新人教版高中数学课堂笔记必修一
人教版高一数学必修一知识点总结

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B=由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即SA全册每单元每课时 2例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有个3.若集合M={y|y=x2-2x+1,x∈R},N={x|x≥0},则M与N的关系是 .全册每单元每课时 3全册 每单元 每课时44.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
高中数学人教A版必修第一册知识点总结

高中数学人教A版必修第一册知识点总结本册教材是高中数学人教版A版(2024)的必修第一册,总共包括了四个单元:集合与常用逻辑、函数与方程、数列与数学归纳法、几何与向量。
接下来将对这四个单元的知识点进行总结。
一.集合与常用逻辑1.集合与元素-集合的表示方法:列举法、描述法、条件法-集合之间的关系:相等、含于、相交、并集、交集、互补集2.集合的运算-并集、交集、差集、补集-嵌套集合的化简-运算律:交换律、结合律、分配律3.常用逻辑关系-全称量词、存在量词-逻辑运算:与、或、非-条件命题、充分条件、必要条件4.命题及命题的逻辑运算-命题的分类:命题主体、命题联结词、命题陈述、命题基础-命题的逻辑运算:否定、合取、析取、蕴含、等价二.函数与方程1.函数的概念-自变量、因变量、函数值-射影函数、指示函数2.函数的表示方法-函数的解析式-函数的图像3.函数的性质-定义域、值域、对应法则、单调性、奇偶性、周期性-奇函数、偶函数-反函数4.一次函数-一次函数的解析式及图像-平移变换、伸缩变换5.二次函数-二次函数的解析式及图像-平移变换、伸缩变换-最值、对称轴、零点及判别式三.数列与数学归纳法1.数列的概念-有限数列、无限数列、数列的一般表示2.等差数列-等差数列的概念及公式-等差数列前n项和公式-通项公式的推导3.等比数列-等比数列的概念及公比-等比数列前n项和公式-通项公式及其推导4.递推数列-递推数列的概念及表示-递推公式5.数学归纳法-数学归纳法三个步骤:证明基础、证明步骤、加强归纳前提四.几何与向量1.向量的概念-向量的定义、表示方法、相等与运算-向量的数量表示-零向量、单位向量2.向量的线性运算-加法、减法、数乘-加减法运算律、数乘运算律3.向量的坐标表示-坐标运算、线性变换4.向量的数量积-向量的点乘、模长及其性质-向量的夹角及性质5.平面向量的应用-共线向量、垂直向量、平行向量-向量在直角坐标系中的投影-多边形面积与向量运算-向量与几何问题的应用以上是《高中数学人教A版(2024)必修第一册》的知识点总结。
人教版高中数学必修一知识点总结(完整版)

第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。
3.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
1)列举法:将集合中的元素一一列举出来 {a,b,c……}2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x∈R| x-3>2} ,{x| x-3>2}①语言描述法:例:{不是直角三角形的三角形}②Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集。
记作:B A ⊆(或B ⊇A)注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
人教版高中数学必修一知识点归纳总结

人教版高中数学必修一知识点归纳总结
本文档总结了人教版高中数学必修一的重要知识点,旨在帮助学生复和梳理相关内容。
第一章:集合与常用数集
- 集合的表示和运算
- 常用数集:自然数集、整数集、有理数集、实数集
- 数集的划分和分类
第二章:集合的运算与应用
- 集合的运算:交集、并集、差集、补集
- 集合间关系的判定和表示
- 集合的应用:概率、分类、调查统计等
第三章:函数基本概念与性质
- 函数的定义和表示
- 函数的自变量、因变量和值域
- 函数的性质:奇偶性、周期性等
第四章:一元一次方程与不等式
- 一元一次方程的解法
- 一元一次不等式的解法
- 一次方程和一次不等式的应用
第五章:平面坐标系与直线的基本性质
- 平面直角坐标系的建立和使用
- 直线方程的表示和性质
- 直线的斜率和截距
第六章:平面向量的基本概念
- 向量的定义和表示
- 向量的运算:加法、数乘
- 向量的模、方向和单位向量
第七章:平面向量的数量积
- 向量的数量积定义和性质
- 向量之间的夹角
- 向量的投影和垂直
以上是人教版高中数学必修一的知识点归纳总结,希望对学生们进行知识回顾和复有所帮助。
更多详细内容请参考教材。
高中数学人教A版必修第一册知识点总结

高中数学新教材必修第一册知识点总结第一章集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合的三个特性:(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”、“线”、“面”等概念一样,都只是描述性地说明.(2)整体性:集合是一个整体,暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物等. 3.集合中元素的三个特性:(1)确定性:对于给定的集合,它的元素必须是确定的.即按照明确的判断标准(不能是模棱两可的)判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一. (2)互异性:一个给定的集合中的元素是互不相同的.也就是说集合中的元素是不能重复出现的.(3)无序性:集合中的元素排列无先后顺序,任意调换集合中的元素位置,集合不变. 4.集合的符号表示通常用大写的字母A,B,C,…表示集合,用小写的字母a,b,c表示集合中的元素.5.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合A与集合B相等记作A B=.6.元素与集合之间的关系(1)属于:如果a是集合A中的元素,就说a属于集合A,记作a A∈,读作a属于A. (2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a A∉,读作a不属于A.7.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程21x=的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式10x->的解组成的集合.8.常用数集及其记法.(1)正整数集:全体正整数组成的集合叫做正整数集,记作*N或N+(2)自然数集:全体非负整数组成的集合叫做自然数集,记作N.(3)整数集:全体整数组成的集合叫做整数集,记作Z.(4)有理数集:全体有理数组成的集合叫做有理数集,记作Q.(5)实数集:全体实数组成的集合叫做实数集,记作R.9.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为{太平洋,大西洋,印度洋,北冰洋},把“方程(1)(2)0x x -+=的所有实数根”组成的集合表示为{1,2}-.(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为{()}x p x ,其中x 是集合中的元素代表,()p x 则表示集合中的元素所具有的共同特征.例如,不等式73x -<的解集可以表示为{73}{10}x R x x R x ∈-<=∈<.1.2集合间的基本关系1. 子集一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记为A B ⊆或(B A ⊇) 读作集合A 包含于集合B (或集合B 包含集合A ). 集合A 是集合B 的子集可用V e n n 图表示如下:或关于子集有下面的两个性质: (1)自反性:A A ⊆;(2)传递性:如果A B ⊆,且B C ⊆,那么A C ⊆. 2.真子集如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A是集合B 的真子集,记为A B ⊂≠(或B A ⊃≠), 读作集合A 真包含于集合B (或集合B 真包含集合A ). 集合A 是集合B 的真子集可用V e n n 图表示如右.3.集合的相等如果集合A B ⊆,且B A ⊆,此时集合A 与集合B 的元素是 一样的,我们就称集合A 与集合B 相等,记为 A B =.集合A 与集合B 相等可用V e n n 图表示如右. 4.空集我们把不含任何元素的集合叫做空集,记为∅.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即 (1)A ∅⊆(A 是任意一个集合); (2)A ⊂∅≠(A ≠∅).1.3集合的运算1.并集自然语言:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作A B ⋃(读作“A 并B ”).符号语言: {,}A B x x A x B ⋃=∈∈或. 图形语言:(5) A =BA (4)B B(3)A (2)A 与B 没有有公共元素(1)A 与B 有公共元素,相互不包含理解:x A ∈或x B ∈包括三种情况:x A ∈且x B ∉;x B ∈且x A ∉;x A ∈且x B ∈. 并集的性质:(1)A B B A ⋃=⋃; (2)A A A ⋃=; (3)A A ⋃∅=;(4)()()A B C A B C ⋃⋃=⋃⋃; (5)A A B ⊆⋃,B A B ⊆⋃; (6)A B B A B ⋃=⇔⊆. 2.交集自然语言:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ⋂(读作“A 交B ”). 符号语言: {,}A B x x A x B ⋂=∈∈且. 图形语言:BA(5)A=B,A B=A=B(4)B A,A B=B(3)A B,A B=AA B(2)A 与B 没有公共元素,A B=(1)A 与B 有公共元素,且互不包含理解:当A 与B 没有公共元素时,不能说A 与B 没有交集,只能说A 与B 的交集是∅. 交集的性质:(1)A B B A ⋂=⋂; (2)A A A ⋂=; (3)A ⋂∅=∅;(4)()()A B C A B C ⋂⋂=⋂⋂; (5)A B A ⋂⊆,A B B ⋂⊆; (6)A B A A B ⋂=⇔⊆.3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U . (2)补集的概念自然语言:对于一个集合A ,由属于全集U 且不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记为UA .符号语言: {,}UA x x U x A =∈∉且图形语言:补集的性质 (1)()UA A ⋂=∅; (2)()UA A U ⋃=;(3)()()()UU UA B A B ⋃=⋂; (4)()()()U U UA B A B ⋂=⋃.1.4充分条件与必要条件1.充分条件与必要条件 一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒, 并且说p 是q 的充分条件,q 是p 的必要条件. 在生活中, q 是p 成立的必要条件也可以说成是: q ⌝⇒p ⌝(q ⌝表示q 不成立),其实,这与p q ⇒是等价的.但是,在数学中,我们宁愿采用第一种说法. 如果“若p ,则q ”为假命题,那么由p 推不出q ,记作/p q ⇒.此时,我们就说p 不是q 的充分条件,q 不是p 的必要条件.2.充要条件如果“若p ,则q ”和它的逆命题“若q 则p ”均是真命题,即既有p q ⇒,又有q p ⇒就记作p q ⇔.此时,我们就说p 是q 的充分必要条件,简称为充要条件.显然,如果p 是q 的充要条件,那么q 也是p 的充要条件.概括地说,如果p q ⇔,那么p 与q 互为充要条件. “p 是q 的充要条件”,也说成“p 等价于q ”或“q 当且仅当p ”等.1.5全称量词与存在量词1.全称量词与存在量词 (1)全称量词 短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“"”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为x M ∀∈,()p x ,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词 短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“$”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等. 含有存在量词的命题,叫做存在量词命题.存在量词命题“存在M 中的元素x ,使()p x 成立”可用符号简记为x M∃∈,()p x ,读作“存在M 中的元素x ,使()p x 成立”. 2.全称量词命题和存在量词命题的否定 (1)全称量词命题的否定 全称量词命题:x M ∀∈,()p x ,它的否定:x M∃∈,()p x ⌝.全称量词命题的否定是存在量词命题. (2)存在量词命题的否定 存在量词命题:x M∃∈,()p x ,它的否定:x M ∀∈,()p x ⌝.存在量词命题的否定是全称量词命题.第二章 一元二次函数、方程和不等式2.1等式性质与不等式性质1.比较原理a b a b >⇔->;0a b a b =⇔-=; 0a b a b <⇔-<.2.等式的基本性质 性质1 如果a b =,那么b a =;性质2 如果a b =,b c =,那么a c =; 性质3 如果a b =,那么a c b c ±=±; 性质4 如果a b=,那么a c b c =;性质5 如果a b =,0c ≠,那么a b c c=.3.不等式的基本性质性质1 如果a b >,那么b a <;如果b a <,那么a b >.即a b b a >⇔<性质2 如果a b >,b c >,那么a c >.即a b >,b c >a c ⇒>.性质3 如果a b >,那么a c b c +=+.由性质3可得,()()a b c a b b c b a c b +>⇒++->+-⇒>-.这表明,不等式中任何一项可以改变符号后移到不等号的另一边.性质4 如果a b >,0c >,那么a c b c >;如果a b >,0c <,那么a c b c <. 性质5 如果a b >,c d >,那么a c b d +>+. 性质6 如果0a b >>,0c d >>,那么a c b d >. 性质7 如果0a b >>,那么nna b >(n N ∈,2n ≥).2.2 基本不等式1.重要不等式,a b R ∀∈,有222a ba b +≥,当且仅当a b =时,等号成立. 2.基本不等式如果0a >,0b >,则2a b +≤,当且仅当a b =时,等号成立.2a b +叫做正数a ,b 的算术平均数叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数. 3.与基本不等式相关的不等式 (1)当,a b R ∈时,有22a b a b +⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.(2)当0a >,0b >时,有211a b≤+当且仅当a b =时,等号成立. (3)当,a b R ∈时,有22222a b a b ++⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.4.利用基本不等式求最值已知0x >,0y >,那么(1)如果积x y 等于定值P ,那么当x y =时,和x y +有最小值; (2)如果和x y +等于定值S ,那么当x y =时,积x y 有最大值214S .2.3 二次函数与一元二次方程、不等式1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.第三章 函数的概念与性质3.1 函数的概念及其表示1.函数的概念设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作()y f x =,x A ∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{|(})f x x A ∈叫做函数的值域,显然,值域是集合B 的子集. 2.区间:设a ,b 是两个实数,而且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b ; (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b ;(3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为:[,)a b , (,]a b .这里的实数a ,b 都叫做相应区间的端点.(4)实数集R 可以表示为(,)-∞+∞,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞” 读作“正无穷大”.满足x a ≥,x a >,x b ≤,x b <的实数x 的集合,用区间分别表示为[,)a +∞ ,(,)a +∞(,]b -∞,(,)b -∞.这些区间的几何表示如下表所示.注意:(1)“∞”是一个趋向符号,表示无限接近,却永远达不到,不是一个数. (2)以“-∞”或“+∞”为区间的一端时,这一端点必须用小括号. 3.函数的三要素 (1)定义域; (2)对应关系;(3)值域.值域随定义域和对应关系的确定而确定. 4.函数的相等如果两个函数的定义域和对应关系分别相同,那么就说这两个函数是同一个函数. 5.函数的表示方法 (1)解析法用数学表达式表示两个变量之间的对应关系的方法叫做解析法.解析法是表示函数的一种重要的方法,这种表示法从“数”的方面简明、全面地概括了变量之间的数量关系. (2)图象法用图象表示两个变量之间的对应关系的方法叫做图象法.图象法直观地表示了函数值随自变量值改变的变化趋势,从“形”的方面刻画了变量之间的数量关系.说明:将自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到坐标平面上的一个点00(,())x f x .当自变量取遍函数的定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的图形就是函数()y f x =的图象.函数()y f x =的图象在x 轴上的射影构成的集合就是函数的定义域,在y 轴上的射影构成的集合就是函数的值域. 函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等. (3)列表法通过列表来表示两个变量之间的对应关系的方法叫做列表法.例如,初中学习过的平方表、立方表都是表示函数关系的. 6.分段函数(1)分段函数的概念有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.如(1),0,(),0x x f x x x x -<⎧==⎨≥⎩ , (2)22,0,(),0x x f x x x ⎧≤⎪=⎨->⎪⎩. 说明:①分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.②分段函数在书写时用大括号把各段函数合并写成一个函数的形式.并且必须指明各段函数自变量的取值范围.③分段函数的定义域是自变量所有取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.④分段函数的值域是各段函数在对应自变量的取值范围内值域的并集. (2)分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分 段函数的图象.3.2 函数的基本性质函数的性质是指在函数变化过程中的不变性和规律性. 1.单调性与最大(小)值 (1)增函数设函数()f x 的定义域为I ,区间D ⊆I .如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x <,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递增时,我们就称它是增函数.(2)减函数设函数()f x 的定义域为I ,区间D ⊆I.如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x >,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递减时,我们就称它是减函数. (3)单调性、单调区间、单调函数如果函数()y f x =在区间D 上单调递增或单调递减,那么就说函数()y f x =在区间D 上具有(严格的)单调性,区间D 叫做()y f x =的单调区间.如果函数在某个区间上具有单调性,那么就称此函数在这个区间上是单调函数. (4)证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下: ①设值:设12,x x D ∈,且 12x x <;②作差:12()()f x f x - ;③变形:对12()()f x f x -变形,一般是通分,分解因式,配方等.这一步是核心 ,要注意变形到底;④判断符号,得出函数的单调性. (5)函数的最大值与最小值①最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么我们称M 是函数()y f x =的最大值.②最小值:设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I ∈,使得0()f x m =. 那么我们称m 是函数()y f x =的最小值. 2.奇偶性 (1)偶函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.关于偶函数有下面的结论:①偶函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为偶函数的一个必要条件;②偶函数的图象关于y 轴对称.反之也成立; ③偶函数在关于原点对称的两个区间上的增减性相反. (2)奇函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数.关于奇函数有下面的结论:①奇函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为奇函数的一个必要条件;②奇函数的图象关于坐标原点对称.反之也成立;③如果奇函数当0x =时有意义,那么(0)0f =.即当0x =有意义时,奇函数的图象过坐标原点;④奇函数在关于原点对称的两个区间上的增减性相同.3.3幂函数1.幂函数的概念 一般地,形如yxα=(R α∈,α为常数)的函数称为幂函数.对于幂函数,我们只研究1α=,2,3,12,1-时的图象与性质.2.五个幂函数的图象和性质3.4函数的应用(一)略.第四章 指数函数与对数函数4.1 指数1.n 次方根与分数指数幂 (1)方根如果nx a =,那么x 叫做a 的n 次方根,其中1n >,且*n N ∈.①当n 是奇数时,正数的n 次方根是正数,负数的n 方根是负数.这时,a 的n 表示.②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 次负的n 次方根用符号. 正的n 次方根与负的n 次方根可以合x 12xx -1并写成0a>). 负数没有偶次方根.0的任何次方根都是0,记作0=.根式,这里n叫做根指数,a叫做被开方数. 关于根式有下面两个等式:n a=;,,a na n⎧⎪=⎨⎪⎩为奇数为偶数..2.分数指数幂(1)正分数指数幂mna=0a>,m,*n N∈,1n>).0的正分数指数幂等于0.(2)负分数指数幂11=mnmnaa-=0a>,m,*n N∈,1n>).0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①r s r sa a a+=(0a>,r,s Q∈);②()r s rsa a=(0a>,r,s Q∈);③()r r ra b a b=(0a>,0b>,r Q∈).3. 无理数指数幂及其运算性质(1)无理数指数幂的概念当x是无理数时,x a是无理数指数幂.我们可以通过有理数指数幂来认识无理数指数幂.当x 的不足近似值m和过剩近似值n逐渐逼近x时,m a和n a都趋向于同一个数,这个数就是x a.所以无理数指数幂x a(0a>,x是无理数)是一个确定的数.(2)实数指数幂的运算性质整数指数幂的运算性质也适用于实数指数幂,即对于任意实数r,s,均有下面的运算性质.①r s r sa a a+=(0a>,r,s R∈);②()r s rsa a=(0a>,r,s R∈);③()r r ra b a b=(0a>,0b>,r R∈).4.2 指数函数1.指数函数的概念函数xy a=(0a>,且1a≠)叫做指数函数,其中指数x是自变量,定义域是R.2.指数函数的图象和性质一般地,指数函数xy a=(0a>,且1a≠)的图象和性质如下表所示:4.3 对数1.对数的概念一般地,如果xa N =(0,1)a a >≠,那么数x 叫做以a 为底N 的对数,记作N x alog=.其中a 叫做对数的底数,N 叫做真数. 当0a >,且1a ≠时,lo g N xa a N x =⇔=. 2. 两个重要的对数(1)常用对数:以10为底的对数叫做常用对数,并把10lo g N 记为lg N .(2)自然对数:以e (e 是无理数, 2.71828e =…)为底的对数叫做自然对数,并把lo g e N 记作ln N .3. 关于对数的几个结论 (1)负数和0没有对数; (2)lo g 10a =; (3)lo g 1a a =.4. 对数的运算如果0a >,且1a ≠,0M >,0N >,那么(1)lo g ()lo g lo g a a a M N M N =+; (2)lo g lo g lo g a a a M M N N=-;(3)lo g lo g na a Mn M =(n R ∈).5. 换底公式lo g lo g lo g c a c bb a=(0a >,且1a ≠,0b >,0c >,1c ≠). 4.4 对数函数1. 对数函数的概念一般地,函数lo g a y x =(0a >,且1a ≠)叫做对数函数,其中x 是自变量,定义域是(0,)+∞.2.对数函数的图象和性质3. 反函数指数函数x y a =(0a >,且1a ≠)与对数函数lo g a y x =(0a >,且1a ≠)互为反函数,它们的定义域与值域正好互换.互为反函数的两个函数的图象关于直线y x =对称. 4. 不同函数增长的差异对于对数函数lo g a y x =(1a >)、一次函数y k x =(0k >)、指数函数xy b =(1b >)来说,尽管它们在(0,)+∞上都是增函数,但是随着x 的增大,它们增长的速度是不相同的.其中对数函数lo g a y x =(1a >)的增长速度越来越慢;一次函数y k x =(0k >)增长的速度始终不变;指数函数x y b =(1b >)增长的速度越来越快.总之来说,不管a (1a >),k (0k >),b (1b >)的大小关系如何,xy b =(1b >)的增长速度最终都会大大超过y k x =(0k >)的增长速度;y k x =(0k >)的增长速度最终都会大大超过lo g a y x=(1a >)的增长速度.因此,总会存在一个0x ,当0x x >时,恒有lo g xa bk x x >>.4.5 函数的应用(二)1. 函数的零点与方程的解 (1)函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.函数()y f x =的零点就是方程()0f x =的实数解,也是函数()y f x =的图象与x 轴的公共点的横坐标.所以方程()0f x =有实数解⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有公共点.(2)函数零点存在定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的解. 2. 用二分法求方程的近似解对于在区间[,]a b 上图象连续不断且()()0f a f b <的函数()y f x =,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精确度ε,用二分法求函数()y f x =零点0x 的近似值的一般步骤如下: (1)确定零点0x 的初始区间[,]a b ,验证()()0f a f b <. (2)求区间(,)a b 的中点c .(3)计算()f c ,并进一步确定零点所在的区间:①若()0f c =(此时0x c =),则c 就是函数的零点; ②若()()0f a f c <(此时0(,)x a c ∈),则令b c =; ③若()()0f c f b <(此时0(,)x c b ∈),则令a c =.(4)判断是否达到精确度ε:若a b ε-<,则得到零点的近似值a (或b );否则重复步骤(2)~(4).由函数零点与相应方程解的关系,我们可以用二分法来求方程的近似解. 3. 函数模型的应用用函数建立数学模型解决实际问题的基本过程如下:这一过程包括分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”);根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题;通过运算、推理、求解函数模型;用得到的函数模型描述实际问题的变化规律,解决有关问题.在这一过程中,往往需要利用信息技术帮助画图、运算等.。
高中数学必修一知识点总结(学习笔记)

高中数学必修一知识点总结(学习笔记)集合是数学中的基本概念之一。
它指的是在一定范围内,某些确定的、不同的对象的全体构成的一个集合。
集合的表示有列举法、描述法和图示法三种方式。
其中,列举法是指通过列举集合中的元素来表示集合,描述法是通过一个代表元和一条满足该元素的性质来表示集合,而图示法则是通过数轴或Venn图来表示集合。
常用的数集有自然数集、正整数集、整数集、有理数集和实数集。
元素与集合的关系有属于和不属于两种情况,而集合相等则是指两个集合所含元素完全相同。
集合可以分为有限集、无限集和空集三种类型。
子集、全集和补集是集合中常用的概念。
子集指的是一个集合中的任一元素都属于另一个集合,而真子集则是指一个集合是另一个集合的子集,但不相等。
补集是指一个集合中不属于另一个集合的所有元素构成的集合。
交集是指两个集合中共有的元素构成的集合,而并集则是指两个集合中所有的元素构成的集合。
区间则是指在实数轴上的一段连续区域,包括闭区间、开区间、半开半闭区间和无限区间等。
函数是数学中的重要概念之一,它指的是一种将一个集合中的元素映射到另一个集合中的元素的关系。
函数的定义包括定义域、值域和对应法则等。
函数可以用图像、符号和表格等方式表示。
1.定义如果对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B。
函数包括三个要素:定义域、值域和对应法则。
2.函数定义域对于分式函数f(x),定义域是使分母不为零的一切实数;对于偶次根式f(x),定义域是使被开方式为非负值时的实数的集合;对于对数函数,真数大于零;对于指数函数或对数函数的底数中含变量时,底数须大于零;对于tanx函数,x不等于kπ+π(k∈Z);零(负)指数幂的底数不能为零。
对于由有限个基本初等函数的四则运算而合成的函数f(x),其定义域一般是各基本初等函数的定义域的交集。
高中数学必修一知识点总结(学习笔记)
数学笔记必修一第一章:集合第一节:集合的含义及表示一、定义:(描述性)一定范围内,某些确定.的..、不.同.的.对象的全.体.构成一个集合二、表示:1.列举法:A={a 、b}2.描述法:{ x|p (x)}代表元分割线代表元满足的性质3.图示法:(数轴、Venn 图)三、特点:确定性、互异性、无序性四、常用数集N 自然数集N 、N 正整数集Z 整数集Q 有理数集R 实数集五、元素与集合的关系a M 、 a M (两者必居其一)六、集合相等两个集合所含元素完全相同 A B七、集合的分类1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含有任何元素的集合第二节:子集、全集、补集一)子集、定义(文字)A中的任一元素都属于 B(符号) A B (或 B A)二)真子集、定义(文字) A B,且 B 中至少有一元素不属于 A(符号)A B(或 B A)图形)注意空集是任何非.空.集.合.的真子集A(A为非空子集)(三)补集一、定义(文字)设 A U ,由U中不属于 A 的所有元素组成的集合称为U 的子集 A 的补集(符号)e U A={ x|x U ,且x A}第二节:子集、全集、补集(一)交集一、定义(文字)由所有属于集合 A 且.属于集合 B 的元素构成的集合称为A 与B 的交集图形)二)并集、定义(文字)由所有属于集合 A 或.者.属于集合 B 的元素构成的集合称为 A 与 B 的交集(符号) {x| x A,或.x B}图形)1(三)区间设 a , b 是两个实数,且 a b ,规定闭区间 a x b [a,b] ;开区间 a x b ( a,b);半开半闭区间(左闭右开) a x b [ a,b)(左开右闭) a x b (a,b] x a, x a, x b, x b[a, ),(a, ),( ,b],( ,b).对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须 a b ,(前者可以不成立,为空集;而后者必须成立)第二章:函数第一节:函数的概念一、定义:二、三要素:定义域、值域和对应法则三、相同函数:定义域相同,且对应法则也相同的两个函数四、函数定义域:1. f (x)是分式函数时,定义域是使分母不为零的一切实数.2.f (x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.3.对数函数的真数大于零4.对数或指数函数的底数中含变量时,底数须大于零5. y tanx中,x k (k Z) .26.零(负)指数幂的底数不能为零.7.若 f ( x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.8.对于求复合函数定义域问题,一般步骤是:若已知f (x)的定义域为[ a, b ] ,其复合函数f[g(x)] 的定义域应由不等式 a g(x) b 解出.9.对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.10.由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.五、求函数值域(最值) :1.观察法:初等坐标函数2.配方法:二次函数类3. 判别式法:二次函数类b2( y) 4a(y) c(y) 04.不等式法:基本不等式5.换元法:变量代换、三角代换6.数形结合法:函数图象、几何方法7.函数的单调性法.8.分离常数法: 反比例类六、函数的表示方法:解析法列表法图象法(不是所有函数都有图像)七、分段函数八、复合函数九、求函数解析式1.配凑(换元)法2.待定系数法: 已知函数模型3.方程组法: 互为相反数、互为倒数第二节:函数的简单性质(一)、单调性一、定义如果对于属于定义域I 内某个区间上的任意两个自变量的值x1、x2,当x.1.<.x.2.时,都有f.(x..1.).<.f.(x..2.).,那么就说f(x)在这个区间上是增.函.数..y=f(X)f(x1 )x2x1当x.1.<.x.2.时,都有f.(x..1.).>.f.(x..2.).,那么就说f(x)在这个区间上是减.函.数..x 1 注意1. 不在区.间.内谈单调增或单调减都无意义2. 端点不计入区间3. 一般情况下单调区间不能并4. 单调区间≠区间单调二、证明1. 任取2. 作差3. 变形4. 定号5. 下结论三、证明1. 定义2. 初等坐标函数、已知函数3. 函数图象(某个区间图象)4. 复合函数:同増异减 (二)、最值 、定义1)一般地,设函数 y f (x)的定义域为 I ,如果存在实数 M x 2y=f(X满足:① 对于任意的x I ,都有 f ( x) M② 存在x0 I ,使得f(x0) M .那么,我们称M 是函数 f (x) 的最大值,记作f max (x) M .(2) 一般地,设函数y f (x)的定义域为I ,如果存在实数满足:①对于任意的x I ,都有 f( x) m②存在x0 I ,使得 f (x0)m .那么,我们称m是函数 f (x) 的最小值,记作f max(x) m .注意: 开区间无最值二、题型定函数动区间动函数定区间注意: 抓住对称轴和区间的相对关系(二)、奇偶性、定义1)如果对于函数f(x) 定义域内任意一个x,都有f.(.-.x.).=.-.f.(x.) 那么函数f(x) 叫做奇.函.数..2)如果对于函数f(x) 定义域内任意一个x,都有f.(.-.x.).=.f.(.x).那么函数f(x) 叫做偶.函.数..二、证明1.定义域f(x) 的定.义.域.为——任意的x——2.f( -x)与f(x)3.下结论正确——严格证明错误——举出反例奇函数偶函数既奇又偶函数非奇非偶函数两个反例1.分段函数要分段讨论2.0 可单独讨论3. 若函数 f ( x)为奇函数,且在x 0处有定义,则f(0) 0三、应用1. 定义(一般到一般)2. 代“ 0”(特殊到一般)需检验四、奇偶性若奇函数在(a,b)上单调增,则在(-a ,-b )上单调增若偶函数在(a,b)上单调增,则在(-a ,-b )上单调减第三节:映射的概念一、定义设A、B是两个非.空.集合,如果按照某种对应法则f ,对于集合A中任.何.一.个.元素,在集合 B 中都有唯.一.的元素和它对应,那么这样的对应叫做集合A到B的映射,记作 f :A B B可用树状图考虑第三章:指数函数、对数函数和幂函数第一节:指数函数一)、根式 、定义当 n 是奇数时, a 的 n 次方根用符号 na 表示;当n 是偶数时, 正数a 的正的 n 次方根用符号 na 表示,负的 n 次方根用符号 na 表示;0的 n 次方根是 0;负数 a 没有 n 次方根.根指数被开方数当 n 为奇数时, a 为任意实数;当 n 为偶数时, a 0 . 、性质:n an |a|a (a 0)(na)na ;当n 为奇数时, na na ;当n 为 a (a 0)偶数时,三、分数指数幂根式na1.a r a s a r s(a 0,r, s R)2.(a r)s a rs (a 0,r,s R)3.(ab)r a r b r (a 0,b 0,r R) (二)指数函数一、定义二、图像与性质三、图像移动及解析式变化平移变换y f (x)h h 00,右,移 |hh|个单位 y f (x h) y f(x) k k00,下,移| kk|个单位 y f (x) k伸缩变换y f ( x) 1,缩y f ( x ) y f(x) 0A A 11,伸,缩 y Af (x)对称变换去掉y 轴左边图象y f(x)保留y 轴右边图象,并作其关于 y 轴对称图象y f (| x|)保留x 轴上方图象y f (x)将x 轴下方图象翻折上去y | f (x) |四、指数型复合函数换元 取值范围、单调性同增异减初级坐标函数 值域、单调性五、指数函数的应用1. 审题 归纳2. 建模 注意定义域 “指数型函数”模型3. 求解(解模)4. 还原(结论——答)y f ( x)x 轴y f (x) y f ( x)y 轴y f ( x)原点y f (x)原点yf直线 y x 直线 y x 1y f ( x)y f (x)1. 每一个步骤读一遍题2. 注意定义域、精确度第二节:对数函数一)对数 、定义如果 a (.a .>.0.,.a .≠.1.).的 b 次幂等于 N 即 a b=N 那么就称 b 是以 a 为底 N 的对数 记作 log a N=b底数 真数.、互化对数 底数 真数 底数 指数 幂 根指数 被开方数 方根三、常用对数与自然对数常用对数: lg N ,即 log 10 N ;自然对数: lnN ,即 log e N (其中 e 2.71828⋯).四、运算1. 加法: log a M log a N log a (MN )2. 减法: log aM log aN log aMN3. 数乘: n log a M log a M n(n R)4.alog aN N5. log a bM n nlog aM (b 0,n R) a bb a6. 换底公式: log aN logb N(b 0,且b 1) log b a(二)对数函数一、定义x x logx a N a N a aN x a x Nax x aN aN (x a a N a N a aaN xN N na a a x Na N、图像与性质三、题型1. 比较大小①利用单调性②利用图像(真数相同)③利用中间值2. 解不等式3.求值4.判断奇偶性第三节:幂函数、定义、图像与性质定义域:(0, ) 一定有定义过定点:(1,1) .单调性:[0, ) 上0 ,过原点、(0, ) 上为增函数.a=0,常函数0,(0, )上为减函数,在第一象限内,图象无限接近x 轴与y 轴.奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当q(其中p,q互质,p和q Z ),若p为奇数q为奇数时,pq则y x p是奇函数,q若p 为奇数q 为偶数时,则y x p是偶函数,q若p 为偶数q 为奇数时,则y x p是非奇非偶函数.图象特征:幂函数y x , x (0, ) ,当1时,若0 x 1,其图象在直线y x 下方,若x 1,其图象在直线y x 上方,当1时,若0 x 1,其图象在直线y x 上方,若x 1,其图象在直线y x 下方.第四节:函数的应用(一)、零点一、定义对于函数y f (x)(x D),把使f(x) 0 成立的实数x叫做函数y f(x)(x D) 的零点二、意义函数y f(x)的零点方程 f (x) 0实数根函数y f (x) 的图象与x轴交点的横坐标1. 零点不是点2. 穿过零点,y 值变号y 值变号,穿过零点(图像.连.续.不.断.)三、求法1.(代数法)① 证单调区间② 零点定理1.(几何法) 交点(二)、零点定理一、定义设函数f(x) 在闭区间[a,b] 上连.续.,且f(a) ×f(b)<0 ,那么在开区间( a,b )内至少有函数f(x) 的一个零点二、应用(二次函数的实根分布)已知二次函数 f (x) ax2 bx c (a> 0)设一元二次方程ax2 bx c 0((a a0>)0)的两实根为x1,x2 ,① k< x1≤ x2>02af(k) > 0②x1≤x2<kf(k) >③x1<k<x2f(k) <0④k 1<x 1≤x 2<k 2>0f (k 1) > 0 f (k 2) > 0 k 1<x b<k 22a⑤k 1< x 1<k 2f (k1) > 0 f (k 2)<0y a 0 f (k 1) 0f (k 2 ) 0。
(完整版)新人教版高中数学课堂笔记必修一
第一章集合与函数概念第一节集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}4)V enn图:4、集合的分类:有限集含有有限个元素的集合(1)无限集含有无限个元素的集合(2)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSxx∉∈且第二节函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
完整版新人教版高中数学课堂笔记必修一
完整版新人教版高中数学课堂笔记必修一一、函数与三角函数1.1 函数的基本概念定义1.1.1:函数从一个集合A中的每一个元素a,都唯一地对应到另一个集合B中的一个元素f(a),则称这样的对应f为一个函数。
定义1.1.2:自变量和因变量在函数f中,元素a称为自变量,元素f(a)称为因变量。
定义1.1.3:定义域和值域f的定义域是由自变量构成的集合A,f的值域是由因变量构成的集合B。
1.2 函数的表示方法1.2.1 显式表示法在一个函数的定义域内,用公式或者算式来表示函数的因变量和自变量之间的关系。
例如,函数f(x)=x^2-2x+1就是一个用显式表示法表示的函数。
1.2.2 隐式表示法在一个函数的定义域内,无法用公式或者算式来表示函数的因变量和自变量之间的关系,只能通过复杂的方程或者不等式来描述函数。
例如,方程x^2+y^2=1就是一个用隐式表示法表示的函数。
1.2.3 参数表示法在一个函数的定义域内,用一个参数表示函数的因变量和自变量之间的关系。
例如,函数f(x)=sin(x)就是一个用参数表示法表示的函数,其中sin是一个参数。
1.2.4 函数图像函数图像是函数在坐标系中的图形。
如果函数的定义域和值域都是实数集合,那么可以用二维笛卡尔坐标系来表示函数的图像。
例如,函数f(x)=x^2-2x+1的图像是一条开口向上的抛物线。
1.3 三角函数1.3.1 弧度制弧度(radian)是表示角度大小的一种单位。
一弧度表示角度中圆心角对应的弧长等于半径的长度。
例如,一个半径为1的圆的周长是2π,那么一弧度对应的角度大小就是360°/2π≈57.3°。
1.3.2 三角函数的定义令在单位圆上顺时针旋转的角度为θ,则定义三角函数为:sinθ=纵坐标(y)cosθ=横坐标(x)tanθ=纵坐标(y)/横坐标(x)cotθ=横坐标(x)/纵坐标(y)secθ=1/cosθcscθ=1/sinθ1.3.3 三角函数的基本关系式sin^2θ+cos^2θ=1tanθ=sinθ/cosθcotθ=1/tanθ1.3.4 三角函数的性质周期性:sin(x+2π)=sinx,cos(x+2π)=cosx,tan(x+π)=tanx,cot(x+π)=cotx。
高二年级数学必修一知识点笔记
高二年级数学必修一知识点笔记(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二年级数学必修一知识点笔记本店铺为各位同学整理了《高二年级数学必修一知识点笔记》,希望对你的学习有所帮助!1.高二年级数学必修一知识点笔记篇一空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)2.高二年级数学必修一知识点笔记篇二一、充分条件和必要条件当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数概念第一节集合一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}⑶元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3. 集合的表示:{…}如:{我校的篮球队员}, {太平洋,大西洋, 印度洋,北冰洋}(1) 用拉丁字母表示集合:A={ 我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集N* 或N+ 整数集Z 有理数集Q 实数集R或B A2 •“相等”关系:A=B (5 >5,且5 <5,则5=5)实例:设A={x|x 2-仁0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A A②真子集:如果A B,且A B那就说集合A是集合B的真子集, 记作A亠B(或B「A)③如果A B, B C ,那么A C④如果A B 同时B A那么A=B3.不含任何元素的集合叫做空集,记为①规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算第二节函数的有关概念1 .函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f : A - B为从集合A到集合B 的一个函数.记作:y=f(x) ,x € A .其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x € A }叫做函数的值域.1 .定义域:能使函数式有意义的实数x的集合称为函数的定义域求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于1.⑸如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合•(6) 指数为零底不可以等于零,(7) 实际问题中的函数的定义域还要保证实际问题有意义相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2 •值域:先考虑其定义域(1) 观察法⑵配方法(3) 代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x € A)中的x 为横坐标,函数值y为纵坐标的点P(x , y)的集合C,叫做函数y=f(x),(x € A)的图象.C上每一点的坐标(x , y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.⑵画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4 •区间的概念(1 )区间的分类:开区间、闭区间、半开半闭区间(2 )无穷区间(3)区间的数轴表示.5 •映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f: A B为从集合A到集合B的一个映射。
记作“ f (对应关系):A (原象) B (象)”对于映射f: A-B来说,则应满足:(1) 集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2) 集合A中不同的元素,在集合B中对应的象可以是同一个;(3) 不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数(1) 在定义域的不同部分上有不同的解析表达式的函数。
(2) 各部分的自变量的取值情况.(3) 分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数如果y=f(u)(u € M),u=g(x)(x € A),贝U y=f[g(x)]=F(x)(x € A) 称为f、g的复合函数。
第三节函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量X1,X2,当X1<X2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值X1 , X2,当X1<X 2时, 都有f(x 1) >f(x 2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2 )图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:。
任取X1,X2 € D,且X1<x 2;© 作差f(x 1)—f(x 2);◎变形(通常是因式分解和配方);©定号(即判断差f(x 1) —f(X2)的正负);5©下结论(指出函数f(x) 在给定的区间D 上的单调性).(B) 图象法(从图象上看升降)(C) 复合函数的单调性复合函数f[g(x) ]的单调性与构成它的函数u=g(x) ,y=f(u) 的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)( 1 )偶函数一般地,对于函数f(x)的定义域内的任意一个X,都有f( —x)=f(x), 那么f(x) 就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f( —x)=—f(x) ,那么f(x) 就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:1©首先确定函数的定义域,并判断其是否关于原点对称;2©确定f( —x) 与f(x) 的关系;3©作出相应结论:若f( —x) = f(x) 或f( —x) —f(x) = 0 ,则f(x) 是偶函数;若f( —x) = —f(x)或f( —x) + f(x) = 0 ,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2) 由f(-x) ±f(x)= 0或f(x) /f(-x)= ±1来判定; (3)利用定理,或借助函数的图象判定. 9、函数的解析表达式(1) .函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2 )求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法10 •函数最大(小)值(定义见课本 p36页)Q 利用二次函数的性质(配方法)求函数的最大(小)值◎利用图象求函数的最大(小)值◎利用函数单调性的判断函数的最大(小)值:如果函数y=f (x )在区间[a , b ]上单调递增,在区间[b , c ]上单调 递减则函数y=f (x )在x=b 处有最大值f (b );如果函数y=f (x )在区间[a , b ]上单调递减,在区间[b , c ]上单调 递增则函数y=f (x )在x=b 处有最小值f (b );第二章 基本初等函数、指数函数(一)指数与指数幕的运算1 •根式的概念:一般地,如果x n a ,那么x 叫做a 的n 次方根, 其中n >1,且n € N2 •分数指数幕正数的分数指数幕的意义,规定:mn-a m (a 0, m,n N ,n 1)负数没有偶次方根;o 的任何次方根都是o ,记作n o当n 是奇数时,n 、a n a ,当n 是偶数时,n a n |a|a (a a (a。
0) 0)a71 *(a 0,m,n N ,n 1) n m、a0的正分数指数幕等于0, 0的负分数指数幕没有意义3 •实数指数幕的运算性质(1 )r ra .a r sa(a0,r,sR);(a r)s rs(2)a(a0,r,sR);(3)(ab)r r s a a(a0,r,s R)•(二)指数函数及其性质1、指数函数的概念:一般地,函数y a x(a 0,且a 1)叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和 1 .2、指数函数的图象和性质注意:禾I」用函数的单调性,结合图象还可以看出:(1 )在[a,b] 上, f(x) a x(a 0 且 a 1)值域是[f(a),f(b)]或[f(b),f(a)];(2 )若x 0,则f (x) 1 ; f (x)取遍所有正数当且仅当x R ;(3)对于指数函数f(x) a x(a 0且a 1),总有f(1) a ;、对数函数(一)对数1 .对数的概念:一般地,如果a x N (a 0,a 1),那么数x叫做以a为底N的对数,记作:x log a N ( a —底数,N —真数, log a N —对数式)说明:。
注意底数的限制a 0,且a 1;© a x N log a N x ;lOga N①注意对数的书写格式.两个重要对数:©常用对数:以10为底的对数lg N ;©自然对数:以无理数e 2.71828为底的对数的对数In N .指数式与对数式的互化幕值真数a b= N log a N = b底数指数对数(二)对数的运算性质如果a 0,且a 1,M 0,N 0,那么:© log a (M -N) log a M + log a N ;© log a M log a M —log a N ;N© log a M n n log a M (n R).注意:换底公式log a b log c b ( a 0,且 a 1 ;c 0,且c 1 ;log c a利用换底公式推导下面的结论n i(1 )log a m b n log a b ; (2)log a bm log b a(三)对数函数1、对数函数的概念:函数y log a X(a 0,且a 1)叫做对数函数, 其中x是自变量,函数的定义域是(0, + %).注意:©对数函数的定义与指数函数类似,都是形式定义,注意辨别。