职高数学高一测试题

合集下载

数学职高高一试题及答案

数学职高高一试题及答案

数学职高高一试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. -3.14C. πD. 0.1010010001…答案:C2. 函数f(x) = 2x^2 - 4x + 3的零点是:A. x = 1/2B. x = 2C. x = -1D. x = 3答案:B3. 等差数列{an}中,a1 = 2,公差d = 3,那么a5的值是:A. 14B. 17C. 20D. 23答案:A4. 已知集合A = {1, 2, 3},B = {2, 4, 6},那么A∩B的值是:A. {1, 2, 3}B. {2, 4, 6}C. {2}D. 空集答案:C5. 直线y = 2x + 1与x轴的交点坐标是:A. (-1/2, 0)B. (0, 1)C. (-1, 0)D. (1, 0)答案:A6. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C7. 以下哪个选项是复数?A. 3 + 4iB. -2C. √2D. 0.5答案:A8. 函数f(x) = x^3 - 3x^2 + 2x的导数是:A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. 3x^2 - 3x + 2D. x^2 - 3x + 2答案:A9. 一个等边三角形的边长为a,那么它的高是:A. a√3/2B. a√3/3C. a√3D. a/√3答案:A10. 一个圆的周长是6π,那么它的直径是:A. 3B. 6C. 2D. 1答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是2,那么这个数是______。

答案:42. 等比数列{bn}中,b1 = 8,公比q = 1/2,那么b4的值是______。

答案:23. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是______。

答案:54. 函数f(x) = x^2 - 6x + 8的最小值是______。

中职数学高一数学试卷

中职数学高一数学试卷

中职数学高一数学试卷一、选择题(每题3分,共30分)1. 设集合A = {1, 2, 3},B={2, 3, 4},则A∩ B = ( )A. {1, 2, 3, 4}B. {2, 3}C. {1}D. {4}2. 不等式x + 3>0的解集是( )A. {xx > - 3}B. {xx < - 3}C. {xx≥ - 3}D. {xx≤ - 3}3. 函数y = 2x + 1在x = 1处的函数值为( )A. 3B. 2C. 1D. 04. 下列函数中,是奇函数的是( )A. y = x^2B. y = 2x+1C. y=(1)/(x)D. y = √(x)5. 若log_a2 = m,log_a3=n,则log_a6 = ( )A. m + nB. m - nC. mnD. (m)/(n)6. 已知向量→a=(1,2),→b=(3, - 1),则→a+→b=( )A. (4,1)B. ( - 2,3)C. (2, - 3)D. ( - 4, - 1)7. 在等差数列{a_n}中,a_1=1,d = 2,则a_3=( )A. 1B. 3C. 5D. 78. 直线y = 2x - 1的斜率是( )A. 2B. -1C. 1D. -29. 二次函数y=x^2-2x - 3的顶点坐标是( )A. (1,-4)B. ( - 1, - 4)C. (1,4)D. ( - 1,4)10. 若sinα=(1)/(2),且α∈(0,(π)/(2)),则cosα = ( )A. (√(3))/(2)B. -(√(3))/(2)C. (1)/(2)D. -(1)/(2)二、填空题(每题3分,共15分)1. 集合{x - 2用区间表示为______。

2. 函数y=√(x - 1)的定义域是______。

3. 等比数列{a_n}中,a_1 = 2,q = 3,则a_3=______。

4. 直线3x - 2y+1 = 0的截距式方程为______。

职高数学高一试题及答案

职高数学高一试题及答案

职高数学高一试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x - 3,求f(2)的值。

A. 1B. -1C. 5D. 32. 计算下列表达式的值:(3x - 2)(2x + 1)。

A. 6x^2 + x - 2B. 6x^2 - x - 2C. 6x^2 + x + 2D. 6x^2 - x + 23. 若a > 0,b < 0,且|a| > |b|,则a + b的符号为:A. 正B. 负C. 零D. 不确定4. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第5项a5的值。

A. 17B. 14C. 11D. 85. 函数y = x^2 - 4x + 4的顶点坐标为:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)6. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标。

B. (1, 0)C. (-1, 0)D. (0, -1)7. 计算下列极限:lim(x→0) (sin(x)/x)。

A. 0B. 1C. -1D. 28. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。

A. {1, 2, 3}B. {2, 3}C. {1, 4}D. {1, 2, 3, 4}9. 计算下列定积分:∫(0 to 1) x^2 dx。

B. 1/2C. 1D. 210. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。

A. 3x^2 - 6xB. 3x^2 - 6x + 2C. x^3 - 3x^2D. 3x^2 - 6x + 1二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 + 2x + 1,求f'(x) = _______。

12. 计算下列二项式展开式的通项公式:(a + b)^n = _______。

13. 已知等比数列{bn}的首项b1 = 4,公比q = 1/2,求第4项b4的值 = _______。

职高数学高一试题及答案

职高数学高一试题及答案

职高数学高一试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A2. 函数f(x)=3x^2-2x+1的图像开口方向是:A. 向上B. 向下C. 不能确定D. 没有开口答案:A3. 计算下列表达式的结果:(2x+3)(3x-2) = ?A. 6x^2-x-6B. 6x^2-x+6C. 6x^2+x-6D. 6x^2+x+6答案:A4. 圆的方程为(x-2)^2+(y+3)^2=9,圆心坐标是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)答案:A5. 已知数列{an}的前n项和为Sn,且满足a1=1,an=2an-1+1,求S5的值。

A. 31B. 63C. 15D. 11答案:A6. 函数y=sin(x)在区间[0, π]上的最大值是:A. 0B. 1C. -1D. π答案:B二、填空题(每题5分,共20分)1. 如果一个等差数列的前三项依次为2,5,8,则该数列的第10项是______。

答案:232. 一个圆的半径为5,那么它的面积是______。

答案:25π3. 函数f(x)=x^3-3x+2在x=1处的导数值是______。

答案:04. 已知等比数列{bn}的前三项依次为2,4,8,则该数列的第5项是______。

答案:16三、解答题(每题10分,共50分)1. 解不等式:3x-2>5x+4。

答案:由3x-2>5x+4,得-2x>6,所以x<-3。

2. 求函数f(x)=x^2-4x+3在区间[1,3]上的最大值和最小值。

答案:函数f(x)=x^2-4x+3的导数为f'(x)=2x-4,令f'(x)=0,得x=2为极值点。

计算f(1)=0,f(2)=-1,f(3)=0,所以最大值为0,最小值为-1。

职高高一数学集合测试卷

职高高一数学集合测试卷

职高高一数学集合测试卷一、选择题(每题3分,共30分)1. 下列集合中,表示同一集合的是()A = {1,2},B = {(1,2)}A = {x x>0},B = {y y>0}A = {x x = 2k,k∈Z},B = {x x = 2k + 1,k∈Z}A = {x x² - 3x+2 = 0},B = {1,2}2. 设集合A={1,2,3},B = {3,4,5},则A∪B=( ) {1,2,3,4,5}{3}{1,2,4,5}{1,2,3}3. 若集合A={x x<0},B={x x²>1},则A∩B=( ){x x< - 1}{x - 1<x<0}{x x<0}{x x>1}4. 已知集合A = {x x² - 5x+6 = 0},则集合A的子集个数为()23455. 设全集U={1,2,3,4,5},集合A={1,3,5},则∁UA=( ){2,4}{1,3,5}{1,2,3,4,5}∅6. 集合A={x - 1<x<2},集合B={x 0<x<3},则A - B=( ){x - 1<x≤0}{x 0<x<2}{x 2≤x<3}{x - 1<x<3}7. 若集合A = {x x = 2n,n∈N},B = {x x = 3n,n∈N},则A∩B中的最小元素是()6238. 设集合M={x x = a²+1,a∈R},N={y y=b² - 1,b∈R},则M与N 的关系是()M = NM⊂NN⊂MM∩N = ∅9. 集合A={x x² - 3x - 4 = 0},则方程x² - 3x - 4 = 0的根是集合A的()子集真子集元素以上都不对10. 已知集合A={1,2,3,4},B={y y = x - 1,x∈A},则B=( ){0,1,2,3}{1,2,3,4}{2,3,4,5}{ - 1,0,1,2}二、填空题(每题4分,共20分)1. 集合A={x x² - 9 = 0}的元素是______。

高一职高数学期末考试(第一学期)

高一职高数学期末考试(第一学期)

高一职高期末考试数学试题一、选择(每题3分)1、设全集U=},104|{N x x x ∈≤≤,A={4,6,8,10},则A C U ( ) A.{5} B 、{5,7} C 、{5,7,9} D 、{7,9}2、已知集合},,{},{c b a A b a = ,则符合条件集合A 的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个3、若集合P={}21|≤<-x x ,集合Q={}01|>-x x ,则Q P 等于( ) A 、}11|{<<-x x B 、}21|{≤<x x C 、}21|{≤<-x x D 、 }1|{->x x4、“0>a 且0>b ”是“a ·b>0”的( )条件A、充分不必要 B 、必要不充分 C 、充分必要 D 、以上答案都不对 5、若a 、b 是任意实数,且a >b,则( ) A 、22b a > B 、1<abC 、b a lg lg >D 、b a --<22 6、下列命题中,正确的是( )A、若a >b ,则a c>bc B 、若,22bc ac >则a >b C 、若b a >,则22bc ac > D 、若b a >,c>d,则bd ac >7、如果A==<+-}01|{2ax ax x Φ,则实数a 的集合是( ) A 、(0,4) B 、[0,4] C 、(0,4] D、[0,4)8、已知方程02)2(22=+++-m x m x 有两个不等的实根,则m 的取值范围是( ) A 、(-2,-1) B 、(-2,0) C 、),1()2,(+∞---∞ D 、),1(+∞- 9、下列四组函数中,有相同图像的一组是( ) A 、||x y =与33x y = B 、x y =与2x y =C 、||||x y =与22x y = D 、1)(=x f 与xx x g =)( 10、设144)2(2++=x x x f ,则)(x f 等于( )A 、2)1(+xB 、122++x xC 、12++x xD 、18162++x x11、函数2655)(xx f x x +-=-是( )函数A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 12、已知函数)(x f y =在),(o -∞上是减函数,则( )A 、)42()31()21(->->-f f f B 、)31()42()21(->->-f f fC 、)21()42()31(->->-f f f D 、)21()31()42(->->-f f f 13、函数225x x y --=在[-2,1]上的最大值与最小值分别是( ) A 、6,3 B 、6,5 C 、5,3 D 、6,214、函数32)1()(2++-=mx x m x f 且2)1(=-f ,则)(x f 是( ) A 、在),0[+∞上的单调递增函数 B 、在]0,(-∞上的单调递减函数C 、在),(+∞-∞内的奇函数D 、在),(+∞-∞内的偶函数15、把函数)(x f y =的图像向左、向下分别平移2个单位,得到函数xy 2=的图像,则( ) A 、22)(2+=+x x f B 、22)(2-=+x x f C 、22)(2+=-x x f D 、22)(2-=-x x f二、填空题(每题3分)1、设U=R ,P=}1|{≥x x ,Q=}30|{≤≤x x ,则)(Q P C u ⋂=__________________2、若0>a ,则aba b _________1-(填<或>) 3、不等式3|3|1≤-<x 的解集为________________4、设函数=)(x f 0,10,22{≤->+x x x x , 则___________)]2([=-f f5、设函数)(x f 是偶函数,函数)(x g 是奇函数,且x x x g x f +=+2)()(,则)(x f =__________6、设二次函数的图像顶点为(1,3),且过点(2,5),则其解析式为_________________7、_______________2009)49(8102343=++-8、化简,当0≥a 时,a a a 3141的值是_______________9、4524log =x ,则x =______________ 10、函数13+=-x a y 的图像恒过一个定点坐标是______________三、解答题 1、解不等式(1)、0)3)(2)(1(2>++-x x x (2)、x x283)31(2-->2、求函数41432++++=x x x y 的定义域3、设函数1)(35+++=cx bx ax x f 且1)(-=πf ,求)(π-f 的值4、323524log 25log 3log )01.0(lg +--5、证明、函数xx f 1)(=在)0,(-∞上为减函数 6、已知函数0,123,0,32{)(≤+≤<-=x x x x x f(1)求)(x f 的定义域。

职高高一数学试卷期末

一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 0.1010010001...C. 2/3D. -π2. 已知函数f(x) = 2x + 3,则f(-1)的值为()A. 1B. 2C. 3D. 43. 下列各对数中,正确的是()A. log2 4 = 2B. log3 9 = 2C. log5 25 = 1D. log10 100 = 24. 已知等差数列{an}的第三项a3 = 10,公差d = 2,则第一项a1为()A. 6B. 8C. 10D. 125. 若等比数列{bn}的第一项b1 = 3,公比q = 2,则第n项bn为()A. 3×2^(n-1)B. 3×2^nC. 6×2^(n-1)D. 6×2^n6. 已知函数y = ax^2 + bx + c(a ≠ 0),若a > 0,则该函数的图像()A. 在y轴左侧单调递减,在y轴右侧单调递增B. 在y轴左侧单调递增,在y轴右侧单调递减C. 在整个实数域上单调递增D. 在整个实数域上单调递减7. 下列各三角形中,是直角三角形的是()A. 边长分别为3,4,5的三角形B. 边长分别为5,12,13的三角形C. 边长分别为6,8,10的三角形D. 边长分别为7,24,25的三角形8. 已知圆的半径为r,则该圆的面积S为()A. πr^2B. 2πrC. πr^2 + 2πrD. πr^2 + 2r9. 下列各等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 若直线y = kx + b与直线y = 2x - 3平行,则k的值为()A. 2B. 3C. -2D. -3二、填空题(每题5分,共50分)1. 若x^2 - 5x + 6 = 0,则x的值为______。

职高数学高一函数考试试卷

职高数学高一函数考试试卷一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. y = 2x^2 + 3x + 1B. y = 3x + 4C. y = x^3 - 2D. y = 1/x2. 函数f(x) = 2x - 3在x = 2时的值是多少?A. -1B. -5C. 1D. 33. 如果f(x) = x^2 + 2x + 1,那么f(-1)等于多少?A. 0B. 1C. 2D. 34. 函数y = 3x + 5的斜率是多少?A. 3B. 5C. 8D. 105. 函数y = 2x^2 + 4x + 3的顶点坐标是什么?A. (-1, 1)B. (-2, 1)C. (-2, 3)D. (1, 1)6. 函数f(x) = ax + b的图像是一条直线,如果a = 0,那么图像是什么?A. 一条水平线B. 一条垂直线C. 一个点D. 不存在7. 函数y = √x的值域是什么?A. (0, ∞)B. [0, ∞)C. (-∞, ∞)D. (-∞, 0]8. 函数f(x) = sin(x)的周期是多少?A. πB. 2πC. 4πD. 19. 函数y = log(x)的定义域是什么?A. (0, ∞)B. (-∞, ∞)C. (-∞, 0)D. [0, ∞)10. 函数y = x^2 - 4x + 4可以写成什么形式?A. (x - 2)^2B. (x + 2)^2C. (x - 4)^2D. (x + 4)^2二、填空题(每题2分,共20分)11. 函数y = 2x - 1的反函数是________。

12. 如果f(x) = x^3 - 3x^2 + 2,那么f'(x) =________。

13. 函数y = 1/x的渐近线是________。

14. 函数y = x^2 + 2x + 3的最小值是________。

15. 函数y = log_2(x)的反函数是________。

职高高一数学试题及答案

职高高一数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = -x答案:B2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1, 2, 3}B. {2, 3}C. {1, 3}D. {4}答案:B3. 函数y=2x+3的图象经过的象限是()A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:C4. 已知a=3,b=-2,则a+b的值为()A. 1B. -5C. 5D. -1答案:A5. 以下哪个选项是正确的不等式()A. 3 > 2 > 1B. 3 < 2 < 1C. 3 > 2 < 1D. 3 < 2 > 1答案:A6. 函数y=x^2-4x+4的最小值是()A. 0B. 4C. -4D. 1答案:A7. 已知直线l:y=2x+1与直线m:y=-x+3平行,则直线l与直线m的斜率关系是()A. 相等B. 互为相反数C. 不存在D. 无法确定答案:A8. 已知向量a=(3, -2),b=(2, 1),则向量a与向量b的点积为()A. -7B. -4C. 4D. 7答案:B9. 函数y=x^2-6x+8的顶点坐标是()A. (3, -1)B. (-3, 1)C. (3, 1)D. (-3, -1)答案:C10. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值为()A. 17B. 14C. 11D. 8答案:A二、填空题(每题4分,共20分)11. 函数y=x^2-6x+8可以写成顶点式y=()。

答案:(x-3)^2-112. 已知等比数列{bn}的首项b1=2,公比q=2,则b3的值为()。

答案:813. 已知向量a=(1, 2),b=(3, -1),则向量a+b的坐标为()。

职高高一上册期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. -1/32. 若 |a| = 3,则 a 的值可能是()A. 3B. -3C. 6D. ±33. 下列各数中,是等差数列通项公式 an = 2n - 1 的第 5 项的是()A. 9B. 10C. 11D. 124. 若sin α = 1/2,则α 的度数是()A. 30°B. 45°C. 60°D. 90°5. 下列各函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 1/xD. y = x + 1二、填空题(每题5分,共25分)6. 若 a > 0,b < 0,则 a - b 的值为 ________。

7. 已知等差数列 {an} 的前 3 项分别为 2,5,8,则该数列的公差为 ________。

8. 在直角坐标系中,点 P(2,3) 关于 x 轴的对称点坐标为 ________。

9. 若cos α = -1/2,则sin α 的值为 ________。

10. 若二次函数 y = ax^2 + bx + c 的图象开口向上,且 a = 1,则 b 的取值范围是 ________。

三、解答题(每题15分,共45分)11. (10分)已知数列 {an} 的前 n 项和为 Sn = 3n^2 - 2n,求该数列的通项公式。

12. (10分)已知等差数列 {an} 的前 5 项和为 S5 = 50,公差为 2,求该数列的第 10 项。

13. (15分)在直角坐标系中,点 A(3,4) 和点 B(5,2) 的中点为 M,求线段 AB 的长度。

四、综合题(25分)14. (10分)已知函数 y = kx + b(k ≠ 0),当 x = 1 时,y = 2;当 x = 2 时,y = 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学期中考试试卷
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷共4页,共100
分。

考试时间为90分钟。

第I 卷(选择题,共36分)
一、选择题(本题共12小题,每题3分,共36分,在每个小题给出的四个选项中,有且只有
一项是符合题目要求的,请把正确答案的代号填入下面的表格中)。

题号 1 2 3 4 5 6 7 8 9 10 11 12
总分
答案
1、已知数列 32n a n =+,则3a = ( ) A . 10 B . 11 C . 13 D . 15
2、下列各数列中,成等差数列的是
( ) A . 0, 1, 3, 5, … B . 12, 13, 14, 1
5
, …
C .-3, 5, 8, 10, …
D . -2, -2, -2, -2, …
3、在等差数列﹛n a ﹜中,3885,63,a a ==则586
a a += ( )
A . 58
B . 68
C . 70
D . 80
4、等比数列9,-3, 1,1
3
-,…的首项、公比、第5项分别为 ( )
A . 9, 13,9
1
- B .9, -13, -91
C . 9, -3, 9
1
- D . 9, -13, 91
5、在等比数列﹛n a ﹜中,q =3 ,4S =40 ,则1a =
( ) A . 1 B . 2 C . 3 D . 4
6、()AB CA BC ++
=
( )
A . CA
B .A
C C . 0
D . 0
7、R λ∈,下列关系中正确的是
( ) A . ||a λ =||a λ B . ||a λ
=||a λ
C .若 a = 0,则a λ = 0
D .(2)2a a a λλ-=+
8、若点A (3,-2),B (-2,5),则向量AB
等于
( ) A .(1, 7) B .(-5, 7) C .(5,-3) D .(5,-7)
9、如果1e ,2e
是同一平面上的两个不平行向量,那么对该平面上的任一向量a ,存在
唯一的一对实数1a ,2a ,使a
等于
( ) A .12e e + B .12a a + C .1122a e a e +
D .以上答案都不正确
10、在等比数列﹛n a ﹜中,37a a ⋅=36,则19a a ⋅=
( ) A . 36 B . 6 C . 12 D . -9
11、数列 -1, 1,-1, 1, …的通项公式为
( ) A .()
1
1n +- B .()21n - C .()1n - D .()
1
1n --
12、如图所示,在平行四边形ABCD 中,E F 分别是,AB CD 的中点,则与AD 的和为AF
的向量有
( ) A . 1个 B . 2个 C . 3个 D . 4个
D F C
A E F
第Ⅱ卷(非选择题,共64分)
二、填空题(本题共7小题,每小题2分,共14分,请把答案填在题中的横线上)。

13、数列-1,2,5,8,14,17,20共有______项,其中第一项(首项)为______ 14、已知等差数列﹛n a ﹜中,23n S n n =-,则2a =______ 15、数16与4的等比中项为_______
16、在等比数列﹛n a ﹜中,42a =,则 23456a a a a a ⋅⋅⋅⋅=______
17、已知向量a 和b 不平行,实数,x y 满足向量等式(2)45(2)x y a b a x y b -+=+-
则 x =_____,
y =_____
18、已知点 A (-3,5),B (-2,4),M 为线段AB 的中点,
o 是直角坐标系的原点,
OA
=________,点M 的坐标为________ 19、=+-DE DB CB ________
三、求未知向量 x
(本题共2小题,每小题5分,共10分)
20、 ⑴ 3
()4()a x b x +=- ⑵ 11(2)(44)32
x a b x a --+=
四、解答题(本题共4个题,每题10分,共40分,解答须写出文字说明或演算步骤)。

21、在等差数列﹛n a ﹜中,2a =3,8a =17,求4a ,8S
22、在4与12之间插入两个数,使前三个成等比数列,后三个成等差数列,求这两个数。

23、在平行四边形ABCD 中,已知点A (0,2),B (-4,1),C (1,2),求点D 的坐标。

24、如图,在梯形ABCD 中,//DC AB ,1
2
DC AB =,E AB 是的中点,设AE a = ,CE b = ,
试用a 或b
表示下列各向量: D C
⑴AD ⑵CD ⑶BE
⑷ED ⑸AC ⑹CB
A E B。

相关文档
最新文档