送货路线-数学建模-一等奖

合集下载

最优送货路线设计问题_数学建模[1]

最优送货路线设计问题_数学建模[1]

《数学模型与数学软件综合训练》论文202311281796812112284210201212212422715344315训练题目:最优送货路线设计问题学生学号:07500124 姓名:呼德计通院信息与计算科学专业 指导教师:黄灿云 (理学院)2010年春季学期目录前言 (1)摘要 (2)关键字 (2)一、问题重述 (3)二、基本假设 (4)三、符号说明 (4)四、问题的分析 (5)五、模型的建立 (5)问题1: (5)问题2: (6)六、模型的优缺点 (8)1、优点: (8)2、缺点: (8)七.模型的推广 (8)八、参考文献 (9)数学模型与数学软件综合训练是信息与计算科学等数学类专业的一门重要的必修实践课程,是对学生的抽象思维能力、逻辑推理能力、运算能力、分析和解决实际问题能力进行综合培养的关键课程。

数学模型与数学软件综合训练是以问题为载体,应用数学知识建立数学模型,以计算机为手段,以数学软件为工具,以我们学生为主体,通过实验解决实际问题。

数学模型与数学软件综合训练是数学模型方法的实践,而数学模型方法是用数学模型解决实际问题的一般方法,它是根据实际问题的特点和要求,做出合理的假设,使问题简化,并进行抽象概括建立数学模型,然后研究求解所建的数学模型方法与算法,利用数学软件求解数学模型,最后将所得的结果运用到实践中。

数学模型与数学软件综合训练将数学知识、数学建模与计算机应用三者融为一体。

通过本次课程,可提高我们学习数学的积极性,提高我们对数学的应用意识,并培养我们用所学的数学知识、数学软件知识和计算机技术去认识问题和解决实际问题的能力。

我们自己动手建立模型,计算体验解决实际问题的全过程,了解数学软件的使用,也培养了我们的科学态度与创新精神。

当今社会,网购已成为一种常见的消费方式.随着物流行业的兴盛,如何用最短的时间,最节约成本的方案,完成送货任务显得尤为重要.针对本案例,我们采用了大量的科学分析方法,并进行了多次反复验证,得出如下结果:1:根据所给问题及有关数据,我们将题目中给出的城市,及其之间的线路可看成一个赋权连通简单无向图,采用了求这个图最小生成树的办法,求出最优线路.在此基础上,我们通过观察分析计算对上述结果进行修正,得出最终结果.2:根据所给问题,我们发现当货物不能一次送完时,中途需返回取货,而返回路径当然越短越好,可通过求途中两点最短路径的方法求出.关键字:送货线路优化,赋权连通简单无向图,Excel,最小生成树.一、问题重述现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个工厂为了自身的发展需要以最快的速度及时将产品送达所需单位,现有实业公司,该实业公司生产专业生产某专用设备产品,专用设备产品该每件重达5吨(其长5米,宽4米,高6米),该实业公司库房设在北京,所有货物均由一货机送货,该机种飞机翼展88.40米(机身可用宽20米),机长84米(可用长50米),机高18.2米(可用14米),最多可装载250吨货物,起飞全重达600吨,平均速度为900公里/小时)将货物送至全国各个省辖市(图1所示红色圆点,除北京之外共19个省辖市),假定货机只能沿这些连通线路飞行,而不能走其它任何路线;但由于受重量和体积限制,货机可中途返回取货.经过的各个省市都要一定的停靠费用和停靠时间(停靠时间为常量2小时),假设经过某个省市的停靠费用为:停靠费用=5000元×该省市的消费指数;问题1:若图示中19个省辖市每个省辖市只要一件产品请设计送货方案,使所用时间最少,标出送货线路.问题2:若图示中19个省辖市需求量见表1,请设计送货方案,使所用时间最少.问题3:若该实业公司为了花费最少,针对问题1和问题2分别求出花费、标出送货线路.表202311281796812112284210201212212422715344315二、基本假设1.假设货物在存放中,货物与货物之间无空隙.2.飞机在出行送货期间,无天气突变等突发状况.3.飞机自身无任何故障,并且在空中始终以平均速度为900公里/小时.4.假定货机只能沿着图中的连通路线飞行,而不走其他的路线.三、符号说明在地图上城市可以用点表示如北京可用A4表示,详细见下表.AiAj :点Ai到点Aj的线段权(1):表示题目中给出的两城市之间的权,如北京—上海(A1A5)的权(1)为9. 权(2):表示通过两城市之间路程所花费的时间,如北京—上海(A1A5)的权(2)为9*100/900+2=3(小时)权(3):表示通过两城市之间路程的花费,如北京—上海(A1A5)的权(3)为9*2500+1.85*5000=31750(小时),1.85为两城市指数的平均值.V :A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,A20的集合.E :A1A2,A1A3,A1A5,A1A6,A2A4,A3A10,A4A10,A4A12,A4A13,A4A16,A4A5,A4A7,A5A14,A5A15,A6A14,A6A8,A7A10,A7A12,A7A19,A8A9,A9A11,A10A11,A10A19,A10A20,A11A12A,12A18,A13A16,A13A17,A17A18,A19A20的集合.W :V中点之间的权(2)的集合,则G=(V,E,W)表示赋权连通简单无向图M :V中点之间的权(3)的集合,则F=(V,E,M)表示赋权连通简单无向图四、问题的分析当今社会,网购已成为一种常见的消费方式.随着物流行业的兴盛,如何用最短的时间,最节约成本的方案,完成送货任务显得尤为重要.针对本案例,城市可以看成点,而他们之间的连线既可以看成是时间,也可以看成成本,那么就构成了两个赋权连通简单无向图,这个问题就转化成求这两种情况下,两种图的最小生成树问题.五、模型的建立问题1:根据题目意思,两城市之间的时间=权(1)*100/速度+2(单位:小时)例如北京到上海A4A5权(1)是17,则定义V为A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,A20的集合,定义E为A1A2,A1A3,A1A5,A1A6,A2A4,A3A10,A4A10,A4A12,A4A13,A4A16,A4A5,A4A7,A5A14,A5A15,A6A14,A6A8,A7A10,A7A12,A7A19,A8A9,A9A11,A10A11,A10A19,A10A20,A11A12A,12A18,A13A16,A13A17,A17A18,A19A20的集合,定义W为V中点之间的权(2)的集合,则G=(V,E,W)表示图.根据最小生成树的求法可以求出改图G的最小生成树如图沿着最小生成树的路线相对较短,为:A4—A5—A15—A5—A14—A6—A8—A9—A11—A10—A20—A10—A19—A10—A11—A12—A18—A17—A13—A16—A4—A7—A4—A2—A1—A3—A1—A2—A4经过观察上面下划线的部分A11—A10—A20—A10 —A19—A10—A11并不是最短的,经计算这个路线A11—A10—A20—A19—A10—A11比上一个段,所以用之替换,得到最短的线路为:A4—A5—A15—A5—A14—A6—A8—A9—A11—A10—A20—A19—A10—A11—A12—A18—A17—A13—A16—A4—A7—A4—A2—A1—A3—A1—A2—A4可以将相邻两点的权(2)相加,和即为花费,经过计算上述线路所花时间是76.44444小时,为最短时间.问题2:根据题目意思,两城市之间运输的价格=权(1)*2500+平均指数*5000(单位:价格)例如北京到上海A4A5权(1)是17,北京的指数为1.9,上海为1.8,则先求出平均指数(1.9+1.8)/2=1.85,根据公式可得北京到上海A4A5关于时间的运输价格的权为9*2500+1.85*5000=31750(小时),其定义M 为V 中点之间的权(3)的集合,则P=(V ,E ,M )表示图,根据最小生成树的求法可以求出改图P 的最小生成树如图同样的,沿着最小生成树的路线相对较短,为:A4—A5—A15—A5—A14—A6—A8—A9—A11—A10—A20—A10—A19—A10—A11—A12—A7—A12—A18—A17—A13—A16—A4—A2—A1—A3—A1—A2—A4经过观察上面下划线的部分A11—A10—A20—A10—A19—A10—A11并不是最短的,经计算这个路线A11—A10—A20—A19—A10—A11比上一个段,所以用之替换,得到最短的线路为:A4—A5—A15—A5—A14—A6—A8—A9—A11—A10—A20—A10 —A19—A10—A11—A12—A7—A12—A18—A17—A13—A16—A4—A2—A1—A3—A1—A2—A4可以将相邻两点的权(3)相加,和即为花费,经过计算上述线路所花运输花费是687000元,为最少花费.六、模型的优缺点1、优点:⑴、本文总共有三个问题,给出了在各种约束条件下的最短时间以及最少花费的计算方法,具有较强的实用性和通用性,在日上生活中经常可以用到。

数学建模大赛-货物运输问题

数学建模大赛-货物运输问题

货物配送问题【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。

我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。

针对问题一,我们在两个大的方面进行分析与优化。

第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。

第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。

最后得出耗时最少、费用最少的方案。

耗时为40.5007小时,费用为4685.6元。

针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。

我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。

耗时为26.063小时,费用为4374.4元。

针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。

我们经过简单的论证,排除了4吨货车的使用。

题目没有规定车子不能变向,所以认为车辆可以掉头。

然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。

最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。

最后得出耗时最少、费用最省的方案。

耗时为19.6844小时,费用为4403.2。

一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。

数学建模—货物配送问题

数学建模—货物配送问题

数学建模—货物配送问题本文将会探讨货物配送问题,其中会使用到数学建模的方法来解决。

问题描述假设有 $n$ 个城市需要被配送货物,每个城市之间的距离是已知的 $d_{i,j}$,其中 $d_{i,j}$ 表示第 $i$ 个城市和第 $j$ 个城市之间的距离。

需要找到一种合理的方案使得每个城市都能够被配送到且总的成本最小。

模型建立这是一个典型的旅行商问题,可以使用线性规划的方法来解决。

我们设 $x_{i,j}$ 表示是否从城市 $i$ 转移到城市 $j$,则可以得到以下的规划模型:$$\begin{aligned}\min \quad & \sum_{i=1}^n \sum_{j=1}^n d_{i,j} x_{i,j} \\s.t. \quad & \sum_{j=1}^n x_{i,j} = 1, \quad i=1,\cdots,n \\& \sum_{i=1}^n x_{i,j} = 1, \quad j=1,\cdots,n \\& u_i - u_j + nx_{i,j} \leq n-1, \quad i,j=2,\cdots,n, i \neq j \\& x_{i,j} \in \{0,1\}, \quad i,j=1,\cdots,n\end{aligned}$$其中,第一个约束是保证每个城市都恰好被访问一次,第二个约束也是保证每个城市都恰好被访问一次,第三个约束是 TSP 约束条件。

结论通过进行线性规划求解,可以求得货物配送问题的最优解。

当然,对于特别大的问题,我们还可以使用遗传算法等启发式算法来解决。

通过本文的学习,相信大家可以掌握货物配送问题的建模方法,并且对于线性规划方法有更深入的了解。

送货路线设计问题数学建模优化

送货路线设计问题数学建模优化

送货路线设计问题现今社会网络越来越普及,网购巳成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少。

现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处, 请设计送货方案,使所用时间最少。

该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线。

各件货物的相关信息见表1, 50个位置点的坐标见表2。

假定送货员最大载重50公斤,所带货物最大体积1立方米。

送货员的平均速度为24公里/小时。

假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算。

现在送货员要将100件货物送到50个地点。

请完成以下问题。

1.若将1~30号货物送到指定地点并返回。

设计最快完成路线与方式。

给出结果。

要求标出送货线路。

2.假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式。

要求标出送货线路。

3.若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回。

设计最快完成路线与方式。

要求标出送货线路,给出送完所有快件的时间。

由于受重量和体积限制,送货员可中途返回取货。

可不考虑中午休息时间。

以上各问尽可能给出模型与算法。

图1快递公司送货地点示意图o点为快递公司地点,o点坐标(11000,8250),单位:米表2 50个位置点的坐标快递公司送货策略一摘要:本文是关于快递公司送货策略的优化设计问题,即在给定送货地点和给定设计规范的条件下,确定所需业务员人数,每个业务员的运行线路,总的运行公里数,以及费用最省的策略。

本文主要从最短路经和费用最省两个角度解决该问题,建立了两个数据模型。

模型一:利用“图”的知识,将送货点抽象为“图”中是顶点,由于街道和坐标轴平行, 即任意两顶点之间都有路。

2014年全国研究生数学建模竞赛一等奖论文(E题)-乘用车物流运输计划问题

2014年全国研究生数学建模竞赛一等奖论文(E题)-乘用车物流运输计划问题

(由组委会填写)第十一届华为杯全国研究生数学建模竞赛学校西安理工大学参赛队号队员姓名(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目乘用车物流运输计划问题摘要:本文主要解决的是乘用车整车物流的运输调度问题,通过对轿运车的空间利用率和运输成本进行优化,建立整数规划模型,设计了启发式算法,求解出了各种运输条件下的详细装载与运输方案。

针对前三问,由于不考虑目的地和轿运车的路径选择,将问题抽象为带装载组合约束的一维装车问题,优化目标是在保证完成运输任务的前提下尽可能满载,选择最优装载组合方案使得所使用的轿运车数量最少。

对于满载的条件,将其简化为考虑轿运车的空间利用率最大,最终建立了空间利用率最大化和运输成本最小化的两阶段装载优化模型。

该模型类似于双目标规划模型,很难求解。

为此,将空间利用率最大转换为长度余量最少,并为其设定一个经验阈值,将问题转换为求解整数规划问题,利用分支定界法进行求解。

由于分支定界法有时并不能求得最优解,设计了一种基于阈值的启发式调整优化算法。

最后,设计了求解该类问题的通用算法程序,并对前三问的具体问题进行了求解和验证。

通过求解得出,满足前三问运输任务的1-1型轿运车和1-2型轿运车数量如下表所示(具体的乘用车装载方案见表2、表5、表7):第一问第二问第三问1-1 16 12 251-2 2 1 5针对问题四,其是在问题一的基础上加入了整车目的地的条件,需要考虑最优路径的选择。

在运输成本上,加入了行驶里程成本,因而可以建立所使用的轿运车数量最少和总里程最少的双目标整数规划模型。

对于此种模型,可以采用前三问所设计的通用算法进行求解。

此时,需要重新设计启发式调整优化算法。

为此,根据路线距离的远近和轿运车数量需要满足的比例约束条件设计了新的调整优化方案。

最终求得的各目的地的轿运车使用数量如下表所示,此时的总路程为6404,具体装载方案见表9。

A B C D 总数1-1型 1 6 9 5 211-2型 4 0 0 0 4总量 5 6 9 5 25针对问题五,作为问题四的扩展研究,类似于问题四建立了双目标规划模型。

快递公司送货策略(数学建模)

快递公司送货策略(数学建模)

B题快递公司送货策略摘要本文主要解决快递公司送货策略问题,研究在各种运货地点,重量的确定,业务员的运输条件和工作时间等各种约束条件下,设计最优的路线,得出最优送货策略。

主要研究如下三个问题。

问题一:首先考虑在时间和重量两个约束条件之下,优先考虑重量,通过对送货点的分布进行分析,将分布点按照矩形,弧形和树的理念将问题分成三种模块,从而建立三种送货方案。

方案一,运用矩形,将整个区域分成5个区域,以选择的点的送货质量之和小于25kg 且距离尽可能小的点的集合作为一个区域。

依次来分配业务员的送货地点。

方案二,运用弧形,以原点为圆心画同心圆,按照就近原则确定送货区域,依次分配业务员的送货地点。

方案三,运用Dijkstra 算法计算出每一个顶点到其它点的距离。

分析点的分布,由此得到最小树,在最小树的基础上,向四周延伸,得到相应区域。

且以送货质量小于25kg且距离尽可能小的点的集合作为一个区域。

依次来分配业务员的送货地点。

其次,再综合这三种方案所涉及到得时间,路程依次进行对比,画出柱形图,清晰可得出最优的方案为方案三。

问题二,是解决送货总费用最小的问题。

因此要求业务员的运行路线要尽量短,且尽早卸货。

首先将该区域安排送货点均匀度分为三个小区域,以每个点的信件质量从小到大排列,以送货点最大点为中心,选择该点附近质量较大且距离较短原则的下一个送货点,依次类推,直到根据约束条件为每次携带的快件量不超过25kg,找到该条路线最后一个送货点。

按此方法可得路线为0→10→12→11→0,0→7→14→27→0,0→1→26→28→0,0→13→19→25→0,0→2→5→16→17→0,0→22→15→29→30→0,0→6→20→18→24→0,0→4→3→8→9→21→23→0,并且利用C语言编程(见附录),算得每条路线的费用,所得总费用为14636.1元。

问题三,在问题一的基础上,将业务员的工作时间延长到8小时,由此在问题一的基础上,将8小时的工作时间所需花费的费用在三个方案中进行对比,由此得到依旧是方案三的为最优。

公司订货的优化模型——数学建模一等奖论文(附程序代码)


二、
问题的引入
此公司的组织订货问题涉及到多供应商、多物资种类和多销售商的情况。我 们首先要设计出规划问题的目标函数,即总成本最小值,然后依据不同的优惠和 限制条件,列出各种约束条件。我们建立模型的过程将是一个从简单到复杂,从 理想到现实,逐步深入的过程。本文所追求的目标是在综合平衡运输费用和库存 费用的前提下,通过优化物流系统,降低物流成本,来确定系统的运输方案和库存 略。研究对象是由供应方(工厂等) ,中转方(仓库、配送中心等)以及需求方(零 售商、客户等)组成的系统。在模型一中,我们的假设较为理想化,考虑的变动 因素较少,没有涉及到优惠折扣,缺货,每次订购数量变化,市场需求变化等一 系列问题; 考虑到订购优惠活动, 我们将在模型二中建立经济订购批量折扣模型, 针对问题二, 给出相应的订货决策方案; 综合考虑折扣问题、 物资资金约束问题、 缺货问题以及最高库存量问题等因素,我们又建立了库存—运输联合优化问题的 模型三,这是一个允许缺货的订货优化模型,从而模型更贴近实际。 进一步,我们知道市场的需求是变化的,在一定时间内存在其特定的变化规 律,在前面研究的基础上,我们对模型进行了更为深入的探讨。
5 l l n m n l n n minW3 Ci A1 jk P A P 1j ijk ij Aijk Bik i 1 j 1 k 1 i 2 j 1 k 1 i 1 k 1 j 1 l l 1 l m n E F A S M Q j S j n 20000 kjh kh 2 j j ijk k 1 h 1 j 1 j 1 i 1 k 1 j 1 n p
T1 T2 T 。 设 S 为最大缺货量, Q 为每次的最高订货量,则 Q S 为最高存储

数学建模运输问题送货问题

数学建模运输问题送货问题数学建模论文题目: 送货问题学院(直属系数学与计算机学院年级、专业: 2010级信息与计算科学姓名:杨尚安指导教师: 蒲俊完成时间: 2012年 3 月20 日本文讨论的是货运公司的运输问题,根据各公司需求和运输路线图,建立了线性规划模型和0-1规划模型,对货运公司的出车安排进行了分析和优化,得出运费最小的调度方案。

对于问题一,由于车辆在途中不能掉头,出车成本固定,要使得总成本最小,即要使在一定的车辆数下,既满足各公司的需求,又要尽量减小出车次数。

故以最小出车数为目标函数,建立线性规划模型,并通过lingo求解,得出最小出车数27次。

接着考虑车的方向问题,出车分为顺时针和逆时针,建立0-1模型,并求解,得出满足问题一的调度方案(见附录表1)。

对于问题二,车辆允许掉头,加上车辆装载货物和空装时运输费不同,,要使总成本最小,故可以通过修改原目标函数,建立线性规划模型和0-1规划模型,求解,得出最佳派出车辆3辆并列出满足问题二的调度方案。

对于问题三第一小问,增加了运输车辆的类型。

即装载材料的方法很多,在上述分析的基础上,通过增加约束条件,建立新的线性规划模型,并求解,得出满足问题三的调度方案。

在第二小问中,由于给出部分公司有道路相通,可采用运筹学中的最短路问题的解决方法加以解决。

关键字:线性规划模型0-1规划模型调度一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。

每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。

运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。

送货路线-数学建模-一等奖

摘要摘要本文讨论了送货员送货路线的优化设计问题, 即在给定送货地点和给定设计规范的条件下,综合考虑最大载重范围、最大带货体积以及各货物送货时限,确定业务员的最佳运行路线策略.并总结出一些在这类图中求解近似最优回路的有效法则.对于问题1,采用了两种方法进行了计算,第一种是通过Floyd算法做出各顶点间的最短路径矩阵,然后选出1~30号货物所送达的顶点间的最短路径及距离,用二边逐次修正法求解Hamilton圈;第二种是通过蚁群算法获得多条近似优解,选取最佳线路.对于第二问,则采用改进的遗传算法,求解有时间约束条件的TSP问题,根据线路规划问题的特点,基于遗传算法(GA)建立了一个适用于带有时间约束的送货路线规划模型.实验证明了此算法的有效性和可行性.对于第三问,利用分割求解法和蚁群算法的合成算法,运用共同链分割全图,对每一个分图进行最优求解,由此得到全图的最优解。

关键词送货问题;优化路线;TSP模型;蚁群算法送货路线设计的数学模型1 问题重述现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少.现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少.该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线.各件货物的相关信息见表1,50个位置点的坐标见表2.假定送货员最大载重50公斤,所带货物最大体积1立方米.送货员的平均速度为24公里/小时.假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算.现在送货员要将100件货物送到50个地点.请完成以下问题.1. 若将1~30号货物送到指定地点并返回.设计最快完成路线与方式.给出结果.要求标出送货线路.2. 假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式.要求标出送货线路.3. 若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回.设计最快完成路线与方式.要求标出送货线路,给出送完所有快件的时间.由于受重量和体积限制,送货员可中途返回取货.可不考虑中午休息时间..2模型的假设与符号说明2.1 模型假设1.假设送货员只能沿如图所示连通线路行走,而不能走其它任何路线; 2.在连通线路中业务员可以任意选择路线;3.假设送货员每到达一个地点,交接一件货物花费都为3分钟,交接完毕马上前往下一个地点,期间不花费时间;4.假设送货员的速度保持匀速,即保持24公里/小时,不考虑堵车,发生意外等现象; 2.2 符号说明i W :第i 个货物的重量;(,)i x y :序号为i 的送货点的坐标; i V :第i 个货物的体积;C :送货路线总路程;N :送货员送货次数;t :送货所用总时间;(,)G V E :赋权连通图;i G :(,)G V E 的第i 个子图;i L :子图i G 中的最佳回路;()e ω:边e 的边权;()v ω:点v 的点权;i l :i L 的各边权之和;i e :i L 的各点权之和;T :送货中的停留时间; u :送货员的行驶速度;点权()i v T V ω=⨯.为叙述方便起见,我们在文中不加说明地使用上述变量和符号的变形形式,它们的含义可以通过上下文确定.3 模型的分析与建立3.1 模型的建立把快递公司送货地点示意图抽象为一赋权连通图(,)G V E ,在权图G 中,i v ∈()V G 对应示意图中的快递公司地点及货物送达点,0v 表示快递公司所在地,j e ∈()E G 对应示意图中路径.边权()j e ω∈对应示意图中的路径长度.建立的数学模型如下:{}0(),(),(G),(),e E G e N v V v T V v V ωω∀∈∃∈∃∈∃∈⨯∈求G 中回路12,,,(1)k L L L k >,使得满足:(1)0(),1,2,,;i v V L i k ∈=(2)1()();ki i V L V G ==(3)1()()min(i ni e E L e ω=∈=∑∑目标为总距离最短)或1()()max ()()min(i i j ke E L e V L e v ωω≤≤∈∈⎧⎫⎪⎪+=⎨⎬⎪⎪⎩⎭∑∑目标为时间最短) 为了讨论方便,先给出图论中相关的一些定义.定义1 经过图G 的每个顶点正好一次的圈,称为G 的哈密顿环路,也称Hamilton 圈.定义2 在加权图(,)G V E =中(1)权最小的哈米顿圈称为最佳Hamilton 圈;(2)经过每个顶点至少一次且权最小的闭通路称为TSP 回路问题.由定义2可知,本问题是一个寻找TSP 回路的问题.TSP 回路的问题可转化为最佳Hamilton 圈的问题.方法是由给定的图(,)G V E =构造一个以V 为顶点集的完备图(,)G V E ''=,E '中每条边(,)x y 的权等于顶点x 与y 在图中最短路径的权,111min{,}m m m m ij im mj ij d d d d ---=+在图论中有以下定理:定理1 加权图G 的送货员回来的权和G '的最佳Hamilton 圈的权相同; 定理2 在加权完备图中求最佳Hamilton 圈的问题是NPC 问题. 在解决问题的过程中,我们用到以下算法:算法一(Floyd 算法):令n D 表示一个N N ⨯矩阵,它的(,)i j 元素是m ij d .1.将图中各顶点编为1,2,,N .确定矩阵0D ,其中(,)i j 元素等于从顶点i 到顶点j 最短弧的长度(如果有最短弧的话).如果没有这样的弧,则令0ij d =∞.对于i ,令00ij d =.2.对1,2,,m N =,依次由m-1D 的元素确定m D 的元素,应用递归公式111min{,}m m m m ij im mj ij d d d d ---=+.每当确定一个元素时,就记下它所表示的路.在算法终止时,矩阵n D 的元素(,)i j 就表示从顶点i 到顶点j 最短路的长度.算法二:求加权图(,)G V E =的TSP 问题回路的近似算法:1.用算法一(Floyd 算法)求出(,)G V E =中任意两个顶点间的最短路,构造出完备图(,)G V E ''=,(,),(,)min (,)G x y E x y d x y ω'∀∈=.2.输入图G '的一个初始Hamilton 圈;3.用对角线完全算法产生一个初始Hamilton 圈;4.随机搜索出(,)G V E ''=中若干个Hamilton 圈,例如2000个;5.对2、3、4步所得的每个Hamilton圈,用二边逐次修正法进行优化,得到近似最佳Hamilton圈;6.在第5步求出的所有H圈中,找出权最小的一个,此即要找的最佳Hamilton 圈的近似解.算法三:蚁群算法蚁群算法是一种新型的模拟进化算法.该算法由意大利学者M. DorigoV. Maniezzo和A. Colorini 等人在90年代首先提出,称之为蚁群系统(ant colony system ),应用该算法求解TSP 问题、分配问题,取得了较好的结果.算法受到真实蚁群觅食行为的启发,科学家发现虽然单个蚂蚁没有太多的智力,也无法掌握附近的地理信息,但整个蚁群却可以找到一条从巢穴到食物源之间的最优路线.经过大量细致观察研究发现:蚂蚁个体之间通过一种称之为外激素(pheromone) 的物质进行信息传递.蚂蚁在运动过程中, 能够在它所经过的路径上留下该种物质,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上单位时间走过的蚂蚁越多,表明该路线的可用性越好,则后来者选择该路径的概率就越大.蚂蚁个体之间就是通过这种信息的交流寻找最优的到达食物源的线路.蚁群算法具有实现简单、正反馈、分布式的优点.图1 蚁群算法说明在图1中,从A到E(或者从E 到A)有两条路径(ABCDE 和ABHDE),其中B到H、D到H的距离为1,B到C和D到C的距离为0.5.下面分别考虑在时刻t = 0 , 1 ,2 . .时蚁群的运动情况.如图2b,在时刻t = 0 ,设有30只蚂蚁从A运动到B.此时路径BH、BC上没有外激素(蚂蚁留下的信息量),故蚂蚁将以相同的概率向BC、BH 运动,于是各有15只蚂蚁分别选择路径BH和BC.在真实蚁群中,外激素的数量会随时间的流逝而蒸发掉一部分,为说明方便,此处假设:①所有蚂蚁运动的速度相等;②外激素蒸发量与时间成正比例,即路径上外激素的剩余量与路径的长度成反比;③蚂蚁选路的概率与所选路上外激素的浓度成正比.因为路径BHD 的长度是路径BCD的2倍,当B点的蚂蚁到达D点后,路径BCD上的外激素是BHD上的2倍.如图2c,在时刻t =1有30只蚂蚁从E到达D.因为路径DC上的外激素量是DH上的2倍,根据蚂蚁选路特点,将会有20只蚂蚁选择DC,而只有10只蚂蚁选择DH.以此类推,当t = 2 ,3 ,4. . . 时,将会有更多的蚂蚁选择路径BCD.经过较长时间运动后,蚁群最终会沿着最优路径ABCDE运动.网络的路由问题与蚁群寻路的问题有很大的可比性,都是寻找可以到达目的地的最优路线.目前已经证明蚁群算法在解决路由问题上具有分布式、正反馈、全局收敛等优点.3.2 求解准备1)根据已知位置点的坐标和连接情况,使用Matlab做出各点位置图如下:图2 各点位置与连通情况图2)根据已知各点坐标,由两点间距离公式d=邻连通点间的距离如下表:表1 相邻连通点距离表3.3 模型的求解 3.3.1 问题1问题1要求将1—30号货物送到指定地点并返回,不考虑各货物的送达时间,考虑到3048.550i i W ==<∑,且300.881i i V ==<∑,故不用考虑重量、体积对送货次数的影响,即只需一次送货,无需中途返回取货. 方法一:Floyd 算法+二次逐项修边法1.由表1中的数据,做出图(,)G V E 的邻接矩阵(0)A ,根据Floyd 算法,求得任意两点间的最短距离(51)A ;2.经过分析,发现运送1~30号货物只涉及22个点(含0v ),由于其中21个送货点中有5个含2货物,2个含3货物;3、将这22个顶点令为点集i X ={(,)i i a b ,0,1,2,,21i =},令矩阵B 为仅含有点i X 的最短距离方阵,构成加权图完备图(,)G V E ''=;5296 5094 7493 3621 2182 1797 5395 4709 1392 39972929 6707 5254 4677 6215 5777 6885 9751 8833 7860 11722 5296 08456 11063 8916 3114 7092 10691 5714 6688 6285 5217 12003 7542 8489 10026 8065 9173 13562 12645 11671 15534 5094 8456 0 2608 2196 5342 3297 3970 8806 5489 8093 7026 5282 9350 6177 7714 9873 10981 11250 10333 9359 13222 7493 11063 2608 03872 7950 5696 2098 11205 7888 9675 9425 3410 11750 7471 5933 11454 13380 9469 8552 10653 11441 3621 8916 2196 3872 0 5803 1824 1775 7333 4016 6620 5553 3086 7877 4704 5610 8400 9508 9146 8229 7887 11118 2182 3114 5342 7950 5803 03979 7577 3884 3574 3171 2104 8889 4428 5375 6913 4951 6059 10449 9531 8558 12420 1797 7092 3297 5696 1824 3979 0 3598 5509 2192 4797 3729 4910 6054 2880 4418 6576 7684 7954 7036 6063 9925 5395 10691 3970 2098 1775 7577 3598 0 9107 5790 7577 7327 1312 9652 53733836 9357 11283 7372 6454 8556 9343 4709 5714 8806 11205 7333 3884 5509 9107 0 3317 2848 1780 9113 4105 5052 6589 4628 5736 10125 9208 8234 12097 1392 6688 5489 7888 4016 3574 2192 5790 3317 0 2605 1537 7102 3862 4809 6346 4385 5493 9882 8965 7991 11854 3997 6285 8093 9675 6620 3171 4797 7577 2848 2605 0 1068 6265 3393 2204 3741 1780 5023 7278 6360 5386 9249 2929 5217 7026 9425 5553 2104 3729 7327 1780 1537 1068 0 7333 2325 3272 4809 2848 3956 8345 7428 6454 10317 6707 12003 5282 3410 3086 8889 4910 1312 9113 7102 6265 7333 0 9658 4061 2524 8045 10461 6060 5142 7244 8031 5254 7542 9350 11750 7877 4428 6054 9652 4105 3862 3393 2325 9658 0 5596 7134 5172 1631 7200 8117 4848 8243 4677 8489 6177 7471 4704 5375 2880 5373 5052 4809 2204 3272 4061 5596 0 1537 3984 6400 5074 4156 3183 7045 6215 10026 7714 5933 5610 6913 4418 3836 6589 6346 3741 4809 2524 7134 1537 0 5521 7937 3536 2618 4720 5508 5777 8065 9873 11454 8400 4951 6576 9357 4628 4385 1780 2848 8045 5172 3984 5521 0 6803 9057 8140 7166 11029 6885 9173 10981 13380 9508 6059 7684 11283 5736 5493 5023 3956 10461 1631 6400 7937 6803 0 5569 6486 3217 6612 9751 13562 11250 9469 9146 10449 7954 7372 10125 9882 7278 8345 6060 7200 5074 3536 9057 5569 0 918 2352 1971 8833 12645 10333 8552 8229 9531 7036 6454 9208 8965 6360 7428 5142 8117 4156 2618 8140 6486 918 0 3269 2889 7860 11671 9359 10653 7887 8558 6063 8556 8234 7991 5386 6454 7244 4848 3183 4720 7166 3217 2352 3269 0 4323 11722 15534 13222 11441 11118 12420 9925 9343 12097 11854 9249 10317 8031 824370455508 11029 6612 1971 2889 4323 0 ⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭图3 加权完备图G ’的邻接矩阵4、将(,,)P V E w 的邻接矩阵(,)B i j 通过经典货郎担问题的解法,即二次逐项修边法,求得最优的Hamilton 圈.图4 方法一运行结果截图表2 程序中点的数字与图1中的对应转换程序 0 1 2 3 4 5 6 7 8 9 10 图 0 131416 17 18 21 23 24 26 27 程序1112 131415161718192021图31 32 34 36 38 39 40 42 43 45 49图5 路线示意图路线:0-->18-->13-->19-->24-->31-->27-->39-->31-->34-->40-->45--> 42-->49-->42-->43-->38-->36-->38-->35-->32-->23-->16-->14-->17-->21-->26-->0路程:C= 54708 (m)方法二:蚁群算法蚁群算法中α、β、ρ等参数对算法性能有很大的影响。

2010年西北工大数模送货路线论文1

一、问题重述现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少。

现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少。

该地形图的示意图见图1,各点连通信息见表3。

各件货物的相关信息见表1,50个位置点的坐标见表2。

现在送货员要将100件货物送到50个地点。

问题如下问题一:若将1~30号货物送到指定地点并返回。

设计最快完成路线与方式。

给出结果。

要求标出送货线路。

问题二:假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式。

要求标出送货线路。

问题三:若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回。

设计最快完成路线与方式。

要求标出送货线路,给出送完所有快件的时间。

由于受重量和体积限制,送货员可中途返回取货。

可不考虑中午休息时间。

图一二、 基本假设1、假设送货员的最大载重是50公斤,所带货物的最大体积为1立方米;2、假设送货员的路上平均速度为24公里/小时,不会出现意外现象;3、每件货物交接花费3分钟,同一地点有多件货物也简单按照每件3分钟交接计算,不会出现特殊情况而延误时间; 4、送货员只沿示意图连线路径行走;5、假设快递公司地点O 为第51个位置点;6、假设送货员回到出发点O 后取货时间不计。

三.符号定义及说明D两点最短路径距离矩阵V i (1,2,…n ) 从1到50个位置点里n 个位置点集合)(i V f从O/51点出发,经过i V 中所有点最后回到O/51点的最佳送货路线的权值(即总路程)T送货员完成一次送货的时间HV i 集合所有位置点要送达的货物件数四、问题的分析快递公司的送货员需要把货物送到所有货物交接地点,最后回到出发点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要摘要本文讨论了送货员送货路线的优化设计问题, 即在给定送货地点和给定设计规范的条件下,综合考虑最大载重范围、最大带货体积以及各货物送货时限,确定业务员的最佳运行路线策略.并总结出一些在这类图中求解近似最优回路的有效法则.对于问题1,采用了两种方法进行了计算,第一种是通过Floyd算法做出各顶点间的最短路径矩阵,然后选出1~30号货物所送达的顶点间的最短路径及距离,用二边逐次修正法求解Hamilton圈;第二种是通过蚁群算法获得多条近似优解,选取最佳线路.对于第二问,则采用改进的遗传算法,求解有时间约束条件的TSP问题,根据线路规划问题的特点,基于遗传算法(GA)建立了一个适用于带有时间约束的送货路线规划模型.实验证明了此算法的有效性和可行性.对于第三问,利用分割求解法和蚁群算法的合成算法,运用共同链分割全图,对每一个分图进行最优求解,由此得到全图的最优解。

关键词送货问题;优化路线;TSP模型;蚁群算法送货路线设计的数学模型1 问题重述现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少.现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少.该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线.各件货物的相关信息见表1,50个位置点的坐标见表2.假定送货员最大载重50公斤,所带货物最大体积1立方米.送货员的平均速度为24公里/小时.假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算.现在送货员要将100件货物送到50个地点.请完成以下问题.1. 若将1~30号货物送到指定地点并返回.设计最快完成路线与方式.给出结果.要求标出送货线路.2. 假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式.要求标出送货线路.3. 若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回.设计最快完成路线与方式.要求标出送货线路,给出送完所有快件的时间.由于受重量和体积限制,送货员可中途返回取货.可不考虑中午休息时间..2 模型的假设与符号说明2.1 模型假设1.假设送货员只能沿如图所示连通线路行走,而不能走其它任何路线; 2.在连通线路中业务员可以任意选择路线;3.假设送货员每到达一个地点,交接一件货物花费都为3分钟,交接完毕马上前往下一个地点,期间不花费时间;4.假设送货员的速度保持匀速,即保持24公里/小时,不考虑堵车,发生意外等现象; 2.2 符号说明i W :第i 个货物的重量;(,)i x y :序号为i 的送货点的坐标; i V :第i 个货物的体积;C :送货路线总路程;N :送货员送货次数;t :送货所用总时间;(,)G V E :赋权连通图;i G :(,)G V E 的第i 个子图;i L :子图i G 中的最佳回路;()e ω:边e 的边权;()v ω:点v 的点权;i l :i L 的各边权之和;i e :i L 的各点权之和; T :送货中的停留时间; u :送货员的行驶速度;点权()i v T V ω=⨯.为叙述方便起见,我们在文中不加说明地使用上述变量和符号的变形形式,它们的含义可以通过上下文确定.3 模型的分析与建立3.1 模型的建立把快递公司送货地点示意图抽象为一赋权连通图(,)G V E ,在权图G 中,i v ∈()V G 对应示意图中的快递公司地点及货物送达点,0v 表示快递公司所在地,j e ∈()E G 对应示意图中路径.边权()j e ω∈对应示意图中的路径长度.建立的数学模型如下:{}0(),(),(G),(),e E G e N v V v T V v V ωω∀∈∃∈∃∈∃∈⨯∈求G 中回路12,,,(1)k L L L k >,使得满足:(1)0(),1,2,,;i v V L i k ∈=(2)1()();ki i V L V G ==(3)1()()min(i ni e E L e ω=∈=∑∑目标为总距离最短)或 1()()max ()()min(i i j ke E L e V L e v ωω≤≤∈∈⎧⎫⎪⎪+=⎨⎬⎪⎪⎩⎭∑∑目标为时间最短)为了讨论方便,先给出图论中相关的一些定义.定义1 经过图G 的每个顶点正好一次的圈,称为G 的哈密顿环路,也称Hamilton 圈.定义2 在加权图(,)G V E =中(1)权最小的哈米顿圈称为最佳Hamilton 圈;(2)经过每个顶点至少一次且权最小的闭通路称为TSP 回路问题.由定义2可知,本问题是一个寻找TSP 回路的问题.TSP 回路的问题可转化为最佳Hamilton 圈的问题.方法是由给定的图(,)G V E =构造一个以V 为顶点集的完备图(,)G V E ''=,E '中每条边(,)x y 的权等于顶点x 与y 在图中最短路径的权,即111min{,}m m m m ij im mj ij d d d d ---=+在图论中有以下定理:定理1 加权图G 的送货员回来的权和G '的最佳Hamilton 圈的权相同; 定理2 在加权完备图中求最佳Hamilton 圈的问题是NPC 问题. 在解决问题的过程中,我们用到以下算法:算法一(Floyd 算法):令n D 表示一个N N ⨯矩阵,它的(,)i j 元素是m ij d . 1.将图中各顶点编为1,2,,N .确定矩阵0D ,其中(,)i j 元素等于从顶点i 到顶点j 最短弧的长度(如果有最短弧的话).如果没有这样的弧,则令0ij d =∞.对于i ,令00ij d =.2.对1,2,,m N =,依次由m-1D 的元素确定m D 的元素,应用递归公式111min{,}m m m m ij im mj ij d d d d ---=+.每当确定一个元素时,就记下它所表示的路.在算法终止时,矩阵n D 的元素(,)i j 就表示从顶点i 到顶点j 最短路的长度.算法二:求加权图(,)G V E =的TSP 问题回路的近似算法:1.用算法一(Floyd 算法)求出(,)G V E =中任意两个顶点间的最短路,构造出完备图(,)G V E ''=,(,),(,)min (,)G x y E x y d x y ω'∀∈=.2.输入图G '的一个初始Hamilton 圈;3.用对角线完全算法产生一个初始Hamilton 圈;4.随机搜索出(,)G V E ''=中若干个Hamilton 圈,例如2000个;5.对2、3、4步所得的每个Hamilton 圈,用二边逐次修正法进行优化,得到近似最佳Hamilton 圈;6.在第5步求出的所有H 圈中,找出权最小的一个,此即要找的最佳Hamilton 圈的近似解.算法三:蚁群算法蚁群算法是一种新型的模拟进化算法.该算法由意大利学者M. Dorigo V. Maniezzo 和A. Colorini 等人在90年代首先提出,称之为蚁群系统(ant colony system ),应用该算法求解TSP 问题、分配问题,取得了较好的结果.算法受到真实蚁群觅食行为的启发,科学家发现虽然单个蚂蚁没有太多的智力,也无法掌握附近的地理信息,但整个蚁群却可以找到一条从巢穴到食物源之间的最优路线.经过大量细致观察研究发现: 蚂蚁个体之间通过一种称之为外激素(pheromone) 的物质进行信息传递.蚂蚁在运动过程中, 能够在它所经过的路径上留下该种物质, 而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上单位时间走过的蚂蚁越多,表明该路线的可用性越好,则后来者选择该路径的概率就越大.蚂蚁个体之间就是通过这种信息的交流寻找最优的到达食物源的线路.蚁群算法具有实现简单、正反馈、分布式的优点.图1 蚁群算法说明在图1中,从A到E(或者从E 到A)有两条路径(ABCDE 和ABHDE),其中B 到H、D到H的距离为1,B到C和D到C的距离为0.5.下面分别考虑在时刻t = 0 ,1 ,2 . .时蚁群的运动情况.如图2b,在时刻t = 0 ,设有30只蚂蚁从A运动到B.此时路径BH、BC上没有外激素(蚂蚁留下的信息量),故蚂蚁将以相同的概率向BC、BH 运动,于是各有15只蚂蚁分别选择路径BH和BC.在真实蚁群中,外激素的数量会随时间的流逝而蒸发掉一部分,为说明方便,此处假设:①所有蚂蚁运动的速度相等;②外激素蒸发量与时间成正比例,即路径上外激素的剩余量与路径的长度成反比;③蚂蚁选路的概率与所选路上外激素的浓度成正比.因为路径BHD 的长度是路径BCD的2倍,当B点的蚂蚁到达D点后,路径BCD上的外激素是BHD上的2倍.如图2c,在时刻t =1有30只蚂蚁从E到达D.因为路径DC上的外激素量是DH上的2倍,根据蚂蚁选路特点,将会有20只蚂蚁选择DC,而只有10只蚂蚁选择DH.以此类推,当t = 2 ,3 ,4. . . 时,将会有更多的蚂蚁选择路径BCD.经过较长时间运动后,蚁群最终会沿着最优路径ABCDE运动.网络的路由问题与蚁群寻路的问题有很大的可比性,都是寻找可以到达目的地的最优路线.目前已经证明蚁群算法在解决路由问题上具有分布式、正反馈、全局收敛等优点.3.2 求解准备1)根据已知位置点的坐标和连接情况,使用Matlab做出各点位置图如下:图2 各点位置与连通情况图2)根据已知各点坐标,由两点间距离公式d=邻连通点间的距离如下表:表1 相邻连通点距离表3.3 模型的求解 3.3.1 问题1问题1要求将1—30号货物送到指定地点并返回,不考虑各货物的送达时间,考虑到3048.550i i W ==<∑,且300.881i i V ==<∑,故不用考虑重量、体积对送货次数的影响,即只需一次送货,无需中途返回取货. 方法一:Floyd 算法 + 二次逐项修边法1.由表1中的数据,做出图(,)G V E 的邻接矩阵(0)A ,根据Floyd 算法,求得任意两点间的最短距离(51)A ;2.经过分析,发现运送1~30号货物只涉及22个点(含0v ),由于其中21个送货点中有5个含2货物,2个含3货物;3、将这22个顶点令为点集i X ={(,)i i a b ,0,1,2,,21i =},令矩阵B 为仅含有点i X 的最短距离方阵,构成加权图完备图(,)G V E ''=;0 5296 5094 7493 3621 2182 1797 5395 4709 1392 39972929 6707 5254 4677 6215 5777 6885 9751 8833 7860 11722 5296 08456 11063 8916 3114 7092 10691 5714 6688 6285 5217 12003 7542 8489 10026 8065 9173 13562 12645 11671 15534 5094 8456 0 2608 2196 5342 3297 3970 8806 5489 8093 7026 5282 9350 6177 7714 9873 10981 11250 10333 9359 13222 7493 11063 2608 03872 7950 5696 2098 11205 7888 9675 9425 3410 11750 7471 5933 11454 13380 9469 8552 10653 11441 3621 8916 2196 3872 0 5803 1824 1775 7333 4016 6620 5553 3086 7877 4704 5610 8400 9508 9146 8229 7887 11118 2182 3114 5342 7950 5803 03979 7577 3884 3574 3171 2104 8889 4428 5375 6913 4951 6059 10449 9531 8558 12420 1797 7092 3297 5696 1824 3979 0 3598 5509 2192 4797 3729 4910 6054 2880 4418 6576 7684 7954 7036 6063 9925 5395 10691 3970 2098 1775 7577 3598 0 9107 5790757773271312 9652 53733836 9357 11283 7372 6454 8556 9343 4709 5714 8806 11205 7333 3884 5509 9107 0 3317 28481780 9113 4105 5052 6589 4628 5736 10125 9208 8234 12097 1392 6688 5489 7888 4016 3574 2192 5790 3317 0 2605 1537 7102 3862 4809 6346 4385 5493 9882 8965 7991 11854 3997 6285 8093 9675 6620 3171 4797 7577 2848 2605 0 1068 6265 3393 2204 3741 1780 5023 7278 6360 5386 9249 2929 5217 7026 9425 5553 2104 3729 7327 1780 1537 1068 0 7333 2325 3272 4809 2848 3956 8345 7428 6454 10317 6707 12003 5282 3410 3086 8889 4910 1312 9113 7102 6265 7333 0 9658 4061 2524 8045 10461 6060 5142 7244 8031 5254 7542 9350 11750 7877 4428 6054 9652 4105 3862 3393 2325 9658 0 5596 7134 5172 1631 7200 8117 4848 8243 4677 8489 6177 7471 4704 5375 2880 5373 5052 4809 2204 3272 4061 5596 0 1537 3984 6400 5074 4156 3183 7045 6215 10026 7714 5933 5610 6913 4418 3836 6589 6346 3741 4809 2524 7134 1537 0 5521 7937 3536 2618 4720 5508 5777 8065 9873 11454 8400 4951 6576 9357 4628 4385 1780 2848 8045 5172 3984 5521 0 6803 9057 8140 7166 11029 6885 9173 10981 13380 9508 6059 7684 11283 5736 5493 5023 3956 10461 1631 6400 7937 6803 0 5569 6486 3217 6612 9751 13562 11250 9469 9146 10449 7954 7372 10125 9882 7278 8345 6060 7200 5074 3536 9057 5569 0 918 2352 1971 8833 12645 10333 8552 8229 9531 7036 6454 9208 8965 6360 7428 5142 8117 4156 2618 8140 6486 918 0 3269 2889 7860 11671 9359 10653 7887 8558 6063 8556 8234 7991 5386 6454 7244 4848 3183 4720 7166 3217 2352 3269 0 4323 11722 15534 13222 11441 11118 12420 9925 9343 12097 11854 9249 10317 8031 824370455508 11029 6612 1971 2889 4323 0 ⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭图3 加权完备图G ’的邻接矩阵4、将(,,)P V E w 的邻接矩阵(,)B i j 通过经典货郎担问题的解法,即二次逐项修边法,求得最优的Hamilton圈.图4 方法一运行结果截图表2 程序中点的数字与图1中的对应转换程序0 1 2 3 4 5 6 7 8 9 10 图0 13 14 16 17 18 21 23 24 26 27 程序11 12 13 14 15 16 17 18 19 20 21 图31 32 34 36 38 39 40 42 43 45 49图5 路线示意图路线: 0-->18-->13-->19-->24-->31-->27-->39-->31-->34-->40-->45-->42-->49-->42-->43-->38-->36-->38-->35-->32-->23-->16-->14--> 17-->21-->26-->0路程:C = 54708 (m )方法二:蚁群算法蚁群算法中α、β、ρ等参数对算法性能有很大的影响。

相关文档
最新文档