133比热容件
金属材料常用数据

常用数据:金属材料熔点、热导率及比热容常用法定计量单位及换算关系弹簧钢(GB122—84)合金结构钢(GB3077—82)、不锈钢棒(GB1220—84)注:1. 表中合金结构钢HB*系YB6——71规定的硬度值,不锈钢棒HB*为GB1220-84规定的硬度值。
2. 表中1Cr13、2Cr13、3Cr13钢和Cr19和Ni19钢的数据分别适用于直径、边长、内切圆直径厚度≤75mm和≤180mm钢棒。
球墨铸铁(GB1348—88)注:牌号无后面字母A,表示牌号系由单铸试块测定的机械性能。
牌号后面具有字母A,表示牌号系由附铸试块测定的机械性能,这些牌号适用于质量大于2000kg及壁厚在30~200mm的球软件。
灰铸铁(GB 9439—88)注:灰铸铁的硬度,系由经验关系式计算,即,当σb ≥196Mpa 时,HB=RH(100+0.438σb )。
RH 一般取o.80~1.20冷轧钢板和钢带(GB708-88)注:钢板宽度系列为600,650,700,710,750~1000(50进位),1250,1400,1420,1500~3000(100进位),3200~380(200进位。
)热轧圆钢和方钢尺寸(GB702-86)注:1.本标准适用于直径为5.5~250mm 的热轧圆钢和边长为5.5~200mm 的热轧方钢。
2.各种直径优质钢的长度为2~6m;普通钢的长度当直径或边长小于25mm 时为4~10m.3.表中带*者不推荐使用。
注:1. 角钢长度为:角钢号2~9,长度量10~14,长度4~19m 。
2.d r 311=热轧槽钢(GB707-88)W x , W y ——截面系数 标记示例: 热轧槽钢8870023588707970180-----⨯⨯GB A Q GB(碳素结构钢Q235-A ,尺寸为180×70×9mm )11注:槽钢长度:槽钢号8,长度5~12m; 槽钢号10~18,长度5~19m ;槽钢号20~32,长度6~19m 。
北航航空发动机原理3大作业

航空发动机原理Ⅲ大作业—发动机设计点热力计算学院能源与动力工程学院一. 设计要求1.完成一台发动机的设计点热力计算1)完成发动机循环参数的选取2)完成发动机各部件设计参数(包括冷却空气量及其分配关系)的选取3)说明以上参数选取的具体理由和依据4)完成发动机各部件进出口截面参数(流量总)完成发动机各部件进出口截面参数(流量、总温、总压)的计算5)完成发动机总性能(推力、耗油率)的计算,并满足给定的要求(误差并满足给定的要求(误差±2%)2.题目:分排涡扇发动机,高度11km,马赫数0.8,标准大气条件下,发动机推力2500daN,耗油率耗油率0.6kg/(daN.h)二.设计参数1. 设计点参数设计点物性参数空气比热Cp:1.005KJ/Kg燃气比热Cpg:1.244KJ/Kg空气绝热指数k:1.4燃气绝热指数kg:1.33气体常数R:287J/Kg.K燃油低热值Hu:42900KJ/Kg2.发动机参数(资料参考)发动机型号涵道比总压比巡航耗油率空气流量风扇直径m3.设计点飞行条件4.部件效率和损失系数三.循环参数的初步选取范围1.涵道比随着涵道比B的增加,当单位推力一定时,存在最佳涵道比B opt,使sfc达到最小值,而T t4随涵道比单调增加,因此B过大或者过小会使sfc达不到要求,且B过大会使涡轮前温度超温,当单位推力较小时,sfc随B的变化曲线在B opt附近较为平坦,因此减小B,并不严重增加sfc,但可使涡轮前总温T t4显著降低。
根据资料查得的发动机参数,初始可取涵道比B=6~12。
2.涡轮前温度T t4根据现有涡轮材料和冷却技术水平,涡轮前温度最高能达到2200K,且在亚声速飞行时,涡轮前温度过高会使耗油率增加。
根据现有发动机参数,选取涡轮前温度T t4=1500~1650K。
3.风扇增压比风扇增压比一般随涵道比增加而降低,对于涵道比为B=6~10的涡扇发动机,一般取πcL= 1.4~1.8。
常用高分子材料性能检测国家标准

常用高分子材料性能检测国家标准1 GB/T 1033-1986 塑料密度和相对密度试验方法2 GB/T 1034-1998 塑料吸水性试验方法3 GB/T 1036-1989 塑料线膨胀系数测定方法4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法6 GB/T 1039-1992 塑料力学性能试验方法总则7 GB/T 1040-1992 塑料拉伸性能试验方法8 GB/T 1041-1992 塑料压缩性能试验方法9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法11 GB/T 固体绝缘材料电气强度试验方法工频下的试验13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验16 GB/T 1446-2005 纤维增强塑料性能试验方法总则17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法20 GB/T 纤维增强塑料层间剪切强度试验方法21 GB/T 纤维增强塑料冲压式剪切强度试验方法22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法25 GB/T 1462-2005 纤维增强塑料吸水性试验方法26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定28 GB/T 塑料负荷变形温度的测定第1部分:通用试验方法29 GB/T 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料30 GB/T 塑料负荷变形温度的测定第3部分:高强度热固性层压材料31 GB/T 1636-1979 模塑料表观密度试验方法32 GB/T 1843-1996 塑料悬臂梁冲击试验方法33 GB/T 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能34 GB/T 塑料及树脂缩写代号第二部分:填充及增强材料35 GB/T 塑料及树脂缩写代号第三部分:增塑剂36 GB/T 2035-1996 塑料术语及其定义37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法40 GB/T 2409-1980 塑料黄色指数试验方法41 GB/T 2410-1980 透明塑料透光率和雾度试验方法42 GB/T 2411-1980 塑料邵氏硬度试验方法43 GB/T 塑料聚丙烯(PP)模塑和挤出材料第2部分:试样制备和性能测定44 GB/T 2547-1981 塑料树脂取样方法45 GB/T 2572-2005 纤维增强塑料平均线膨胀系数试验方法46 GB/T 2573-1989 玻璃纤维增强塑料大气暴露试验方法47 GB/T 2574-1989 玻璃纤维增强塑料湿热试验方法48 GB/T 2575-1989 玻璃纤维增强塑料耐水性试验方法49 GB/T 2576-2005 纤维增强塑料树脂不可溶分含量试验方法50 GB/T 2577-2005 玻璃纤维增强塑料树脂含量试验方法51 GB/T 2578-1989 纤维缠绕增强塑料环形试样制作方法52 GB/T 2913-1982 塑料白度试验方法53 GB/T 2914-1999 塑料氯乙烯均聚和共聚树脂挥发物(包括水)的测定54 GB/T 2916-1997 塑料氯乙烯均聚和共聚树脂用空气喷射筛装置的筛分析55 GB/T 2918-1998 塑料试样状态调节和试验的标准环境56 GB/T 3139-2005 纤维增强塑料导热系数试验方法57 GB/T 3140-2005 纤维增强塑料平均比热容试验方法58 GB/T 3354-1999 定向纤维增强塑料拉伸性能试验方法59 GB/T 3355-2005 纤维增强塑料纵横剪切试验方法60 GB/T 3356-1999 单向纤维增强塑料弯曲性能试验方法61 GB/T 3365-1982 碳纤维增强塑料孔隙含量检验方法(显微镜法)62 GB/T 3366-1996 碳纤维增强塑料纤维体积含量试验方法63 GB/T 3398-1982 塑料球压痕硬度试验方法64 GB/T 3399-1982 塑料导热系数试验方法护热平板法65 GB/T 3400-2002 塑料通用型氯乙烯均聚和共聚树脂室温下增塑剂吸收量的测定66 GB/T 塑料氯乙烯均聚和共聚树脂第1部分:命名体系和规范基础67 GB/T 3403-1982 氨基模塑料命名68 GB/T 3681-2000 塑料大气暴露试验方法69 GB/T 3682-2000 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定70 GB/T 3807-1994 聚氯乙烯微孔塑料拖鞋71 GB/T 3854-2005 增强塑料巴柯尔硬度试验方法72 GB/T 3855-2005 碳纤维增强塑料树脂含量试验方法73 GB/T 3856-2005 单向纤维增强塑料平板压缩性能试验方法74 GB/T 3857-2005 玻璃纤维增强热固性塑料耐化学介质性能试验方法75 GB/T 3960-1983 塑料滑动摩擦磨损试验方法76 GB/T 3961-1993 纤维增强塑料术语77 GB/T 4170-1984 塑料注射模具零件技术条件78 GB/T 4217-2001 流体输送用热塑性塑料管材公称外径和公称压力79 GB/T 4550-2005 试验用单向纤维增强塑料平板的制备80 GB/T 4610-1984 塑料燃烧性能试验方法点着温度的测定81 GB/T 4616-1984 酚醛模塑料丙酮可溶物(未模塑态材料的表观树脂含量)的测定82 GB/T 4944-2005 玻璃纤维增强塑料层合板层间拉伸强度试验方法83 GB/T 5258-1995 纤维增强塑料薄层板压缩性能试验方法84 GB/T 5349-2005 纤维增强热固性塑料管轴向拉伸性能试验方法85 GB/T 5350-2005 纤维增强热固性塑料管轴向压缩性能试验方法86 GB/T 5351-2005 纤维增强热固性塑料管短时水压失效压力试验方法87 GB/T 5352-2005 纤维增强热固性塑料管平行板外载性能试验方法88 GB/T 5470-1985 塑料冲击脆化温度试验方法89 GB/T 5471-1985 热固性模塑料压塑试样制备方法90 GB/T 5472-1985 热固性模塑料矩道流动固化性试验方法91 GB/T 5478-1985 塑料滚动磨损试验方法92 GB/T 5563-1994 橡胶、塑料软管及软管组合件液压试验方法93 GB/T 5564-1994 橡胶、塑料软管低温曲挠试验94 GB/T 5565-1994 橡胶或塑料软管及纯胶管弯曲试验95 GB/T 5566-2003 橡胶或塑料软管耐压扁试验方法96 GB/T 5567-1994 橡胶、塑料软管及软管组合件真空性能的测定97 GB/T 5568-1994 橡胶、塑料软管及软管组合件无屈挠液压脉冲试验98 GB/T 6011-2005 纤维增强塑料燃烧性能试验方法炽热棒法99 GB/T 6111-2003 流体输送用热塑性塑料管材耐内压试验方法100 GB/T 6342-1996 泡沫塑料与橡胶线性尺寸的测定101 GB/T 6343-1995 泡沫塑料和橡胶表观(体积)密度的测定102 GB/T 塑料聚苯乙烯(PS)模塑和挤出材料第2部分: 试样制备和性能测定103 GB/T 6670-1997 软质聚氨酯泡沫塑料回弹性能的测定104 GB/T 6671-2001 热塑性塑料管材纵向回缩率的测定105 GB/T 6672-2001 塑料薄膜和薄片厚度测定机械测量法106 GB/T 6673-2001 塑料薄膜和薄片长度和宽度的测定107 GB/T 7129-2001 橡胶或塑料软管容积膨胀的测定108 GB/T 7139-2002 塑料氯乙烯均聚物和共聚物氯含量的测定109 GB/T 7141-1992 塑料热空气暴露试验方法110 GB/T 7142-2002 塑料长期热暴露后时间-温度极限的测定111 GB/T 玻璃纤维增强塑料冷却塔第1部分:中小型玻璃纤维增强塑料冷却塔112 GB/T 玻璃纤维增强塑料冷却塔第2部分:大型玻璃纤维增强塑料冷却塔113 GB/T 7559-2005 纤维增强塑料层合板螺栓连接挤压强度试验方法114 GB/T 7948-1987 塑料轴承极限PV试验方法115 GB/T 8323-1987 塑料燃烧性能试验方法烟密度法116 GB/T 8324-1987 模塑料体积系数试验方法117 GB/T 8332-1987 泡沫塑料燃烧性能试验方法水平燃烧法118 GB/T 8333-1987 硬泡沫塑料燃烧性能试验方法垂直燃烧法119 GB/T 8802-2001 热塑性塑料管材、管件维卡软化温度的测定120 GB/T 热塑性塑料管材拉伸性能测定第1部分:试验方法总则121 GB/T 热塑性塑料管材拉伸性能测定第2部分: 硬聚氯乙烯(PVC-U)、氯化聚氯乙烯(PVC-C)和高抗冲聚氯乙烯(PVC-HI)管材122 GB/T 热塑性塑料管材拉伸性能测定第3部分:聚烯烃管材123 GB/T 8805-1988 硬质塑料管材弯曲度测量方法124 GB/T 8806-1988 塑料管材尺寸测量方法125 GB/T 8807-1988 塑料镜面光泽试验方法126 GB/T 8808-1988 软质复合塑料材料剥离试验方法127 GB/T 8809-1988 塑料薄膜抗摆锤冲击试验方法128 GB/T 8810-1988 硬质泡沫塑料吸水率试验方法129 GB/T 8810-2005 硬质泡沫塑料吸水率的测定130 GB/T 8811-1988 硬质泡沫塑料尺寸稳定性试验方法131 GB/T 8812-1988 硬质泡沫塑料弯曲试验方法132 GB/T 8813-1988 硬质泡沫塑料压缩试验方法133 GB/T 8815-2002 电线电缆用软聚氯乙烯塑料134 GB/T 8846-1988 塑料成型模具术语135 GB/T 8846-2005 塑料成型模术语136 GB/T 8924-2005 纤维增强塑料燃烧性能试验方法氧指数法137 GB/T 9341-2000 塑料弯曲性能试验方法138 GB/T 9342-1988 塑料洛氏硬度试验方法139 GB/T 9343-1988 塑料燃烧性能试验方法闪点和自燃点的测定140 GB/T 9345-1988 塑料灰分通用测定方法141 GB/T 9350-2003 塑料氯乙烯均聚和共聚树脂水萃取液pH值的测定142 GB/T 9352-1988 热塑性塑料压缩试样的制备143 GB/T 9572-2001 橡胶和塑料软管及软管组合件电阻的测定144 GB/T 9573-2003 橡胶、塑料软管及软管组合件尺寸测量方法145 GB/T 9575-2003 工业通用橡胶和塑料软管内径尺寸及公差和长度公差146 GB/T 9639-1988 塑料薄膜和薄片抗冲击性能试验方法自由落镖法147 GB/T 9641-1988 硬质泡沫塑料拉伸性能试验方法148 GB/T 9647-2003 热塑性塑料管材环刚度的测定149 GB/T 9979-2005 纤维增强塑料高低温力学性能试验准则150 GB/T 10006-1988 塑料薄膜和薄片摩擦系数测定方法151 GB/T 10007-1988 硬质泡沫塑料剪切强度试验方法152 GB/T 10009-1988 丙烯腈-丁二烯-苯乙烯(ABS)塑料挤出板材153 GB/T 10703-1989 玻璃纤维增强塑料耐水性加速试验方法154 GB/T 10798-2001 热塑性塑料管材通用壁厚表155 GB/T 10799-1989 硬质泡沫塑料开孔与闭孔体积百分率试验方法156 GB/T 10802-1989 软质聚氨酯泡沫塑料157 GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法158 GB/T 11546-1989 塑料拉伸蠕变测定方法159 GB/T 11547-1989 塑料耐液体化学药品(包括水)性能测定方法160 GB/T 11548-1989 硬质塑料板材耐冲击性能试验方法(落锤法)161 GB/T PVC 塑料窗力学性能、耐候性技术条件162 GB/T PVC 塑料窗力学性能、耐候性试验方法163 GB/T 11997-1989 塑料多用途试样的制备和使用164 GB/T 11998-1989 塑料玻璃化温度测定方法热机械分析法165 GB/T 11999-1989 塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法166 GB/T 12000-2003 塑料暴露于湿热、水喷雾和盐雾中影响的测定167 GB/T 未增塑聚氯乙烯窗用模塑料第3部分:性能试验方法168 GB/T 12003-1989 塑料窗基本尺寸公差169 GB/T 12027-2004 塑料薄膜和薄片加热尺寸变化率试验方法170 GB/T 12584-2001 橡胶或塑料涂覆织物低温冲击试验171 GB/T 12586-2003 橡胶或塑料涂覆织物耐屈挠破坏性的测定172 GB/T 12587-2003 橡胶或塑料涂覆织物抗压裂性的测定173 GB/T 12588-2003 塑料涂覆织物聚氯乙烯涂覆层融合程度快速检验法174 GB/T 12600-2005 金属覆盖层塑料上镍+铬电镀层175 GB/T 12722-1991 橡胶和塑料软管组合件屈挠液压脉冲试验(半Ω试验)176 GB/T 12811-1991 硬质泡沫塑料平均泡孔尺寸试验方法177 GB/T 12812-1991 硬质泡沫塑料滚动磨损试验方法178 GB/T 12833-1991 橡胶和塑料撕裂强度及粘合强度多峰曲线的分析方法179 GB/T 12949-1991 滑动轴承覆有减摩塑料层的双金属轴套180 GB/T 13022-1991 塑料薄膜拉伸性能试验方法181 GB/T 拉挤玻璃纤维增强塑料杆拉伸性能试验方法182 GB/T 拉挤玻璃纤维增强塑料杆弯曲性能试验方法183 GB/T 拉挤玻璃纤维增强塑料杆面内剪切强度试验方法184 GB/T 拉挤玻璃纤维增强塑料杆表观水平剪切强度短梁剪切试验方法185 GB/T 13376-1992 塑料闪烁体186 GB/T 13455-1992 氨基模塑料挥发物测定方法187 GB/T 13525-1992 塑料拉伸冲击性能试验方法188 GB/T 13541-1992 电气用塑料薄膜试验方法189 GB/T 14152-2001 热塑性塑料管材耐外冲击性能试验方法时针旋转法190 GB/T 14153-1993 硬质塑料落锤冲击试验方法通则191 GB/T 14154-1993 塑料门垂直荷载试验方法192 GB/T 14155-1993 塑料门软重物体撞击试验方法193 GB/T 14205-1993 玻璃纤维增强塑料养殖船194 GB/T 14216-1993 塑料膜和片润湿张力试验方法195 GB/T 14234-1993 塑料件表面粗糙度196 GB/T 14447-1993 塑料薄膜静电性测试方法半衰期法197 GB/T 14484-1993 塑料承载强度试验方法198 GB/T 14519-1993 塑料在玻璃板过滤后的日光下间接曝露试验方法199 GB/T 14520-1993 气相色谱分析法测定不饱和聚酯树脂增强塑料中的残留苯乙烯单体含量200 GB/T 14522-1993 机械工业产品用塑料、涂料、橡胶材料人工气候加速试验方法201 GB/T 14694-1993 塑料压缩弹性模量的测定202 GB/T 14904-1994 钢丝增强的橡胶、塑料软管和软管组合件屈挠液压脉冲试验203 GB/T 14905-1994 橡胶和塑料软管各层间粘合强度测定204 GB/T 15047-1994 塑料扭转刚性试验方法205 GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法206 GB/T 15560-1995 流体输送用塑料管材液压瞬时爆破和耐压试验方法207 GB/T 15596-1995 塑料暴露于玻璃下日光或自然气候或人工光后颜色和性能变化的测定208 GB/T 15598-1995 塑料剪切强度试验方法穿孔法209 GB/T 15662-1995 导电、防静电塑料体积电阻率测试方法210 GB/T 15738-1995 导电和抗静电纤维增强塑料电阻率试验方法211 GB/T 15907-1995 橡胶、塑料软管燃烧试验方法212 GB/T 15908-1995 织物增强液压型热塑性塑料软管和软管组合件213 GB/T 15928-1995 不饱和聚酯树脂增强塑料中残留苯乙烯单体含量测定方法214 GB/T 16276-1996 塑料薄膜粘连性试验方法215 GB/T 16419-1996 塑料弯曲性能小试样试验方法216 GB/T 16420-1996 塑料冲击性能小试样试验方法217 GB/T 16421-1996 塑料拉伸性能小试样试验方法218 GB/T 塑料实验室光源曝露试验方法第1部分:通则219 GB/T 塑料实验室光源暴露试验方法第2部分:氙弧灯220 GB/T 塑料实验室光源曝露试验方法第3部分:荧光紫外灯221 GB/T 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯222 GB/T 16578-1996 塑料薄膜和薄片耐撕裂性能试验方法裤形撕裂法223 GB/T 16778-1997 纤维增强塑料结构件失效分析一般程序224 GB/T 16779-1997 纤维增强塑料层合板拉-拉疲劳性能试验方法225 GB/T 热塑性塑料材料注塑试样的制备第1部分;一般原理及多用途试样和长条试样的制备226 GB/T 塑料热塑性塑料材料注塑试样的制备第3部分: 小方试片227 GB/T 塑料热塑性塑料材料注塑试样的制备第4部分: 模塑收缩率的测定228 GB/T 17200-1997 橡胶塑料拉力、压力、弯曲试验机技术要求229 GB/T 17603-1998 光解性塑料户外暴露试验方法230 GB/T 18022-2000 声学 1~10 MHz频率范围内橡胶和塑料纵波声速与衰减系数的测量方法231 GB/T 18042-2000 热塑性塑料管材蠕变比率的试验方法232 GB/T 18252-2000 塑料管道系统用外推法对热塑性塑料管材长期静液压强度的测定233 GB/T 18422-2001 橡胶和塑料软管及软管组合件透气性的测定234 GB/T 18423-2001 橡胶和塑料软管及非增强软管液体壁透性测定235 GB/T 18424-2001 橡胶和塑料软管氙弧灯曝晒颜色和外观变化的测定236 GB/T 18426-2001 橡胶或塑料涂覆织物低温弯曲试验237 GB/T 18743-2002 流体输送用热塑性塑料管材简支梁冲击试验方法238 GB/T 18943-2003 多孔橡胶与塑料动态缓冲性能测定239 GB/T 18949-2003 橡胶和塑料软管动态条件下耐臭氧性能的评定240 GB/T 18950-2003 橡胶和塑料软管静态下耐紫外线性能测定241 GB/T 塑料抗冲击聚苯乙烯(PS-I)模塑和挤出材料第2部分:试样制备和性能测定242 GB/T 19089-2003 橡胶或塑料涂覆织物耐磨性的测定马丁代尔法243 GB/T 19280-2003 流体输送用热塑性塑料管材耐快速裂纹扩展(RCP)的测定小尺寸稳态试验(S4试验)244 GB/T 小艇艇体结构和构件尺寸第1部分:材料:热固性树脂、玻璃纤维增强塑料、基准层合板245 GB/T 塑料差示扫描量热法(DSC)第1部分:通则246 GB/T 塑料差示扫描量热法(DSC)第2部分:玻璃化转变温度的测定247 GB/T 塑料差示扫描量热法(DSC)第3部分:熔融和结晶温度及热焓的测定248 GB/T 塑料可比单点数据的获得和表示第1部分:模塑材料249 GB/T 塑料可比单点数据的获得和表示第2部分:长纤维增强材料250 GB/T 塑料管道系统硬聚氯乙烯(PVC-U)管材弹性密封圈式承口接头偏角密封试验方法251 GB/T 塑料管道系统硬聚氯乙烯(PVC-U)管材弹性密封圈式承口接头负压密封试验方法252 GB/T 19532-2004 包装材料气相防锈塑料薄膜253 GB/T 19603-2004 塑料无滴薄膜无滴性能试验方法254 GB/T 19687-2005 闭孔塑料长期热阻变化的测定实验室加速测试方法255 GB/T 19712-2005 塑料管材和管件聚乙烯(PE)鞍形旁通抗冲击试验方法256 GB/T 19789-2005 包装材料塑料薄膜和薄片氧气透过性试验库仑计检测法257 GB/T 19806-2005 塑料管材和管件聚乙烯电熔组件的挤压剥离试验258 GB/T 19808-2005 塑料管材和管件公称外径大于或等于90mm的聚乙烯电熔组件的拉伸剥离试验259 GB/T 19811-2005 在定义堆肥化中试条件下塑料材料崩解程度的测定260 GB/T 19993-2005 冷热水用热塑性塑料管道系统管材管件组合系统热循环试验方法261 GB/T 20022-2005 塑料氯乙烯均聚和共聚树脂表观密度的测定262 GB/T 20024-2005 内燃机用橡胶和塑料燃油软管可燃性试验方法263 GB/T 20026-2005 橡胶和塑料软管内衬。
2023年中级银行从业资格之中级公司信贷题库附答案

2023年中级银行从业资格之中级公司信贷高分题库附精品答案单选题(共40题)1、贷款银行应根据贷款种类,在()个工作日内,告诉借款单位固定资产投资贷款审批结果。
A.15B.30C.45D.60【答案】 D2、对于长期投资,最适当的融资方式是()。
A.债务融资B.股权性融资C.证券融资D.商业融资【答案】 B3、在现金常规清收中,根据是否诉诸法律,可以将清收划分为()。
A.委托第三方清收和直接追偿清收B.常规清收和直接追偿清收C.常规清收和依法收贷D.依法清收和委托第三方清收【答案】 C4、某公司以上市公司法人股权质押作为贷款担保,则应该以下列哪种价格作为质押品的公允价格?( )A.公司最近一期经审计的财务报告中所写明的上市公司法人股权的净资产价格2500万元B.以公司最近的财务报告为基础,测算公司未来现金流人的现值,所估算的上市公司法人股权的价值3000万元C.公司正处于重组过程中,交易双方关于上市公司法人股权最新的谈判价格为2800万元D.贷款日该上市公司法人股权市值2600万元【答案】 A5、在利润表结构分析中就是以( )为100%,计算出各指标所占百分比的增减变动,分析其对借款人利润总额的影响。
A.产品销售费用B.产品销售利润C.产品销售成本D.产品销售收入净额【答案】 D6、公司信贷中,内部意见反馈原则适用于()。
A.每次业务面谈B.初次业务面谈C.最后一次业务面谈D.首次与最后一次业务面谈【答案】 A7、已知某项目前5年的净现金流量如表所示。
A.资产负债表B.全部投资现金流量表C.自有资金现金流量表D.资金来源与运用表【答案】 B8、表6-7是H零售商20××年的资产负债及收益情况。
A.33%B.102%C.133%D.141%【答案】 A9、监事会是我国商业银行内设的监督部门,下列不是监事会的职责的是( )。
A.外部监督B.财务监督C.内部控制监督D.内部尽职监督【答案】 A10、( )是贷款项目分析的核心内容,是在吸收对项目其他方面评估成果的基础上。
物理学上10大科学定律及理论

物理学上10大科学定律及理论科学定律常常可以被精简成数学表达式,比如伟大的E=mc2。
这类公式是基于大量实验数据上的一种特定表述,并且一般只有在某些特定条件存在时才能成立。
小编在这里整理了相关资料,希望能帮助到您。
物理学上10大科学定律及理论10、众理论的敲砖石:大爆炸理论标准释义:大爆炸是描述宇宙诞生初始条件及其后续演化的宇宙学模型,其得到了当今科学研究和观测最广泛且最精确的支持。
目前一般所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的(根据2010年所得到的最佳观测结果,这些初始状态大约存在于133亿年至139亿年前),并经过不断的膨胀到达今天的状态。
当有谁想要试着触碰一下深奥的科学理论,那么,从宇宙下手就对了,而解释宇宙如何发展至今的大爆炸理论就是最好选择。
这条理论的基础架构在埃德温·哈勃、乔治斯·勒梅特、阿尔伯特·爱因斯坦以及许多其他人士的研究之上,该理论说白了,就是假设宇宙开始于几乎140亿年前的一次重量级的爆炸。
当时的宇宙局限于一个奇点,包含了宇宙中的所有物质,宇宙原始的运动:保持向外扩张,在今天仍在进行着。
大爆炸理论能得到如此广泛的支持,离不开阿诺·彭齐亚斯和罗伯特·威尔逊的功劳。
他们架设的一台喇叭形状的天线,接收到了一种怎么都消除不掉的噪声信号,那就是宇宙的电磁辐射,即宇宙微波背景辐射。
正是最初的大爆炸使得现在整个宇宙都充满了这种可以检测到的微弱辐射,对应温度大约为3K。
9、推算出宇宙年龄:哈勃定律标准释义:来自遥远星系光线的红移与它们的距离成正比。
该定律由哈勃和米尔顿·修默生在将近十年的观测之后,于1929年首先公式化,Vf=Hc×D(远离速率=哈勃常数×相对地球的距离),其在今天经常被援引作为支持大爆炸的一个重要证据,并成为宇宙膨胀理论的基础。
这里涉及一个前文提到的人,埃德温·哈勃。
有机溶剂分类详细介绍不同溶剂的各类参数

有机溶剂1. 有机溶剂分类 (1)烃类溶剂 (1)卤代唆溶剂 (3)醇类溶剂 (4)酮类溶剂 (6)酯类溶剂 (6)酚类溶剂 (6)2.溶剂选择的三条规律 (6)3.有机溶剂的溶解性 (7)溶解度参数 (7)常常利用溶剂溶解性和毒性 (8)4.有机溶剂的极性 (12)有机溶剂的极性表 (12)常常利用溶剂的极性顺序 (14)混合有机溶剂极性顺序 (14)试剂极性从小到大:烷、烯、醚、酯、酮、醛、胺、醇和酚、酸 (14)5.有机溶剂的毒性 (14)6. 常常利用有机溶剂的纯化方式 (16)1. 有机溶剂分类烃类溶剂1.烃只含有碳氢两种元素的有机化合物叫烃。
按照结构将烃类分为脂肪烃和芳香烃。
脂肪烃包括脂肪链烃和脂环烃。
开链结构的脂肪烃按照结构的饱和程度分为饱和链烃(烷烃)和不饱和链烃(烯烃和炔烃)。
芳香烃是含有苯环特殊结构的烃类。
按照具体结构分为单环芳烃、多环芳烃和稠环芳烃。
烃类溶剂按照来源分为两类:由石油分馏取得的烃类混合物溶剂叫石油溶剂油,简称溶剂油;由化工原料合成或精制取得的成份单一烃类溶剂是烃的纯溶剂。
纯溶剂价钱较高,通常只用于一些特殊用途中。
2.溶剂油石油是由多种烃类组成的混合物,通过度馏处置取得不同沸点范围的产品。
按照沸,抿范围通常把石油产品分为石油醚、汽油、煤油、柴油、润滑油、石蜡和沥青。
其中沸点范围在30~90℃以戊烷和己烷为主要成份的石油醚和沸点范围在40~200℃烃分子含碳数在4~12的汽油,有很好的溶解性能。
在工业生产中常做溶剂利用,称为溶剂油或溶剂汽油。
最近几年来还开发出相当于煤油乃至轻柴油馏分做高沸点溶剂油,拓宽了溶剂油的概念。
煤油是石油分馏时,沸点在175~325℃范围的馏分,由于馏程长所包括的烃类成份复杂。
在必然情况下也可以做溶剂利用,如美国干洗业利用的干洗溶剂汽油(stoddard solvent)实际上是一种不易燃的煤油溶剂。
因此广义上溶剂油包括多种沸程范围的烃类混合物和己烷、苯、甲苯、二甲苯纯烃类溶剂。
甲醇加热器设计说明书

甲醇加热器设计说明书班级:过控084姓名:日期:2010.9.07指导教师:设计成绩日期目录一、方案简介 (3)二、方案设计 (4)1、确定设计方案 (4)2、确定物性数据 (4)3、计算总传热系数 (4)4、计算传热面积 (5)5、工艺结构尺寸 (5)6、换热器核算 (7)三、设计结果一览表 (10)四、对设计的评述 (11)五、附图(主体设备设计条件图)(详情参见图纸)·································六、参考文献 (12)七、主要符号说明 (12)附图··········································································本设计任务是利用热流体(水蒸汽)给甲醇蒸汽加热。
改性聚四氟乙烯PTFE检测报告

单位
数值
测试方法
1
物理 性能
比重
2.15~2.20
GB 1033—70
抗拉强度
Pa
(1961~3521) ×
104
GBl040 79
断裂伸长率
%
机 抗压强度(变形
Pa
10%)
250~500 1952×104
GB 1040—79 GB 104l 一 79
抗 无缺口 kgf·cm/
械冲
cm2
2
击 有缺口
聚四氟乙烯可以添加不同的填充剂,选择的填充剂应基本满足下述要求:能 耐 380℃高温即四氟制品的烧结温度;与接触的介质不发生反应;与四氟树脂有 良好的混入性;能改善四氟制品的耐磨性、冷流性、导热性及线膨胀系数等。常 用的填充剂有无碱无蜡玻璃纤维、石墨、碳纤维、MoS2、A1203、CaF2、焦炭粉及 各种金属粉。如填充玻璃纤维或石墨,可提高四氟制品的耐磨、耐冷流性,填充 MoS2 可提高其润滑性,填充青铜、钼、镍、铝、银、钨、铁等,可改善导热性, 填充聚酰亚胺或聚苯酯,可提高耐磨性,填充聚苯硫醚后能提高抗蠕变能力,保 证尺寸稳定等。在相同的温度条件下,填充后的聚四氟乙烯其抗压强度(表 1410)、压缩弹性模量(表 14-11)、抗弯强度(表 14-12)、硬度(表 14-13)、摩擦系 数和耐磨耗性(表 14-14)、热导率(表 14-15)均比纯四氟乙烯高。但抗拉强度和 伸长率则有所下降,线膨胀系数(表 14-15)也减小。
218
—
100
600
356
210
138
100
730
500
280
214
166
830
550
320
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
8
■比热容是物质的特性之一.
1 问:一滴水和一盆水的比热容谁大?
答:一样大。因为比热容是物质的 特性之一,不随质量的改变而改 变。
2 问:把一根铁丝截为长短不同的两 段,哪段铁丝的比热容大些? 答:比热容一样大。
1
9
二、热量的计算 Q = c m △t
铝的比热容:c=088×103 J/(kg·℃)
☆烧水经验告诉我们:水的质量越大
升高的温度越大,需要吸收的热量越多。
☆即:
同种物质,吸收的热量与 质量和
升高的温度 有关。
1
3
☆例: 1千克水温度升高1℃,所需吸收的
热量是4.2×103J.
?问:1千克的其他物质,温度升 高1℃,是否与水一样,要吸收 4.2×103J的热量呢?
■ :不同物质,在质量相等,
c
m △t
c·m·△t
1、吸热:
2、放热:
Q吸=cm△t=cm(t-t0)
Q放=cm△t=cm(t0-t)
t 表示1 末温 t0 表示初10 温
列题1:
一个质量为250 g的钢件,加热到560 ℃,然后在 空气中自然冷却,室温为20 ℃,这个钢件在冷却 过程中放出多少热量?
解: 钢的比热容为0.46×103 J/(kg·℃) Q放 = cm(t0-t1) =0.46×103 J/(kg·℃)×0.25 kg×(560 ℃-20 ℃) =6.21×104 J
第十三章 第3节
比热容
来自大自然的疑问
同样的日照条件,海水的温度和沙滩不一样。 白天,海水凉,沙滩烫脚。傍晚,沙滩凉了下来, 海水却还暖暖的,这是为什么呢?
☆烧开一壶水与烧开半壶水比较,谁
花的时间长? • 烧开一壶水需要吸热多
☆把一壶20℃的水加热到50℃和100℃
哪次吸热多? • 加热到100℃时吸热多
1
12
交流与合作
为什么海水和沙子在同一时刻的 温度不一样?
因为海水与沙子受光照的时间完全相 同,所以它们吸收的热量相同,但是海 水的比热比沙子的比热大,由 Q = cm △t 可知,海水升温比沙子慢;没有日照时, 海水降温比沙子慢。
1
13
新疆有句谚语:
“早穿皮袄午穿纱
夜抱火炉吃西瓜”
你能说出它的道理!
答:砂石的比热容较 小,白天由于太阳 照射而吸收热量, 温度会上升很快, 所以新疆的昼夜温 差相差很大。
1
14
end
沿海地区及我国东南部白天和晚上的气温变化_不__大__,而在 沙漠地区及我国西北部昼夜气温变化_较__大__.为什么?
答:这是因为在同样受热和冷却,即吸热或放热相同时,水的 比热容大,温度变化小;砂石的比热容小,温度变化大。
归纳:不同的物体,当质量一定时, ①吸收相同的热量,煤油升高的温度比水的高。
②升高相同的温度,吸收的热量不等,水吸收的热量多。
结 论 不同物质,在质量相等,升高相同
的温度,吸收的热量不同。
1
6
一、比热容c
1.概念 一定质量的某种物质,在温度升高时吸收的
热量与它的质量和升高的温度乘积之比,叫这 种物质的比热容。 2.单位: 焦/千克摄氏度 J /(kg·℃)
升高相同的温度,吸收的热量 是否相等
1
4
探究:不同物质的吸热能力是否相同?
1、要研究这个问题,必须保持_质__量__和升__高__的___温__度__相同。物__质__种__类__不同.
2、取两个相__同____的烧杯盛放的_质__量__相__同__两种液体(水和煤油),用 _相__同__的两个电热器给它们加热使它们升高_相__同__的__温__度__,看它
煤油 2.1×103 铁、钢 0.46×103
冰
2.1×103 铜
0.39×103
蓖麻油 1.8×103 水银 砂石 0.92×103 铅
0.14×103 0.13×103
1、物质的比热容跟密度相似,也是物质的特性之一.
2、比热容仅与物质的种类和状态有关。
3、水的比热容最大,泥、砂石、金属的比热容较小。
1
15
“水的比热容大”这一 特点在人们的日常生活和生 产中具有重要的意义。
讨论 :1、汽车发动机为何用水
来冷却?
2、冬天的散热器(俗称暖气片) 为何用热水供暖?
这是因为水的比热大。在温度变 化相同时,水吸收(放出)的热量 最多,冷却(供暖)效果最好。 所以水1 ………… 16
利用比热容的知识解释一些现象
们_所__用___时__间__的长短.
设计 试验
:
Байду номын сангаас
质量 初温 液体 m/g t0/℃
末温 t/℃
升高的温度 (t-t0)/℃
水
500 20
30
10
煤油 500 20
40
20
水
50
20 40
20
1、同时加热0 谁的温度升高的快?
加热时间 t/min(吸收 热量J)
4 4 8
2、要升高相同的温度谁加热时间长?
比热容在数值上等于质量1kg的某种物质,温度 升高1℃(或降低1℃)所吸收(或放出)的热量。
3.水的比热容是 :4.2×103J /(kg·℃)
表示:1kg水温度升高1℃吸收的热量是4.2×103J。
1
7
几种物质的比热容 [ J /(kg·℃)]
水
4.2×103 铝
0.88×103
洒精 2.4×103 干泥土 0.84×103
钢筋水泥都市,给我们的生活带来方便的同时, 也给我们带来诸多不便,比如,炎炎夏季,都市 气温往往比郊外要高3 ℃ ~ 5 ℃,这就是热岛效 应,应该如何应对呢?
种草种树,增加水蒸气蒸腾
修建人工湖,利用水的吸热本领 强,来调节气温。
练一练
1.关于比热容,下列说法正确的是( D ) A.温度越高,比热容越大 B.物质放热越多,比热容越大 C.物质的质量越大,比热容越小 D.物质的比热容与质量和温度无关
列题2:
1Kg的水和1Kg的砂石,初温相同,各吸收了 4.2×104J热量后, 温度升高了多少?
解: 水升高的温度:
△t1=Q/(cm)=4.2×104/(4.2 × 103 ×1) =10(℃)
砂石升高的温度: △t2=Q/(cm)=4.2×104/(0.92× 103 ×1)
=46(℃) 答:
比热容c
质量m 升高△t 吸热Q
0.88×103 J/(kg·℃) 1kg
1℃
0.88×103 J
0.88×103 J/(kg·℃) 2kg
1 ℃ 0.88×103 × 2×1J
0.88×103 J/(kg·℃) 2kg
2 ℃ 0.88×103×2×2 J
0.88×103 J/(kg·℃) 2kg 70 ℃ 0.88×103×2×70J