7分)解分式方程:+=﹣1.11. (2014年贵州黔东南18.(8分))先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.(2014•十堰17.(6分))化简:(x2﹣2x)÷.•完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?+=114.(2014•娄底21.(8分))先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.=÷=•=15.(2014•娄底24.(8分))娄底到长沙的距离约为180km ,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答) (2)当小刘出发时,求小张离长沙还有多远? ﹣=116. (2014年湖北咸宁17.(8分))(1)计算:(﹣2)2+4×2﹣1﹣|﹣8|; (2)化简:﹣.考点: 实数的运算;分式的加减法;负整数指数幂.分析: (1)本题涉及负整指数幂、乘方、绝对值化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据分式的性质,可化成同分母的分式,根据分式的加减,可得答案. 解答: 解:(1)原式=4+2﹣8=﹣2;(2)原式=.点评: 本题考查了实数的运算,本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17. ( ( 2014年河南) 16.8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x -1解:原式=()()()2x 1x 12x x 1x x 1x+-++÷-…………………4分 =()2x 1xx x 1++ =1x 1+…………………………………………………………………6分当x -1时,原式=2……………………………8分18.(2014•江苏苏州,第21题5分)先化简,再求值:,其中.统一为乘法运算,注意化简后,将解:÷()÷×,=19.(2014•江苏苏州,第22题6分)解分式方程:+=3.20. (2014•山东淄博,第18题5分)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.21. (2014•江苏徐州,第24题8分)几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.考点:分式方程的应用.分析:设票价为x元,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22. (2014•江苏盐城,第19题4分)(2)解方程:=.23. (2014•年山东东营,第23题8分)为顺利通过“国家文明城市”验收,东营市政府拟对称取部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.考点:一次函数的应用;分式方程的应用.分析:(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.解答:解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元;方案二:由乙工程队单独完成需要2.5×30=75万元;方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元.所以选择甲工程队,既能按时完工,又能使工程费用最少.点评:本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. (2014•江苏徐州,第19题5分)(2)计算:(a+)÷(1+).考点:分式的混合运算.专题:计算题.分析:(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(2)原式=÷=•=a﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则解本题的关键.25.(2014•四川遂宁,第18题,7分)先化简,再求值:(+)÷,其中x=﹣1.•=•,﹣.26.(2014•四川宜宾,第17题,10分)(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.•••27.(2014•四川凉山州,第19题,6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.÷•= 28.(2014•四川泸州,第18题,6分)计算(﹣)÷.﹣•﹣)•,.普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?30、(2014•广州,第22题12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度×时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为千米/时,则高铁平均速度为千米/时.依题意有:可得:答:高铁平均速度为2.5×120=300千米/时.31.(2014•广东梅州,第20题8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?﹣×0.25≤8。

2019年天津市中考数学试卷(含参考答案与试题解析)

2019年天津市中考数学试卷(含参考答案与试题解析)

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•天津)计算(3)9-⨯的结果等于()A.27-B.6-C.27 D.62.(3分)(2019•天津)2sin60︒的值等于()A.3B.2 C.1 D.23.(3分)(2019•天津)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.64.2310⨯C.542.310⨯D.442310⨯4.(3分)(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)(2019•天津)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)(201933的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)(2019•天津)计算2211aa a+++的结果是()A.2 B.22a+C.1 D.41 a a+8.(3分)(2019•天津)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A .5B .43C .45D .209.(3分)(2019•天津)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩10.(3分)(2019•天津)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<11.(3分)(2019•天津)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.(3分)(2019•天津)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:x⋯ 2-1-0 1 2⋯ 2y ax bx c=++⋯tm2- 2-n⋯且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)(2019•天津)计算5x x 的结果等于 .14.(3分)(2019•天津)计算(31)(31)+-的结果等于 .15.(3分)(2019•天津)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 . 16.(3分)(2019•天津)对于直线21y x =-与x 轴的交点坐标是 .17.(3分)(2019•天津)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为 .18.(3分)(2019•天津)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上.(Ⅰ)线段AB 的长等于 ;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分,解答写出文字说明、演算步骤或推理过程)19.(8分)(2019•天津)解不等式组11 211 xx+-⎧⎨-⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)(2019•天津)某校为了解初中学生每天在校体育活动的时间(单位:)h,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)(2019•天津)已知PA,PB分别与O相切于点A,B,80APB∠=︒,C为O 上一点.(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.22.(10分)(2019•天津)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.23.(10分)(2019•天津)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >.(Ⅰ)根据题意填表: 一次购买数量/kg30 50 150⋯甲批发店花费/元 300 ⋯ 乙批发店花费/元350⋯(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.24.(10分)(2019•天津)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =. (Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当353S 时,求t 的取值范围(直接写出结果即可).25.(10分)(2019•天津)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点. (Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值; (Ⅲ)点1(2Q b +,)Q y 22QM +332时,求b 的值.2019年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.6【考点】有理数的乘法【分析】由正数与负数的乘法法则得(3)927-⨯=-;【解答】解:(3)927-⨯=-;故选:A.2.(3分)2sin60︒的值等于()A B.2C.1D【考点】特殊角的三角函数值【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin602︒==故选:A.3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.642310⨯D.4⨯4.2310⨯C.542.310【考点】科学记数法-表示较大的数【分析】科学记数法的表示形式为10na<,n为整数.确定n的值a⨯的形式,其中1||10是易错点,由于4230000有7位,所以可以确定716n=-=.【解答】解:6=⨯.4230000 4.2310故选:B.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图【分析】画出从正面看到的图形即可得到它的主视图.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.6.(333()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小【分析】由于253336<<253336,从而有5336.【解答】解:253336<<,∴2533365336∴<<.故选:D.7.(3分)计算2211aa a+++的结果是()A .2B .22a +C .1D .41aa + 【考点】分式的加减法【分析】直接利用分式的加减运算法则计算得出答案. 【解答】解:原式221a a +=+ 2(1)1a a +=+ 2=.故选:A .8.(3分)如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )A 5B .43C .45D .20【考点】坐标与图形性质;菱形的性质 【分析】根据菱形的性质和勾股定理解答即可. 【解答】解:A ,B 两点的坐标分别是(2,0),(0,1),22215AB ∴=+, 四边形ABCD 是菱形,∴菱形的周长为5故选:C .9.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩【考点】解二元一次方程组 【分析】运用加减消元分解答即可.【解答】解:3276211x y x y +=⎧⎨-=⎩①②,①+②得,2x =,把2x =代入①得,627y +=,解得12y =, 故原方程组的解为:212x y =⎧⎪⎨=⎪⎩.故选:D .10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<【考点】反比例函数图象上点的坐标特征【分析】分别计算出自变量为3-、2-和1对应的函数值,从而得到1y ,2y ,3y 的大小关系.【解答】解:当3x =-,11243y =-=-; 当2x =-,21262y =-=-; 当1x =,312121y =-=-, 所以312y y y <<. 故选:B .11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠【考点】旋转的性质【分析】根据旋转的性质得到AC CD =,BC CE =,AB DE =,故A 错误,C 错误; 得到ACD BCE ∠=∠,根据三角形的内角和得到1802ACDA ADC ︒-∠∠=∠=,1802BCECBE ︒-∠∠=,求得A EBC ∠=∠,故D 正确;由于A ABC ∠+∠不一定等于90︒,于是得到ABC CBE ∠+∠不一定等于90︒,故B 错误. 【解答】解:将ABC ∆绕点C 顺时针旋转得到DEC ∆, AC CD ∴=,BC CE =,AB DE =,故A 错误,C 错误; ACD BCE ∴∠=∠, 1802ACD A ADC ︒-∠∴∠=∠=,1802BCECBE ︒-∠∠=,A EBC ∴∠=∠,故D 正确; A ABC ∠+∠不一定等于90︒,ABC CBE ∴∠+∠不一定等于90︒,故B 错误故选:D .12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3【考点】二次函数图象与系数的关系;抛物线与x 轴的交点;二次函数图象上点的坐标特征 【分析】①当0x =时,2c =-,当1x =时,0a b +=,0abc >,①正确; ②12x =是对称轴,2x =-时y t =,则3x =时,y t =,②正确; ③44m n a +=-;当12x =-时,0y >,803a <<,203m n +<,③错误;【解答】解:当0x =时,2c =-, 当1x =时,22a b +-=-, 0a b ∴+=,22y ax ax ∴=--, 0abc ∴>,①正确; 12x =是对称轴, 2x =-时y t =,则3x =时,y t =,2∴-和3是关于x 的方程2ax bx c t ++=的两个根;②正确;2m a a =+-,422n a a =--, 22m n a ∴==-, 44m n a ∴+=-, 当12x =-时,0y >,803a ∴<<, 203m n ∴+<, ③错误; 故选:C .二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)计算5x x 的结果等于 6x . 【考点】同底数幂的乘法【分析】根据同底数幂相乘,底数不变,指数相加,即可解答. 【解答】解:56x x x =. 故答案为:6x14.(3分)计算1)的结果等于 2 . 【考点】二次根式的混合运算 【分析】利用平方差公式计算. 【解答】解:原式31=-2=.故答案为2.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 37. 【考点】概率公式【分析】根据概率公式求解.【解答】解:从袋子中随机取出1个球,则它是绿球的概率37=. 故答案为37. 16.(3分)对于直线21y x =-与x 轴的交点坐标是 1(2,0) .【考点】一次函数图象上点的坐标特征【分析】当直线21y x =-与x 轴相交时,0y =;将0y =代入函数解析式求x 值. 【解答】解:根据题意,知,当直线21y x =-与x 轴相交时,0y =, 210x ∴-=,解得,12x =; ∴直线21y x =+与x 轴的交点坐标是1(2,0);故答案是:1(2,0).17.(3分)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为4913.【考点】正方形的性质;PB :翻折变换(折叠问题)【分析】由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,先证ABF DAE ∆≅∆,推出AF 的长,再利用勾股定理求出BF 的长,最后在Rt ADF ∆中利用面积法可求出AH 的长,可进一步求出AG 的长,GE 的长. 【解答】解:四边形ABCD 为正方形,12AB AD ∴==,90BAD D ∠=∠=︒,由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,BF AE ∴⊥,AH GH =,90FAH AFH ∴∠+∠=︒,又90FAH BAH ∠+∠=︒,AFH BAH ∴∠=∠,()ABF DAE AAS ∴∆≅∆, 5AF DE ∴==,在Rt ADF ∆中,222212513BF AB AF =+=+=, 1122ABF S AB AF BF AH ∆==, 12513AH ∴⨯=,6013AH ∴=, 120213AG AH ∴==, 13AE BF ==,12049131313GE AE AG ∴=-=-=, 故答案为:4913.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上. (Ⅰ)线段AB 的长等于17; (Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .【考点】作图-复杂作图;圆周角定理;勾股定理 【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,于是得到结论. 【解答】解:(Ⅰ)221172()22AB =+=,故答案为:172; (Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠,故答案为:取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组11211x x +-⎧⎨-⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 2x - ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为 .【考点】在数轴上表示不等式的解集;解一元一次不等式组【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:(Ⅰ)解不等式①,得2x -; (Ⅱ)解不等式②,得1x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为21x -. 故答案为:2x -,1x ,21x -.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为 40 ,图①中m 的值为 ; (Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h 的学生人数.【考点】众数;扇形统计图;算术平均数;用样本估计总体;条形统计图;中位数【分析】(Ⅰ)根据统计图中的数据可以求得本次调查的学生人数,进而求得m的值;(Ⅱ)根据统计图中的数据可以求得这组数据的平均数和众数、中位数;(Ⅲ)根据统计图中的数据可以求得该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:410%40÷=,10%100%25%40m=⨯=,故答案为:40,25;(Ⅱ)平均数是:0.94 1.28 1.515 1.810 2.131.540⨯+⨯+⨯+⨯+⨯=,众数是1.5,中位数是1.5;(Ⅲ)40480072040-⨯=(人),答:该校每天在校体育活动时间大于1h的学生有720人.21.(10分)已知PA,PB分别与O相切于点A,B,80APB∠=︒,C为O上一点.(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.【考点】切线的性质;圆周角定理【分析】(Ⅰ)连接OA、OB,根据切线的性质得到90OAP OBP∠=∠=︒,根据四边形内角和等于360︒计算;(Ⅱ)连接CE,根据圆周角定理得到90ACE∠=︒,根据等腰三角形的性质、三角形的外角性质计算即可.【解答】解:(Ⅰ)连接OA、OB,PA,PB是O的切线,90OAP OBP∴∠=∠=︒,360909080100AOB∴∠=︒-︒-︒-︒=︒,由圆周角定理得,1502ACB AOB∠=∠=︒;(Ⅱ)连接CE ,AE 为O 的直径,90ACE ∴∠=︒, 50ACB ∠=︒,905040BCE ∴∠=︒-︒=︒, 40BAE BCE ∴=∠=︒,AB AD =,70ABD ADB ∴∠=∠=︒, 20EAC ADB ACB ∴∠=∠-∠=︒.22.(10分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.【考点】解直角三角形的应用-仰角俯角问题【分析】根据正切的定义用CD 表示出AD ,根据题意列出方程,解方程得到答案.【解答】解:在Rt CAD ∆中,tan CDCAD AD∠=, 则5tan313CD AD CD =≈︒,在Rt CBD ∆中,45CBD ∠=︒, BD CD ∴=,AD AB BD =+,∴5303CD CD =+, 解得,45CD =,答:这座灯塔的高度CD 约为45m .23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多. 【考点】一次函数的应用【分析】(Ⅰ)根据题意,甲批发店花费1y (元)6=⨯购买数量x (千克);630180⨯=,6150900⨯=;而乙批发店花费2y (元),当一次购买数量不超过50kg 时,2730210y =⨯⨯=元;一次购买数量超过50kg 时,27505(15050)850y =⨯+-=元.(Ⅱ)根据题意,甲批发店花费1y (元)6=⨯购买数量x (千克);而乙批发店花费2y (元)在一次购买数量不超过50kg 时,2y (元)7=⨯购买数量x (千克);一次购买数量超过50kg 时,2y (元)7505(50)x =⨯+-;即:花费2y (元)是购买数量x (千克)的分段函数. (Ⅲ)①花费相同,即12y y =;可利用方程解得相应的x 的值;②求出在120x =时,所对应的1y 、2y 的值,比较得出结论.实际上是已知自变量的值求函数值.③求出当360y =时,两店所对应的x 的值,比较得出结论.实际是已知函数值求相应的自变量的值.【解答】解:(Ⅰ)甲批发店:630180⨯=元,6150900⨯=元;乙批发店:730210⨯⨯=元,7505(15050)850⨯+-=元.故依次填写:180 900 210 850. (Ⅱ)16y x = (0)x >当050x <时,27y x = (050)x <当50x >时,27505(50)5100y x x =⨯+-=+ (50)x >因此1y ,2y 与x 的函数解析式为:16y x = (0)x >;27y x = 2(050)5100x y x <=+ (50)x >(Ⅲ)①当12y y =时,有:67x x =,解得0x =,不和题意舍去; 当12y y =时,也有:65100x x =+,解得100x =, 故他在同一个批发店一次购买苹果的数量为100千克. ②当120x =时,16120720y =⨯=元,25120100700y =⨯+=元, 720700>∴乙批发店花费少.故乙批发店花费少.③当360y =时,即:6360x =和5100360x +=;解得60x =和52x =, 6052>∴甲批发店购买数量多.故甲批发店购买的数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =. (Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②当353S 时,求t 的取值范围(直接写出结果即可).【考点】四边形综合题【分析】(Ⅰ)由已知得出4AD OA OD =-=,由矩形的性质得出30AED ABO ∠=∠=︒,在Rt AED ∆中,28AE AD ==,由勾股定理得出43ED =,即可得出答案; (Ⅱ)①由平移的性质得:2O D ''=,43E D ''=ME OO t '='=,////D E O C OB '''',得出30E FM ABO ∠'=∠=︒,在Rt MFE ∆'中,22MF ME t ='=,2222(2)3FE MF ME t t t '-'-=,求出2113322MFE t S ME FE t t ∆'=''=⨯=,24383C O D E S O D E D ''''=''⋅''=⨯=矩形②当3S 6O A OA OO t ''=-=-,由直角三角形的性质得出33(6)O F O A t ''==-,得出方程,解方程即可;当53S =6O A t '=-,624D A t t '=--=-,由直角三角形的性质得出3(6)O G t '=-,)D F t '=-,由梯形面积公式得出1))]22S t t =-+-⨯= 【解答】解:(Ⅰ)点(6,0)A ,6OA ∴=,2OD =,624AD OA OD ∴=-=-=,四边形CODE 是矩形,//DE OC ∴,30AED ABO ∴∠=∠=︒,在Rt AED ∆中,28AE AD ==,ED === 2OD =,∴点E 的坐标为(2,;(Ⅱ)①由平移的性质得:2O D ''=,E D ''=ME OO t '='=,////D E O C OB '''', 30E FM ABO ∴∠'=∠=︒,∴在Rt MFE ∆'中,22MF ME t ='=,FE '=,1122MFE S ME FE t ∆'∴=''=⨯,2C O D E S O D E D ''''=''⋅''=⨯矩形,MFE C O D E S S S ∆'''''∴=-=矩形2S ∴=+,其中t 的取值范围是:02t <<;②当S ③所示:6O A OA OO t ''=-=-,90AO F '∠=︒,30AFO ABO '∠=∠=︒,)O F A t ''∴==- 1(6))2S t t ∴=--=,解得:6t =6t =,6t ∴=S =④所示:6O A t '=-,624D A t t '=--=-, 3(6)O G t '∴=-,3(4)D F t '=-,1[3(6)3(4)]2532S t t ∴=-+-⨯=, 解得:52t =, ∴当353S 时,t 的取值范围为5622t -.25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 22QM +的最小值为3324时,求b 的值. 【考点】二次函数综合题【分析】(Ⅰ)将点(1,0)A -代入2y x bx c =-+,求出c 关于b 的代数式,再将b 代入即可求出c 的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点(,)D D b y 代入抛物线21y x bx b =---,求出点D 纵坐标为1b --,由0b >判断出点(,1)D b b --在第四象限,且在抛物线对称轴2b x =的右侧,过点D 作DE x ⊥轴,可证ADE ∆为等腰直角三角形,利用锐角三角函数可求出b 的值;(Ⅲ)将点1(2Q b +,)Q y 代入抛物线21y x bx b =---,求出Q 纵坐标为324b --,可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧,点(0,1)N ,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0),在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒,设点(,0)M m ,则可用含b 的代数式表示m ,24QM +=1112[()(1)])()]242244b b b ---++--=,解方程即可.【解答】解:(Ⅰ)抛物线2y x bx c =-+经过点(1,0)A -, 10b c ∴++=,即1c b =--,当2b =时,2223(1)4y x x x =--=--,∴抛物线的顶点坐标为(1,4)-;(Ⅱ)由(Ⅰ)知,抛物线的解析式为21y x bx b =---, 点(,)D D b y 在抛物线21y x bx b =---上,211D y b b b b b ∴=---=--,由0b >,得02bb >>,10b --<,∴点(,1)D b b --在第四象限,且在抛物线对称轴2bx =的右侧,如图1,过点D 作DE x ⊥轴,垂足为E ,则点(,0)E b ,1AE b ∴=+,1DE b =+,得AE DE =,∴在Rt ADE ∆中,45ADE DAE ∠=∠=︒,AD ∴=,由已知AM AD =,5m =,5(1)1)b ∴--=+,1b ∴=;(Ⅲ)点1(2Q b +,)Q y 在抛物线21y x bx b =---上, 2113()()12224Q b y b b b b ∴=+-+--=--, 可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧, 2222()2AM QM AM QM +=+, ∴可取点(0,1)N , 如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M , 由45GAM ∠=︒,得22AM GM =, 则此时点M 满足题意,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0), 在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒, QH MH ∴=,2QM MH =, 点(,0)M m ,310()()242b b m ∴---=+-, 解得,124b m =-, 332224AM QM +=, ∴1113322[()(1)]22[()()]242244bb b ---++--=, 4b ∴=.(。

专题04 分式-湖北省2019-2021年3年中考真题数学分项汇编(解析版)

专题04 分式-湖北省2019-2021年3年中考真题数学分项汇编(解析版)

专题04 分式一、单选题1.(2021·湖北黄石市·中考真题)函数()02y x =+-的自变量x 的取值范围是( ) A .1x ≥- B .2x >C .1x >-且2x ≠D .1x ≠-且2x ≠【答案】C 【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解. 【详解】 解:函数()02y x =+-的自变量x 的取值范围是: 10x +>且20x -≠,解得:1x >-且2x ≠, 故选:C . 【点睛】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.2.(2021·湖北随州市·中考真题)下列运算正确的是( ) A .22a a -=- B .235a a a +=C .236a a a ⋅=D .()326a a =【答案】D 【分析】根据负指数运算法则可判断A ,根据同类项的定义可判断B ,根据同底数幂的乘法可判断C ,根据幂的乘方可判断D 【详解】 A . 2221aa a -=≠-,故选项A 计算不正确; B . 2a 与3a 不是同类项不能合并,235a a a +≠,故选项B 计算不正确;C . 232356a a a a a +⋅==≠,故选项C 计算不正确;D . ()23236a a a ⨯==,故选项D 正确.故选择D . 【点睛】本题考查负整指数运算,同类项识别与合并,同底数幂的乘法,幂的乘方,掌握负整指数运算,同类项识别与合并,同底数幂的乘法,幂的乘方是解题关键.3.(2020·湖北黄石市·中考真题)函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠D .2x >,且3x ≠【答案】A 【分析】根据分式与二次根式的性质即可求解. 【详解】依题意可得x -3≠0,x -2≥0 解得2x ≥,且3x ≠ 故选A . 【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质. 4.(2020·湖北随州市·中考真题)222142x x x÷--的计算结果为( ) A .2x x + B .22xx + C .22xx - D .2(2)x x +【答案】B 【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果. 【详解】222142x x x÷-- =21(2)(2)(2)x x x x ÷+--=()()()2·222x x x x -+-=22xx +. 故选:B . 【点睛】本题主要考查了分式的除法,约分是解答的关键.5.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D 【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可. 【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11 故答案为D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 6.(2020·湖北荆门市·中考真题)下列等式中成立的是( ) A .()326339x yx y -=-B .2221122x x x +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭C .2+=+D .111(1)(2)12x x x x =-++++【答案】D 【分析】根据幂的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则计算即可. 【详解】 解:A 、()3263327x yx y -=-,故选项A 错误;B 、22222122411412x x x x x x +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭++-+=- 2221214x x x x ++-+-=x =,故选项B 错误;C⎫=+===6=-故选项C 错误; D 、112112(1)(2)(1)(2)x x x x x x x x ++-=-++++++ 21(1)(2)x x x x +--=++1(1)(2)x x =++,故选项D 正确, 故选:D . 【点睛】本题考查了的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则,熟练掌握相关运算法则是解决本题的关键.7.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=+y x 自变量x 的取值范围是( ) A .23x ≤B .23x ≥C .23x <且1x ≠- D .23x ≤且1x ≠-【答案】D 【分析】根据分式及二次根式有意义的条件解答即可. 【详解】∵11=-+y x ∵x+1≠0,2-3x≥0, 解得:23x ≤且1x ≠-, 故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.8.(2019·湖北黄石市·在实数范围内有意义,则x 的取值范围是( ) A .1≥x 且2x ≠ B .1x ≤C .1x >且2x ≠D .1x <【答案】A 【分析】分式有意义,分母不等于零;二次根式的被开方数是非负数. 【详解】依题意,得x -1≥0且x -2≠0, 解得x≥1且x≠2. 故选A . 【点睛】本题考查了二次根式有意义的条件,分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C 【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②, 2②-①×得,27y =,解得72y =, 把72y =代入①得,712x +=,解得52x =-,∵222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+, 故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键.二、填空题10.(2021·湖北荆州市·中考真题)已知:(1012a -⎛⎫=+ ⎪⎝⎭,b =_____________. 【答案】2 【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解. 【详解】解:∵(112213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,=2=,故答案是:2.本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键.11.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设12a =,12b =,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++.则1210S S S +++=____.【答案】10 【分析】先根据1ab =求出1111n n nS a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】 解:1ab =,111111()1nn n n n n na S ab a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++, 111nnna a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10. 【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键. 12.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________.【答案】1x y-先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得. 【详解】 解:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭()()yx y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()yyx y x y x y=÷+-+ ()()yx yx y x y y+=⋅+- 1x y=-, 故答案为:1x y-.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 13.(2020·湖北武汉市·中考真题)计算2223m nm n m n--+-的结果是________. 【答案】1m n- 【分析】根据分式的减法法则进行计算即可. 【详解】 原式2()3()()()()m n m nm n m n m n m n ---+=+--223()()m n m nm n m n --=++-()()m nm n m n =++-1m n=- 故答案为:1m n-. 【点睛】本题考查了分式的减法运算,熟记运算法则是解题关键. 14.(2019·湖北武汉市·中考真题)计算221164a a a ---的结果是___________ 【答案】14a + 【分析】先通分,然后根据同分母分式加减法法则进行计算即可. 【详解】原式=()()()()244444a a a a a a +-+-+- =()()()2444a a a a -++-=()()444a a a -+- =14a +, 故答案为14a +. 【点睛】本题考查了异分母分式的加减法,熟练掌握异分母分式加减法的运算法则是解题的关键.三、解答题15.(2021·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.【答案】22-+a ,【分析】先对分式进行化简,然后再代入进行求解即可. 【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a =代入得:原式==【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键.16.(2021·湖北黄石市·中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a.【答案】11a +【分析】先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可. 【详解】 解:原式=1(1)(1)()a a a a a a1(1)(1)a aa a a1=1a +,将31a 代入,原式===. 【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键.17.(2021·湖北襄阳市·中考真题)先化简,再求值:2211x x x x x ++⎛⎫÷- ⎪⎝⎭,其中1x =.【答案】11x x +-;1+【分析】将被除数中分子因式分解,括号里先通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,然后约分,得到最简结果,代入x 的值计算即可.【详解】解:原式()2211x x xx x +⎛⎫=÷- ⎪⎝⎭, ()2211x x xx+-=÷,()()()2111x xx x x +=⋅+-,11x x +=-.当1x =时,原式1===【点睛】此题主要考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式因式分解后再约分.18.(2021·湖北中考真题)(1)计算:0(346)⨯- (2)解分式方程:212112x x x+=--. 【答案】(1)8;(2)1x =. 【分析】(1)先计算零指数幂、去括号、立方根、化简二次根式,再计算实数的混合运算即可得; (2)先将分式方程化成整式方程,再解一元一次方程即可得. 【详解】解:(1)原式1462⨯--+=44=+,8=;(2)212112xx x+=--, 方程两边同乘以21x -得:221x x -=-, 移项、合并同类项得:33x -=-,系数化为1得:1x =,经检验,1x =是原分式方程的解, 故方程的解为1x =. 【点睛】本题考查了零指数幂、立方根、化简二次根式、解分式方程,熟练掌握各运算法则和方程的解法是解题关键.19.(2021·湖北鄂州市·中考真题)先化简,再求值:2293411x x x x x x-+÷+--,其中2x =.【答案】1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可. 【详解】 解:原式()()()313341x x x x x xx -=⨯++--+1x x+=, 当2x =时,原式32=. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.20.(2021·湖北荆州市·中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =【答案】1a a + 【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把a =代入求值即可. 【详解】解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a+当a =6【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】 解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键. 22.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】 解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵当2x =时,原式1=. 或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键. 23.(2021·湖北十堰市·中考真题)化简:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭. 【答案】21(2)a -【分析】先算分式的减法,再把除法化为乘法运算,进行约分,即可求解. 【详解】 解:原式=221(2)(2)4a a aa a a a ⎛⎫+--⋅⎪---⎝⎭=()()()22221(2)(2)4a a a a a a a a a a +--⎛⎫-⋅ ⎪---⎝⎭ =2224(2)4a a a a a a a --+⋅-- =24(2)4a aa a a -⋅--=21(2)a -【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.24.(2020·湖北荆州市·中考真题)先化简,再求值2211121a a a a -⎛⎫-÷ ⎪++⎝⎭:其中a 是不等式组22213a a a a -≥-⎧⎨-<+⎩①②的最小整数解; 【答案】1a a +,32先利用分式的混合运算法则化简分式,再解不等式组的解集求出最小整数解,代入即可解之. 【详解】解:原式=21(1)(1)(1)a a a a a -+⋅+-1a a +=,解不等式组22213a a a a -≥-⎧⎨-<+⎩①②,解不等式①得:2a ≥, 解不等式②得:4a <, ∵不等式组的解集为24a ≤<, ∵a 的最小值为2 ∵原式=21322+=. 【点睛】本题考查了分式的化简求值、解一元一次不等式组的解集,熟练掌握分式的混合运算法则,会求一元一次不等式组的整数解是解答的关键.25.(2020·湖北黄石市·中考真题)先化简,再求值:222111x x xx x ++---,其中5x =. 【答案】11x -,14. 【分析】先根据分式的减法法则进行化简,再将5x =代入求值即可. 【详解】原式2(1)(1)(1)1x xx x x +=-+-- 111x xx x +=--- 11x x x +--=11x =- 将5x =代入得:原式11514==-.本题考查了分式的减法运算与求值,熟练掌握分式的减法运算法则是解题关键.26.(2020·湖北省直辖县级行政单位·中考真题)(1)先化简,再求值:22244422a a a a a a -+-÷-,其中1a =-. (2)解不等式组32235733x x x x +>-⎧⎪-⎨≤-⎪⎩,并把它的解集在数轴上表示出来.【答案】(1)22a +,2;(2)24x -<≤,数轴见解析 【分析】(1)首先把分式的分子和分母分解因式,把除法去处转化成乘法运算,再把a 代入计算即可; (2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 【详解】(1)22244422a a a a a a-+-÷- 2(2)2(2)(2)(2)a a a a a a -=⋅-+- 22a =+, 当1a =-时, 原式2212==-+;(2)解:由322x x +>-得:2x >-, 由35733x x --得:4x ≤, ∵不等式组的解集为:24x -<≤. 在数轴上表示如下:【点睛】本题考查了解一元一次不等式组以及分式的化简求值,正确对分式进行通分、约分是关键.27.(2020·湖北中考真题)先化简,再求值:22221244a b a b a b a ab b---÷+++,其中3,3a b ==.【答案】ba b-+, 【分析】利用完全平方公式、平方差公式和通分等方法将原分式化简成ba b-+,再将a 、b 的值代入化简后的分式中即可得出结论. 【详解】 解:原式()()()2122a b a b a b a b a b +--=-÷++ ()()()2212a b a ba b a b a b +-=-⨯++- 21a ba b+=-+ ba b=-+,当3,3a b ==时,原式==【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.28.(2020·湖北宜昌市·中考真题)先化简,再求值:20441(1)12x x x x x x ++----+,其中2020x =.【答案】1x +;2021 【分析】先把244x x ++分解因式,再进行约分化简,最后把x=2020代入进行计算即可. 【详解】20441(1)12x x x x x x ++-⋅---+2(2)1112x x x x +-=⋅--+21x =+-1x =+当2020x =时, 原式20201=+2021=.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值,在化简过程中要注意运算顺序和分式的化简,注意运算的结果要化成最简分式或整式.29.(2020·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222936933m m m m m m ⎛⎫--÷⎪-+--⎝⎭,其中m =.【答案】1m 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可. 【详解】222936933m m m m m m ⎛⎫--÷⎪-+--⎝⎭ 22(3)(3)33(3)3m m m m m m ⎡⎤+--=-⋅⎢⎥--⎣⎦ 2333()33m m m m m +-=-⋅-- 233m m m m -=⋅- 1m =;当m =2==. 【点睛】本题主要考查了分式的化简求值以及二次根式的化简,熟练掌握分式的混合运算法则是解答的关键.30.(2020·湖北鄂州市·中考真题)先化简2224421111x x x x x x x -+-÷+-+-,再从2-,1-,0,1,2中选一个合适的数作为x 的值代入求值. 【答案】2x,-1. 【分析】先化简分式,然后在确保分式有意义的前提下,确定x 的值并代入计算即可. 【详解】解:2224421111x x x x x x x -+-÷+-+- =()()()()22111121x x x x x x x -+⨯++---=()2111x x x x -+--=()()211x x x x x x-+--=()221x x x -- =()()211x x x --=2x在2-、1-、0、1、2中只有当x=-2时,原分式有意义,即x 只能取-2 当x=-2时,2212x ==--. 【点睛】本题考查了分式的化简求值和分式有意义的条件,正确将分式化简和选取合适的x 的值是解答本题的关键. 31.(2019·湖北鄂州市·中考真题)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭. 【答案】x+2;当1x =-时,原式=1.【分析】先化简分式,然后将x 的值代入计算即可. 【详解】解:原式()()22244242x x x x x x ⎡⎤--=-÷⎢⎥---⎢⎥⎣⎦ 244224xx x x x -⎡⎤=-÷⎢⎥---⎣⎦()()22424x x x x x -+-=⋅-- 2x =+∵20x -≠,40x -≠, ∵2x ≠且4x ≠, ∵当1x =-时, 原式121=-+=. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.32.(2019·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:22111211+÷-++++x x x x x,其中1x .【答案】21x +【分析】把被除式分母利用完全平方公式因式分解,按照分式除法的运算法则计算,再通分整理可得最简结果,把x 的值代入计算即可. 【详解】 原式()()()221111x x x x +=⨯+--+()()211111x x x x x +-+=-++22111x x x +-+=+ 21x =+当1x =时,原式==. 【点睛】本题考查分式的计算——化简求值,熟练掌握运算法则是解题关键.33.(2019·湖北省直辖县级行政单位·中考真题)(1)计算:20(2)|3|(6)----; (2)解分式方程:22511x x =--. 【答案】(1)6;(2)x=32【解析】【分析】(1)先计算乘方、去绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x 的值,再检验即可得.【详解】解:(1)原式=43416-++=;(2)两边都乘以()()11x x +-,得:()215x +=, 解得:32x =, 检验:当32x =时,()()51104x x +-=≠, ∴原分式方程的解为32x =. 【点睛】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.34.(2019·湖北荆州市·中考真题)先化简2211a a a a⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值.【答案】-1【分析】 先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.35.(2019·湖北宜昌市·中考真题)已知:x y ≠,8y x =-+,求代数式22x y x y y x+--的值. 【答案】8【分析】先根据分式加减运算法则化简原式,再将8y x =-+代入计算可得.【详解】 原式2222x y x y x y y x x y x y =+=-----()()22x y x y x y x y x y x y+--===+--, 当x y ≠,8y x +=-时,原式()88x x +-+==.【点睛】本题主要考查分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.36.(2019·湖北黄石市·中考真题)先化简,再求值:2321222x x x x x -+⎛⎫+-÷ ⎪++⎝⎭,其中2x =. 【答案】11x x +-,3. 【分析】 根据分式的运算法则即可求出答案.【详解】原式=2234(1)222x x x x x ⎛⎫--+÷ ⎪+++⎝⎭=221(1)22x x x x --÷++=2(1)(1)22(1)x x x x x +-+⋅+-=11x x +-, ∵|x|=2时,∵x=±2,由分式有意义的条件可知:x=2,∵原式=3.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.37.(2019·湖北荆门市·中考真题)先化简,再求值:2222224333a b a b a a a b a b a bb +-⎛⎫-÷ ⎪-+-⎝⎭•,其中a b = 【答案】103【分析】先根据分式混合运算的法则把原式进行化简,再把a b 、的值代入进行计算即可.【详解】 原式2()43()3()()a b ab a b a b a b +=--+- 22()43()()a b ab a b a b +-=+-,()2223()()a b a b a b +=+-,当a b == 原式103==. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.38.(2019·湖北中考真题)先化简,再求值:21112a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中1a =.【分析】 根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】21112a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 2112a a a a a-+-=÷ 21(1)a a a a -=⋅- 11a =-,当1a =时,原式== 【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.39.(2019·湖北黄冈市·中考真题)先化简,再求值.2222225381a b b a b b a a b ab+⎛⎫+÷ ⎪--+⎝⎭,其中a =1b =.【答案】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=()225381a b b a b ab a b +-÷-+ ()()()()5a b ab a b a b a b -=⋅++- 5ab =,当a =1b =时,原式=.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则.。

2019年中考数学试题含答案 (13)

2019年中考数学试题含答案 (13)

2019年中考数学试卷一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示亿元.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.5.(3分)不等式组有3个整数解,则a的取值范围是.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种20.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:=AB•AC④OE=AD⑤S△APO=,正确的个数①∠CAD=30°②BD=③S平行四边形ABCD是()A.2 B.3 C.4 D.5三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将80万亿用科学记数法表示为:8×105亿.故答案为:8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如图,在平行四边形ABCD中,添加一个条件AC=BD或∠ABC=90°,使平行四边形ABCD是矩形.【分析】根据矩形的判定方法即可解决问题;【解答】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°【点评】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【分析】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解答】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据直径和垂直得出∠BDC的度数.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S=6,找出所有可△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,=AB•BC=6.∴AC==5,S△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S=S△ABC=×6=4.32;等腰△ABP④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=•()n﹣1.【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,=2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即即可得S△AOC可得=,然后由正切函数的定义求得答案.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,∴=()2,∵点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,∴S=,S△AOC=2,△OBD∴=,∴tan∠OAB==.故选:A.【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为正整数即可得.【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S=AB•AC④OE=AD⑤S△APO=,正确的个数平行四边形ABCD是()A.2 B.3 C.4 D.5【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC==和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;=S△EOC=OE•OC=,⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=,代入可得结论.【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,=S△EOC=OE•OC==,∴S△AOE∵OE∥AB,∴,∴=,∴S===;△AOP故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a﹣)÷===a﹣b,当a=,b=1时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).【分析】(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.【解答】解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.【点评】此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为80件,图中d值为770.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【分析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【解答】解:(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【点评】本题为一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点。

2019年数学中考真题知识点汇编09--分式方程及其应用(含解析)

2019年数学中考真题知识点汇编09--分式方程及其应用(含解析)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】一、选择题6.(2019·苏州) 小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本.设软面笔记本每本售价为x 元,根据题意可列出的方程为 ( )A .15243x x =+ B .15243x x =- C .15243x x =+ D .15243x x=- 【答案】A【解析】“小明5.(2019·株洲)关于x 的分式方程2503x x -=-的解为( ) A .﹣3 B .﹣2 C .2 D .3 【答案】B【解析】解分式方程,去分母,化分式方程为整式方程,方程两边同时乘以x(x-3)得, 2(x-3)-5x=0,解得,x=-2,所以答案为B 。

4.(2019·益阳)解分式方程321212=-+-xx x 时,去分母化为一元一次方程,正确的是( ) A.x+2=3 B.x-2=3 C.x-2=3(2x-1) D.x+2=3(2x-1) 【答案】C【解析】两边同时乘以(2x-1),得x-2=3(2x-1) .故选C.1. (2019·济宁)世界文化遗产“三孔”景区已经完成5G 幕站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .5005004510x x -= B .5005004510x x -= C .500050045x x -= D .500500045x x-= 【答案】A【解析】由题意知:设4G 网络的峰值速率为每秒传输x 兆数据,则5G 网络的峰值速率为每秒传输10x 兆数据,4G 传输500兆数据用的时间是500x ,5G 传输500兆数据用的时间是50010x,5G 网络比4G 网络快45秒,所以5005004510x x-=.2. (2019·淄博)解分式方程11222x x x-=---时,去分母变形正确的是( ) A .112(2)x x -+=--- B .112(2)x x -=--C .112(2)x x -+=+-D .112(2)x x -=---【答案】D .【解析】方程两边同乘以x -2,得112(2)x x -=---,故选D .二、填空题 11.(2019·江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的班马线路段A-B-C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得: .【答案】112.166=+xx 【解析】设小明通过AB 时的速度是x 米/秒,则通过BC 的速度是通1.2x 米/秒,根据题意列方程得112.166=+xx .1. (2019·岳阳)分式方程121x x =+的解为x = . 【答案】1【解析】去分母,得:x +1=2x ,解得x =1,经检验x =1是原方程的解.2. (2019·滨州)方程+1=的解是____________.【答案】x=1【解析】去分母,得x -3+x -2=-3,解得x=1.当x=1时,x -2=-1,所以x=1是分式方程的解.3. (2019·巴中)若关于x 的分式方程2222xmm x x有增根,则m 的值为________.【答案】1【解析】解原分式方程,去分母得:x -2m =2m(x -2),若原分式方程有增根,则x =2,将其代入这个一元一次方程,得2-2m =2m(2-2),解之得,m =1.4. (2019·凉山)方程1121122=-+--xx x 解是 . 【答案】x =-2【解析】原方程可化为1)1)(1(2112=-+---x x x x ,去分母得(2x -1)(x +1)-2=(x +1)(x -1),解得x 1=1,x 2=-2,经检验x 1=1是增根,x 2=-2是原方程的解,∴原方程的解为x =-2.故答案为x =-2.11.(2019·淮安)方程121=+x 的解是 . 【答案】-1【解析】两边同时乘以(x+2),得x+2=1,解得x=-1.5. (2019·重庆B 卷)某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34 和83.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 【答案】1819【解析】设第一车间每天生产的产品数量为12m ,则第五、六车间每天生产的产品数量分别9m 、32m; 设甲、乙两组检验员的人数分别为x ,y 人;检查前每个车间原有成品为n.∵甲组6天时间将第一、二、三车间所有成品同时检验完 ∴每个甲检验员的速度=1212126m m m n n nx6()+++++∵乙组先用2天将第四、五车间的所有成品同时检验完∴每个乙检验员的速度=1292m m n ny2()+++∵乙再用了4天检验完第六车间的所有成品∴每个乙检验员的速度=324m ny6⨯+∵每个检验员的检验速度一样∴1212122(129)632624m m m n n n m m n n m nx y y 6()++++++++⨯+==∴1819x y =.三、解答题19.(2019山东省德州市,19,8)先化简,再求值:(﹣)÷(﹣)•(++2),其中+(n ﹣3)2=0.【解题过程】(﹣)÷(﹣)•(++2)=÷•=••=﹣.∵+(n ﹣3)2=0.∴m +1=0,n ﹣3=0,∴m =﹣1,n =3.∴﹣=﹣=.∴原式的值为.18.(2019·遂宁)先化简,再求值ba a ab a b a b ab a +--÷-+-2222222 ,其中a,b 满足01)22=++-b a ( 解:b a a b a a b a b a b a +--÷-+-=2)())(2)((原式=b a b a b a b a +--⨯+-21=b a +-1∵01)22=++-b a (∴a=2,b=-1,∴原式=-117.(2)(2019·泰州,17题,8分)【解题过程】去分母:2x -5+3(x -2)=3x -3,去括号:2x -5+3x -6=3x -3,移项,合并:2x =8,系数化为1:x =4,经检验,x =4是原分式方程的解.21.(2019山东滨州,21,10分)先化简,再求值:(-)÷,其中x 是不等式组的整数解.【解题过程】 解:原式=[-]•=•=,………………………………………………………………………………5分解不等式组,得1≤x <3,…………………………………………………………7分 则不等式组的整数解为1、2.……………………………………………………8分 当x=1时,原式无意义;…………………………………………………………9分 当x =2,∴原式=.……………………………………………………………10分17. (2)(2019·温州)224133x x x x x+-++. 【解题过程】原式=24-13x x x ++=233x x x ++=3(3)x x x ++=1x .19.(2019山东威海,19,7)列方程解应用题小明和小刚约定周末到某体育公园去打羽毛球.他们到体育公园的距离分别是1200米,300米.小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度. 【解题过程】设小明的速度为x 米/分钟,则小刚的速度为3x 米/分钟, 根据题意,得, 解得x =50经检验,得x =50是分式方程的解, 所以,3x =150.答:小明和小刚两人的速度分别是50x 米/分钟,小刚的速度为150米/分钟. 20.(2019山东省青岛市,20,8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天. (1)求甲、乙两人每天各加工多少个这种零件(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲加工了多少天? 【解题过程】解:(1)设乙每天加工x 个零件,则甲每天加工1.5x 个零件,由题意得:60060051.5x x=+ 化简得600 1.56005 1.5x ⨯=+⨯ 解得40x = 1.560x ∴=经检验,40x =是分式方程的解且符合实际意义. 答:甲每天加工60个零件,乙每天加工,40个零件. (2)设甲加工了x 天,乙加工了y 天,则由题意得 604030001501207800x y x y +=⎧⎨+⎩①② 由①得75 1.5y x =-③将③代入②得150120(75 1.5)7800x x +- 解得40x ,答:甲至少加工了40天. 24.(2019·衡阳)某商店购进A 、B 两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等. (1)求购买一个A 商品和一个B 商品各需多少元:(2)商店准备购买A 、B 两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A 、B 商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?1000300043x x-=解:(1)设买一个B 商品为x 元,则买一个A 商品为(x +10)元,则30010010x x=+,解得x =5元.所以买一个A 商品为需要15元,买一个B 商品需要5元. (2)设买A 商品为y 个,则买B 商品(80-y ) 由题意得4(80)1000155(80)1050y y y y ≥-⎧⎨≤+-≤⎩,解得64≤y ≤65;所以两种方案:①买A 商品64个,B 商品16个 ;②买A 商品65个,B 商品15个.20.(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(l )班、其他班步行的平均速度. 【解题过程】1. (2019·自贡)解方程:xx−1−2x =1. 解:方程两边乘以x (x -1)得, x 2-2(x -1)=x (x -1) 解得,x =2.检验:当x =2时,x (x -1)≠0, ∴x =2是原分式方程的解. ∴原分式方程的解为x =2.2. (2019·眉山) 在我市“青山绿水”行动中,某社区计划对面积为3600m 2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m 2区域的绿化时,甲队比乙队少用6天. (1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?解:(1)设乙队每天能完成的绿化面积为xm 2,则甲队每天能完成的绿化面积为2xm 2,根据题意,得:60060062x x-=,解得:x=50,经检验,x=50是原方程的解,∴2x=100. 答:甲队每天能完成的绿化面积为100m 2,乙队每天能完成的绿化面积为50m 2.(2)设甲工程队施工a 天,乙工程队施工b 天刚好完成绿化任务.由题意得:100a+50b=3600,则a=722b-=1362b -+,根据题意,得:1.2×722b-+0.5b ≤40,解得:b ≥32.答:至少应安排乙工程队绿化32天.3. (2019·乐山)如图,点A 、B 在数轴上,它们对应的数分别为2-,1+x x,且点A 、B 到原点的距离相等.求x 的值.解:根据题意得:21=+x x, 去分母,得)1(2+=x x , 去括号,得22+=x x ,解得2-=x经检验,2-=x 是原方程的解.4. (2019·达州) 端午节前后,张阿姨两次到超市购买同一种粽子, 节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个,这种粽子的标价是多少? 解:设粽子的标价是x 元,则节后价格为0.6x, 根据题意得:276.07296=+x x ,57.6+72=16.2x,x=8,经检验:x=8是原分式方程的解,且符合题意. 答:这种粽子的标价是8元.5. (2019·巴中)在”扶贫攻坚”活动中,某单位计划选购甲,乙两种物品慰问贫困户,已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同. ①请问甲,乙两种物品的单价各为多少?②如果该单位计划购买甲,乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:(1)设甲物品x 元,则乙物品单价为(x -10)元,根据题意得:50045010x x ,解之,得x =100,经检验,x =100是原分式方程的解,所以x -10=90,答:甲物品单价为100元,乙物品单价为90元.(2)设购买甲种物品a 件,则购买乙种物品(55-a)件,根据题意得5000≤100a+90(55-a)≤5050,解之,得5≤a ≤10,因为a 是整数,所以a 可取的值有6个,故共有6种选购方案.6.(2019·泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍. (1)求A,B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A,B 两种粽子共2600个,已知A,B 两种粽子的进价不变.求A 种粽子最多能购进多少个?BA解:(1)设B 种粽子单价为x 元,则A 种粽子单价为1.2x 元,购买A 种粽子与购买B 种粽子的费用相同,共花费3000元,故两种粽子都花费1500元,根据题意得:1500150011001.2x x+=,解之,得x =2.5,经检验,x =2.5是原分式方程的解,∴1.2x =3,答:A 种粽子单价为3元,B 种粽子单价为2.5元;(2)设购进A 种粽子y 个,则购进B 种粽子(2600-y)个,根据题意得:3y+2.5(2600-y)≤7000,解之,得:y ≤1000,∴y 的最大值为1000,故A 种粽子最多能购进1000个.7. (2019·无锡)解方程:(2)1421+=-x x .解:去分母得x +1=4(x -2),解得 x =3,经检验 x = 3是方程的解.。

2019年河南省中考真题数学试题(附答案解析)

2019年河南省中考真题数学试题(附答案解析)

三、解答题(本大题共8小题,满分75分,解答应写出文字说明、证明过程或演算步骤)

16.先化简,再求值:
,其中
.
17.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是 BD
上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点C.
⑴求证:△ADF ≌ △BDG ;
∴EO⊥AC,∴EB是AC的垂直平分线,∴AB=BC=3.
在Rt△ABM中,∠AMB=90°,AM=AD-MD=1,
∴BM= AB2 AM 2 32 12 2 2 ,
∴CD= 2 2.故选A.
10.【答案】D
【解析】由A、B两点的坐标可知线段AB的长度和它与x轴的关系,由正方形的性质可知AD=AB, 延长DA交x轴于点M,则DA⊥x轴,Rt△DMO中,MO=3,DM=10,将△OAB和正方形ABCD绕点O每 次顺时针旋转90°,Rt△DMO也同步绕点O每次顺时针旋转90°,点D的落点坐标可由Rt△DMO的旋 转得到。仔细观察图形得到点D坐标的变化规律,每旋转四次完成一个循环,从而可得到第70次旋 转后的坐标。
(A) 46×10-7 (B) 4.6×10-7 (C)4.6×10-6 (D)0.46×10-5
3.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为
(A)45° (B)48° (C)50° (D)58°
4.下列计算正确的是(

A. 2a 3a 6a
B. (3a)2 6a2
C. (x y)2 x2 y2
b.七年级成绩在70≤x<80这一组的是: 70 72 74 75 76 76 77 77 77 78 79 c.七、八年级成绩的平均数、中位数如下:

备战中考数学基础必练分式的基本性质(含解析)

备战中考数学基础必练分式的基本性质(含解析)

2019备战中考数学基础必练-分式的基本性质(含解析)一、单选题1.如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍2.把分式(x0,y0)中的分子、分母的x、y同时扩大2倍,那么分式的值()A.扩大为原来的2倍B.缩小为原来的C.缩小为原来的D.不改变3.将中的a、b都扩大4倍,则分式的值()A.不变B.扩大4倍C.扩大8倍D.扩大16倍4.下列计算正确的是()A. B. C. D.5.不改变分式的值,把它的分子和分母中的各项系数都化为整数,则所得的结果为()A. B. C. D.6.如果把中的x和y都扩大10倍,那么分式的值()A.不变B.扩大10倍C.缩小10倍D.扩大20倍7.已知,则的值等于A.6B.C.D.8.若将分式中的a与b的值都扩大为原来的2倍,则这个分式的值将()A.扩大为原来的2倍B.分式的值不变C.缩小为原来的D.缩小为原来的9.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的10.若把分式的x、y同时缩小12倍,则分式的值()A.扩大12倍B.缩小12倍C.不变D.缩小6倍二、填空题11.约分:=________.12.在括号内填上适当地整式,使下列等式成立:(1);________(2)= .________13.把分式约分得________14.若a≠0,则=________15.不改变分式的值,把下列各式的分子、分母中各项系数都化为整数:(1)= ________;(2)= ________.16.不改变分式的值,把它的分式和分母中的各项的系数都化为整数,则所得结果为________17.已知,则的值是________三、计算题18.通分:2 x x + 3 +1= 7 2 x + 6 。

(1),(2),.19.约分:四、解答题20.在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会如何变化.21.已知,求和的值.22.不改变分式的值,使分式的分子与分母的最高次项的系数是整数答案解析部分一、单选题1.【答案】C【考点】分式的基本性质【解析】【解答】解:把分式中的m和n都扩大3倍,得=×.故选:C.【分析】根据分式的性质,可得答案.2.【答案】D【考点】分式的基本性质【解析】【分析】根据题目中分子、分母的x、y同时扩大2倍,得到了分子和分母同时扩大2倍,根据分式的基本性质即可判断.【解答】分子、分母的x、y同时扩大2倍,即,根据分式的基本性质,则分式的值不变.故选D.【点评】此题考查了分式的基本性质.3.【答案】B【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘乘以同一个不为0的整式,分式的值不变,可得答案.【解答】根据题意,可得=4×,故选:B.【点评】本题考查了分式的性质,分式的分子分母都乘乘以同一个不为0的整式,分式的值不变.4.【答案】A【考点】分式的基本性质【解析】【解答】A、,A符合题意;B、,B不符合题意;C、不能化简,C不符合题意;D、没有意义,D不符合题意.故答案为:A.【分析】对于A,依据分式的基本性质,分式的分子和分母同时扩大2倍即可;对于B,依据负整数指数幂的性质进行计算即可;对于C,依据分式的基本性质进行判断即可;对于D,依据零指数幂的性质a0=1,(a≠0)进行判断即可.5.【答案】B【考点】分式的基本性质【解析】【分析】分式的基本性质:分式的分子和分母同乘以或除以一个不为0的数(或式),分式的值不变.题目中的分子分母应该同时扩大10倍.故选B.【点评】本题属于基础应用题,只需学生熟练掌握分式的基本性质,即可完成。

2019年四川省成都市中考数学试卷(含答案解析)

2019年四川省成都市中考数学试卷(含答案解析)

2019年四川省成都市中考数学试卷(含答案解析)一、选择题(本大题共10个小題,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡1.(3分)比﹣3大5的数是()A.﹣15B.﹣8C.2D.82.(3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.3.(3分)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×1084.(3分)在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(﹣6,3)C.(﹣2,7)D.(﹣2.﹣1)5.(3分)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°6.(3分)下列计算正确的是()A.5ab﹣3a=2b B.(﹣3a2b)2=6a4b2C.(a﹣1)2=a2﹣1D.2a2b÷b=2a27.(3分)分式方程+=1的解为()A.x=﹣1B.x=1C.x=2D.x=﹣28.(3分)某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件9.(3分)如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD的度数为()A.30°B.36°C.60°D.72°10.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A.c<0B.b2﹣4ac<0C.a﹣b+c<0D.图象的对称轴是直线x=3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若m+1与﹣2互为相反数,则m的值为.12.(4分)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD =9,则CE的长为.13.(4分)已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.14.(4分)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为.三、解答题(本大题共6个小题,共54分解答过程写在答题卡上15.(12分)(1)计算:(π﹣2)0﹣2cos30°﹣+|1﹣|.(2)解不等式组:16.(6分)先化简,再求值:(1﹣)÷,其中x=+1.17.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.18.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD 的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.20.(10分)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.一、B卷填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)估算:≈(结果精确到1)22.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为.23.(4分)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为24.(4分)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.25.(4分)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=x+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?27.(10分)如图1,在△ABC中,AB=AC=20,tan B=,点D为BC边上的动点(点D 不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.28.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C (3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.2019年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小題,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡1.(3分)比﹣3大5的数是()A.﹣15B.﹣8C.2D.8【分析】比﹣3大5的数是﹣3+5,根据有理数的加法法则即可求解.【解答】解:﹣3+5=2.故选:C.【点评】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.(3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(3分)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×108【分析】根据科学记数法的表示形式即可【解答】解:科学记数法表示:5500万=5500 0000=5.5×107故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(﹣6,3)C.(﹣2,7)D.(﹣2.﹣1)【分析】把点(﹣2,3)的横坐标加4,纵坐标不变得到点(﹣2,3)平移后的对应点的坐标.【解答】解:点(﹣2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5.(3分)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°【分析】根据平行线的性质,即可得出∠1=∠ADC=30°,再根据等腰直角三角形ADE 中,∠ADE=45°,即可得到∠1=45°﹣30°=15°.【解答】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°﹣30°=15°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.(3分)下列计算正确的是()A.5ab﹣3a=2b B.(﹣3a2b)2=6a4b2C.(a﹣1)2=a2﹣1D.2a2b÷b=2a2【分析】注意到A选项中,5ab与3b不属于同类项,不能合并;B选项为积的乘方,C 选项为完全平方公式,D选项为单项式除法,运用相应的公式进行计算即可.【解答】解:A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(﹣3a2b)2=(﹣3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a﹣1)2=a2﹣2a+1,选项错误D选项,单项式除法,计算正确故选:D.【点评】此题主要考查整式的混合运算,熟记整式的各个公式并掌握计算的步骤是解题的关键.7.(3分)分式方程+=1的解为()A.x=﹣1B.x=1C.x=2D.x=﹣2【分析】先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.【解答】解:方程两边同时乘以x(x﹣1)得,x(x﹣5)+2(x﹣1)=x(x﹣1),解得x=﹣1,把x=﹣1代入原方程的分母均不为0,故x=﹣1是原方程的解.故选:A.【点评】此题主要考查了解分式方程,注意,解分式方程时需要验根.8.(3分)某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件【分析】将数据从小到大排列,根据中位数的定义求解即可.【解答】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.【点评】本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,9.(3分)如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD的度数为()A.30°B.36°C.60°D.72°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A.c<0B.b2﹣4ac<0C.a﹣b+c<0D.图象的对称轴是直线x=3【分析】二次函数y=ax2+bx+c(a≠0)①常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).②抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.【解答】解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A 错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2﹣4ac>0,故B错误;C.当x=﹣1时,y<0,即a﹣b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.【点评】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若m+1与﹣2互为相反数,则m的值为1.【分析】根据“m+1与﹣2互为相反数”,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:m+1﹣2=0,解得:m=1,故答案为:1.【点评】本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.12.(4分)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD =9,则CE的长为9.【分析】利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE 的长.【解答】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.【点评】本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.13.(4分)已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是k<3且k≠0.【分析】根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k﹣3<0即可求解;【解答】解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3且k≠0;故答案为k<3且k≠0;【点评】本题考查一次函数图象与系数的关系;熟练掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.14.(4分)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为4.【分析】利用作法得到∠COE=∠OAB,则OE∥AB,利用平行四边形的性质判断OE为△ABC的中位线,从而得到OE的长.【解答】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.三、解答题(本大题共6个小题,共54分解答过程写在答题卡上15.(12分)(1)计算:(π﹣2)0﹣2cos30°﹣+|1﹣|.(2)解不等式组:【分析】(1)本题涉及零指数幂、平方根、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)原式=1﹣2×﹣4+﹣1,=1﹣﹣4+﹣1,=﹣4.(2)由①得,x≥﹣1,由②得,x<2,所以,不等式组的解集是﹣1≤x<2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(6分)先化简,再求值:(1﹣)÷,其中x=+1.【分析】可先对进行通分,可化为,再利用除法法则进行计算即可【解答】解:原式=×=×=将x=+1代入原式==【点评】此题主要考查了方程解的定义和分式的运算,把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.17.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.【分析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数.【解答】解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD 的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【分析】作CE⊥AB于E,根据矩形的性质得到CE=AB=20,CD=BE,根据正切的定义求出AE,结合图形计算即可.【解答】解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE=,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.【分析】(1)联立方程求得A的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.【解答】解:(1)由得,∴A(﹣2,4),∵反比例函数y=的图象经过点A,∴k=﹣2×4=﹣8,∴反比例函数的表达式是y=﹣;(2)解得或,∴B(﹣8,1),由直线AB的解析式为y=x+5得到直线与x轴的交点为(﹣10,0),∴S△AOB=×10×4﹣×10×1=15.【点评】本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.20.(10分)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.【分析】(1)由等腰三角形的性质和平行线的性质可得∠OBC=∠CBD,即可证=;(2)通过证明△ACE∽△BCA,可得,可得AC=2,由勾股定理可求AB的长,即可求⊙O的半径;(3)过点O作OH⊥FQ于点H,连接OQ,通过证明△APC∽△CPB,可得,可求P A=,即可求PO的长,通过证明△PHO∽△BCA,可求PH,OH的长,由勾股定理可求HQ的长,即可求PQ的长.【解答】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CP A∴△APC∽△CPB∴∴PC=2P A,PC2=P A•PB∴4P A2=P A×(P A+2)∴P A=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=【点评】本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理,求出P A的长是本题的关键.一、B卷填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)估算:≈6(结果精确到1)【分析】根据二次根式的性质解答即可.【解答】解:∵,∴,∴≈6.故答案为:6【点评】本题主要考查了无理数的估算,熟练掌握二次根式的性质是解答本题的关键.22.(4分)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为﹣2.【分析】根据“x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.【解答】解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,+﹣x1x2=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,故答案为:﹣2.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.23.(4分)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为20【分析】设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.【解答】解:设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;【点评】此题考查了概率公式的应用、分式方程的应用.用到的知识点为:概率=所求情况数与总情况数之比.24.(4分)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB =1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.【点评】本题考查了轴对称﹣最短路线问题,菱形的性质,矩形的判定和性质,解直角三角形,平移的性质,正确地理解题意是解题的关键.25.(4分)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为4或5或6.【分析】根据面积求出B点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;【解答】解:设B(m,n),∵点A的坐标为(5,0),∴OA=5,∵△OAB的面积=5•n=,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m<3时,有6个整数点;当3<m<时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;【点评】本题考查三角形的面积与平面直角坐标系中点的关系;能够结合图象,多作图是解题的关键.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=x+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【分析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)设销售收入为w万元,根据销售收入=销售单价×销售数量和p=x+,列出w 与x的函数关系式,再根据函数性质求得结果.【解答】解:(1)设函数的解析式为:y=kx+b(k≠0),由图象可得,,解得,,∴y与x之间的关系式:y=﹣500x+7500;(2)设销售收入为w万元,根据题意得,w=yp=(﹣500x+7500)(x+),即w=﹣250(x﹣7)2+16000,∴当x=7时,w有最大值为16000,此时y=﹣500×7+7500=4000(元)答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.【点评】本题是一次函数的应用与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数解析式,求二次函数的最值.关键是正确列出函数解析式.27.(10分)如图1,在△ABC中,AB=AC=20,tan B=,点D为BC边上的动点(点D 不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)解直角三角形求出BC,由△ABD∽△CBA,推出=,可得DB===,由DE∥AB,推出=,求出AE即可.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,由△AFN∽△ADM,可得==tan∠ADF=tan B=,推出AN=AM=×12=9,推出CH=CM﹣MH =CM﹣AN=16﹣9=7,再利用等腰三角形的性质,求出CD即可解决问题.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE.(2)解:如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,则AM=BM•tan B=4k×=3k,由勾股定理,得到AB2=AM2+BM2,∴202=(3k)2+(4k)2,∴k=4或﹣4(舍弃),∵AB=AC,AM⊥BC,∴BC=2BM=2•4k=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴=,∴DB===,∵DE∥AB,∴=,∴AE===.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=20,tan B=∴BM=CM=16,∴BC=32,在Rt△ABM中,由勾股定理,得AM===12,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴==tan∠ADF=tan B=,∴AN=AM=×12=9,∴CH=CM﹣MH=CM﹣AN=16﹣9=7,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=14,∴BD=BC﹣CD=32﹣14=18,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=18.【点评】本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.28.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C (3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学真题汇编:分式
一、选择题
1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()
A. 1
B. 2
C. 3
D. 4
【答案】B
2. (2018天津)计算的结果为()
A. 1
B. 3
C.
D.
【答案】C
3.(2018甘肃凉州)若分式的值为0,则的值是()
A. 2或-2
B. 2
C. -2
D. 0
【答案】A
4.函数中,自变量x的取值范围是()。

A. x≠0
B. x<1
C. x>1
D. x≠1
【答案】D
5.若分式的值为0,则的值是()
A. 2
B. 0
C. -2
D. -5
【答案】A
6.若分式的值为0,则x的值是()
A. 3
B.
C. 3或
D. 0
【答案】A
二、填空题
7.要使分式有意义,则的取值范围是________.
【答案】 2
8.要使分式有意义,x的取值应满足________。

【答案】x≠1
9.使得代数式有意义的的取值范围是________.
【答案】
10.若分式的值为0,则x的值为________.
【答案】-3
三、解答题
11.先化简,再求值:,其中.
【答案】原式= = ,当时,
原式= 。

12.计算:
(1)
(2)
【答案】(1)解:原式= =
(2)解:原式=
=
=
13.先化简,再求值:,其中.
【答案】解:原式∵x=2,
∴= .
14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.
【答案】解:原式= ,
= ,
= ,
∵x2-2x-2=0,
∴x2=2x+2,
∴= .
15.计算:.
【答案】解:原式=
= ﹒

16.先化简,再求值: ,其中是不等式组的整数解.
【答案】解:原式= • ﹣
= ﹣
= ,
不等式组解得:3<x<5,整数解为x=4,
当x=4时,原式= ..
17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.
【答案】解:原式=xy(x+y)• =x﹣y,
当x=1﹣2=﹣1,y= ﹣2 =﹣时,
原式= ﹣1
18.计算.
【答案】解:
19.已知
(1)化简T。

(2)若正方形ABCD的边长为a,且它的面积为9,求T的值。

【答案】(1)
(2)解:∵正方形ABCD的边长为a,且它的面积为9,
∴a= =3
∴T= =。

相关文档
最新文档