数字图像处理的傅里叶变换

合集下载

傅里叶变换在图像去噪中的应用优化探讨

傅里叶变换在图像去噪中的应用优化探讨

傅里叶变换在图像去噪中的应用优化探讨图像去噪是数字图像处理领域中的一个重要问题,目的是通过消除图像中的噪声,恢复图像的清晰度和细节。

傅里叶变换作为一种有效的信号处理工具,在图像去噪中被广泛应用。

本文将探讨傅里叶变换在图像去噪中的应用优化方法。

一、傅里叶变换的基本原理傅里叶变换是将一个时域函数转化为其频域表示的一种数学变换方法。

在图像处理中,傅里叶变换可以将图像分解为一系列频率成分。

其基本公式如下:F(u, v) = ∬f(x, y)e^(-i2π(ux+vy))dxdy其中F(u, v)表示频域中的图像,f(x, y)表示时域中的图像。

傅里叶变换将图像从空间域转换到频域,使得频域中不同频率成分的信息可以更清晰地被提取和处理。

二、傅里叶变换在图像去噪中的应用图像去噪是通过去除图像中的噪声来提高图像质量的过程。

传统的图像去噪方法包括均值滤波、中值滤波等。

然而,这些方法往往会模糊图像细节,因此需要一种更加有效的方法来保持图像的清晰度。

傅里叶变换在图像去噪中的应用主要体现在频域滤波上。

通过将图像从空间域转换到频域,可以很容易地对图像进行频域滤波操作。

常见的频域滤波方法包括低通滤波和高通滤波。

低通滤波可以滤除图像中高频成分,从而去除图像中的噪声;高通滤波可以强调图像中的高频成分,使得图像的细节更加清晰。

三、傅里叶变换在图像去噪中的优化方法尽管傅里叶变换在图像去噪中具有广泛应用,但是它也存在一些问题,例如频谱泄漏、边缘模糊等。

为了优化傅里叶变换在图像去噪中的效果,研究人员提出了一些改进方法。

1. 加窗函数加窗函数可以有效缓解频谱泄漏问题。

常见的窗函数包括汉宁窗、汉明窗等。

通过在时域中对图像进行窗函数处理,可以减小傅里叶变换中的泄漏现象,从而提高去噪效果。

2. 频域滤波器设计传统的频域滤波器设计方法主要包括理想滤波器和巴特沃斯滤波器。

然而,这些方法会引入一些额外的问题,如振铃和削波等。

为了解决这些问题,研究人员提出了更加复杂的滤波器设计方法,如维纳滤波器和自适应滤波器。

【数字图像处理】傅里叶变换在图像处理中的应用

【数字图像处理】傅里叶变换在图像处理中的应用

【数字图像处理】傅⾥叶变换在图像处理中的应⽤1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换1.2⼆维离散傅⾥叶变换1.3⽤FFT计算⼆维离散傅⾥叶变换1.3图像傅⾥叶变换的物理意义2.⼆维傅⾥叶变换有哪些性质?2.1⼆维离散傅⾥叶变换的性质2.2⼆维离散傅⾥叶变换图像性质3.任给⼀幅图像,对其进⾏⼆维傅⾥叶变换和逆变换4.附录 94.1matlab代码4.2参考⽂献⽬录1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换⼆维Fourier变换:逆变换:1.2⼆维离散傅⾥叶变换⼀个图像尺⼨为M×N的函数的离散傅⾥叶变换由以下等式给出:其中和。

其中变量u和v⽤于确定它们的频率,频域系统是由所张成的坐标系,其中和⽤做(频率)变量。

空间域是由f(x,y)所张成的坐标系。

可以得到频谱系统在频谱图四⾓处沿和⽅向的频谱分量均为0。

离散傅⾥叶逆变换由下式给出:令R和I分别表⽰F的实部和需部,则傅⾥叶频谱,相位⾓,功率谱(幅度)定义如下:1.3⽤FFT计算⼆维离散傅⾥叶变换⼆维离散傅⾥叶变换的定义为:⼆维离散傅⾥叶变换可通过两次⼀维离散傅⾥叶变换来实现:1)作⼀维N点DFT(对每个m做⼀次,共M次)2)作M点的DFT(对每个k做⼀次,共N次)这两次离散傅⾥叶变换都可以⽤快速算法求得,若M和N都是2的幂,则可使⽤基⼆FFT算法,所需要乘法次数为⽽直接计算⼆维离散傅⾥叶变换所需的乘法次数为(M+N)MN,当M和N⽐较⼤时⽤⽤FFT运算,可节约很多运算量。

1.3图像傅⾥叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平⾯空间上的梯度。

如:⼤⾯积的沙漠在图像中是⼀⽚灰度变化缓慢的区域,对应的频率值很低;⽽对于地表属性变换剧烈的边缘区域在图像中是⼀⽚灰度变化剧烈的区域,对应的频率值较⾼。

傅⾥叶变换在实际中有⾮常明显的物理意义,设f是⼀个能量有限的模拟信号,则其傅⾥叶变换就表⽰f的频谱。

从纯粹的数学意义上看,傅⾥叶变换是将⼀个函数转换为⼀系列周期函数来处理的。

傅里叶变换在数字图像处理中的应用课件

傅里叶变换在数字图像处理中的应用课件

• 由欧拉公 式
f (t)
F (n1 )e jn1t
• 其中 n
F (0) a0
F (n1 )
1 2
(an
jbn )
引入了负频率
F (n1 )
1 2
(an
jbn )
10
非周期信号的频谱分析
当周期信号的周期T1无限大时,就演变成 了非周期信号的单脉冲信号
T1
频率也变成连续变量
1
2
T1
0 d
n1
11
非周期函数傅立叶变换分析式
F (w) f (t )e jwt dt f(t) Nhomakorabea1
2
F ().e jtd
频谱演变的定性观察
1
2
T1
F (n1)
-T/2
T/2
F (n1) 1
F (n1 )
-T/2
T/2
1
2
2
13
三.从物理意义来讨论FT
(a) F(ω)是一个密度函数的概念 (b) F(ω)是一个连续谱 (c) F(ω)包含了从零到无限高
傅里叶变换
连续时间信号 的傅里叶变换
号周 期 性 信
信非 号周
期 性
离散时间信号 的傅里叶变换
号周 期 性 信
信非 号周


连续函数的 傅立叶变换
一、三角函数的傅里叶级数:
f1(t) a0 (an cos n1t bn sin n1t) n1
直流 分量
基波分量 n =1
谐波分量 n>1
N 1
j 2 mn
X (m) x(n)e N , m 0,1, 2,3, 4,...N 1

数字像处理中的离散傅里叶变换

数字像处理中的离散傅里叶变换

数字像处理中的离散傅里叶变换数字图像处理中的离散傅里叶变换数字图像处理是指利用计算机或其他数字设备对图像进行处理、分析和改良的过程。

而数字信号处理中的离散傅里叶变换是一种常用的图像处理工具,它能将图像从时域转换到频域,分析图像的频谱特征,从而实现一系列的图像处理操作。

本文将介绍数字图像处理中的离散傅里叶变换原理、应用以及一些常见的变换方法。

一、离散傅里叶变换的原理离散傅里叶变换(Discrete Fourier Transform,DFT)是对离散信号进行频域分析的一种数学工具。

离散傅里叶变换可以将一个长度为N的离散序列变换成一个长度为N的频谱序列。

其离散傅里叶变换的数学表达式如下:X(k) = Σ(x(n)*e^(-j2πkn/N)) (n=0,1,...,N-1; k=0,1,...,N-1)其中,X(k)为频谱序列,x(n)为原始信号序列,e为自然对数的底,j为虚数单位。

离散傅里叶变换可以将时域上的图像转换为频域上的频谱图,进而分析图像的频谱特征。

二、离散傅里叶变换的应用离散傅里叶变换在数字图像处理中有广泛的应用,主要包括以下几个方面:1. 图像滤波:通过离散傅里叶变换可以实现图像频域上的滤波操作,对图像进行降噪、增强边缘等处理。

例如,可以利用傅里叶变换将图像转换到频谱域,通过频谱的阈值处理去除高频噪声,然后再将图像转换回时域。

2. 图像压缩:离散傅里叶变换常被用于图像数据的压缩。

通过将图像转换到频域,可以利用频域的统计特性进行数据的压缩。

例如,可以通过选择合适的频率分量进行舍弃或者量化,以减少图像数据的存储空间。

3. 图像识别:离散傅里叶变换可以提取图像的频谱特征,用于图像识别和模式匹配。

例如,可以通过傅里叶变换得到图像的频谱图,并提取频谱的主要特征进行分类和识别。

4. 彩色图像处理:离散傅里叶变换可用于彩色图像处理。

可以将彩色图像的每个通道分别进行离散傅里叶变换,然后进行频域上的处理操作,最后再将变换后的通道合成为最终的彩色图像。

6.图像的傅立叶变换 - 数字图像处理实验报告

6.图像的傅立叶变换 - 数字图像处理实验报告

计算机与信息工程学院验证性实验报告一、实验目的1了解图像变换的意义和手段;2熟悉傅立叶变换的基本性质; 3熟练掌握FFT 变换方法及应用; 4通过实验了解二维频谱的分布特点;5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。

6评价人眼对图像幅频特性和相频特性的敏感度。

二、实验原理1 应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。

通过实验培养这项技能,将有助于解决大多数图像处理问题。

对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。

2 傅立叶(Fourier )变换的定义对于二维信号,二维Fourier 变换定义为:2()(,)(,)j ux uy F u v f x y e dxdy π∞∞-+-∞-∞=⎰⎰逆变换:2()(,)(,)j ux uy f x y F u v e dudv π∞∞+-∞-∞=⎰⎰二维离散傅立叶变换为:112()001(,)(,)i k N N j mn N Ni k F m n f i k eNπ---+===∑∑逆变换:112()001(,)(,)i k N N j mn N Nm n f i k F m n eNπ--+===∑∑图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。

实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。

3利用MATLAB软件实现数字图像傅立叶变换的程序:I=imread(‘原图像名.gif’);%读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2); %计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225 %归一化figure; %设定窗口imshow(A); %显示原图像的频谱三、实验步骤1.将图像内容读入内存;2.用Fourier变换算法,对图像作二维Fourier变换;3.将其幅度谱进行搬移,在图像中心显示;4.用Fourier系数的幅度进行Fourier反变换;5.用Fourier系数的相位进行Fourier反变换;6.比较4、5的结果,评价人眼对图像幅频特性和相频特性的敏感度。

数字图像处理中的常用变换

数字图像处理中的常用变换

一、离散傅里叶变换1.离散傅里叶变换的特点离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。

即使对无限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。

在实际应用中通常采用快速傅里叶变换以高效计算DFT。

DFT将空域变换到频域,很容易了解到图像的各空间频域的成分。

DFT的应用十分广泛,如:图像的特征提取、空间频率域滤波、图像恢复和纹理分析等。

2.离散傅里叶变换的性质1)线性性质2)比例性质3)可分离性4)平移性质5)图像中心化6)周期性7)共轭对称性8)旋转不变性9)卷积定理10)平均值二、离散余弦变换1.离散余弦变换简介为了快速有效地对图像进行处理和分析,常通过正交变换将图像变换到频域,利用频域的特有性质进行处理。

传统的正交变换多是复变换,运算量大,不易实时处理。

随着数字图像处理技术的发展,出现了以离散余弦变换(DCT)为代表的一大类正弦型实变换,均具有快速算法。

目前DCT变换在数据压缩,图像分析,信号的稀疏表示等方面有着广泛的应用。

由于其变换矩阵的基向量很近似于托普利兹(Toeplitz )矩阵的特征向量,而托普利兹矩阵又体现了人类语言及图像信号的相关特性,因此常被认为是对语音和图像信号的最佳变换。

对给定长度为N 的输入序列f(x),它的DCT 变换定义为:⎪⎭⎫ ⎝⎛+⨯=∑-=102)12(cos )()(2)(N x N x x f u C N u F μπ式中:1,,1,0u -=N ,式中的)(u C 的满足:⎪⎩⎪⎨⎧==其它1021)(u u C在数字图像处理中,通常使用二维DCT 变换,正变换为:⎪⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N x N y N v y N u x y x f v C u C N v u F ππ 其逆变换IDCT 为:⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N u N v N v y N u x v u F v C u C N y x f ππ 式中:1,,1,0u -=N ,1,,1,0v -=N 。

傅里叶变换简单应用


像傅里叶函数频谱图
8
fftshift %快速傅里叶变换后的图像
平移函数
五·总结
1
对于傅里叶变换,它能够应用到许多的领域,不仅仅是在图像处理方面。
2
通过这次自己动手进行对傅里叶变换应用的动手实验,能够更好地将傅里叶变换应用到实 际生活中,不再是仅仅只会做题。更加的理解了傅里叶变换在实际应用中的作用和用法。
3
傅里叶变换能够更好地运用到实践当中,我们还应该不断的学习,去更加的完善傅里叶变 换在实际中的应用。
20XX
Thanks! 谢谢观看!
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简 意赅地阐述您的观点。
析。
二·步骤流程图
流程图: 对得到的实验结果进行检查,分析。
打开 MATL AB
更改默认路径, 将实验所需文
件放入
编写实验程序, 将程序保存到
默认文件夹
运行程序,检 查错误并纠正, 得到实验结果
三·MATLAB程序源代码: (一)对原图像进行傅里叶
变换
(二)输出彩色图像的傅里叶频谱
(三)对彩色图像进行二维DCT变换
一·用MATLAB实现步骤
1
打开计算机,安装和启动MATL AB程
2
设置默认路径为C盘下的图片文件夹,
序。
将实验所需材料放入该文件夹内。
3
利用MATL AB工具箱中的函数编制
FFT频谱显示的函数。
4
调入、显示获得的图像,图像储存格
式应为“.jpg”。
5
对该程序进行编译,检查错误并纠正。 6
ቤተ መጻሕፍቲ ባይዱ
运行,并显示结果,比较差异进行分
利 用 计 算 机 上 安 装 的 M AT L A B 软 件 , 我 们 可 以 编 写 程 序 代 码 来用傅里叶变换对数字图像进行处理。

数字图像处理中的快速傅里叶变换算法

数字图像处理中的快速傅里叶变换算法数字图像处理是一门非常重要的学科,它主要关注如何对数字图像进行处理和分析。

在数字图像处理中,傅里叶变换是一种非常重要的工具,在很多领域都有广泛的应用。

特别是在数字信号处理和图像处理领域,傅里叶变换是一种重要的工具,它可以将时域信号转化成频域信号,进行频域分析和处理,帮助我们从中获取更多的信息。

在数字图像处理中,快速傅里叶变换算法是一种非常重要的算法,它拥有很高的计算效率和精度,被广泛应用于数字图像处理中。

一、傅里叶变换傅里叶变换是数学中的一种重要的工具,它可以将任意一个函数分解为一系列正弦波的加权和。

在数字图像处理中,傅里叶变换可以将图像表示为一个二维函数,其中每个分量代表着不同的频率。

通过傅里叶变换,我们可以了解图像中不同颜色和亮度的分布状况,从而帮助我们更好地进行图像处理和分析。

二、快速傅里叶变换算法快速傅里叶变换算法是对传统傅里叶变换进行优化得到的一种算法。

传统的傅里叶变换算法计算复杂度很高,需要进行许多乘法和加法运算,运算时间很长,难以满足实时处理的要求。

为了解决这个问题,人们开发出了快速傅里叶变换算法,它可以有效地缩短傅里叶变换的运算时间,提高计算效率。

快速傅里叶变换算法的基本思想是将傅里叶变换的计算分解为多个较小的傅里叶变换,从而实现快速计算。

这样就可以通过迭代的方式,逐步将傅里叶变换的计算分解为多个较小的傅里叶变换,从而获得更高的计算效率。

快速傅里叶变换算法一般采用分治的思想,将二维傅里叶变换分解为两个一维傅里叶变换,从而实现二维傅里叶变换的计算。

三、应用领域快速傅里叶变换算法被广泛应用于数字图像处理领域。

在图像去噪、图像压缩、图像增强、图像分割等领域,傅里叶变换都有着很广泛的应用。

特别是在数字信号处理和通信领域,傅里叶变换被广泛应用于信号的频域分析和处理,帮助我们了解信号的频域特性和频谱分布状况,从而更好地进行信号处理和分析。

四、总结快速傅里叶变换算法是数字图像处理中非常重要的一种算法,它可以快速、高效地实现傅里叶变换的计算,提升计算效率,满足实时处理的要求。

图像处理与傅里叶变换原理与运用

图像处理与傅里叶变换1背景傅里叶变换是一个非常复杂的理论,我们在图像处理中集中关注于其傅里叶离散变换离散傅立叶变换(Discrete Fourier Transform) 。

1.1离散傅立叶变换图象是由灰度(RGB )组成的二维离散数据矩阵,则对它进行傅立叶变换是离散的傅立叶变换。

对图像数据f(x,y)(x=0,1,… ,M-1; y=0,1,… ,N-1)。

则其离散傅立叶变换定义可表示为:式中,u=0,1,…, M-1;v= 0,1,…, N-1 其逆变换为式中,x=0,1,…, M-1;y= 0,1,…, N-1在图象处理中,一般总是选择方形数据,即M=N影像f(x,y)的振幅谱或傅立叶频谱: 相位谱:能量谱(功率谱) )1(2exp ),(1),(101∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=M x N y N vy M uxi y x f MNv u F π)2(2exp ),(1),(101∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=M u N v N vy M uxi v u F MNy x f π),(),(),(22v u I v u R v u F +=[]),(/),(),(v u R v u I arctg v u =ϕ),(),(),(),(222v u I v u R v u F v u E +==1.2快速傅里叶变化可分离性的优点是二维的傅立叶变换或逆变换由两个连续的一维傅立叶变换变换来实现,对于一个影像f(x,y),可以先沿着其每一列求一维傅立叶变换,再对其每一行再求一维变换正变化逆变换由于二维的傅立叶变换具有可分离性,故只讨论一维快速傅立叶变换。

正变换 逆变换由于计算机进行运算的时间主要取决于所用的乘法的次数。

按照上式进行一维离散由空间域向频率域傅立叶变换时,对于N 个F∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=110101)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N v N u N u N v N vy i v u F NN ux i v u F N N vy ux i v u F NNy x f πππ∑-=⎥⎦⎤⎢⎣⎡-=12exp )(1)(N x N ux i x f Nu F π∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡-⨯⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=11101)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N y N x N x N y N vy i y x f NN ux i y x f NN vy ux i y x f NNv u F πππ∑-=⎥⎦⎤⎢⎣⎡=12exp )(1)(N u N ux i u F Nx f π(u)值,中的每一个都要进行N 次运算,运算时间与N 2成正比。

傅里叶变换及其在图像处理中的应用

傅里叶变换及其在数字图像处理中的应用王家硕 学号:1252015一、 Fourier 变换1. 一维连续傅里叶变换设 f (x)为x 的实变函数,如果f (x)满足下面的狄里赫莱条件: (1)具有有限个间隔点。

(2)具有有限个极点。

(3)绝对可积。

则 f (x )的傅里叶变换(Fourier Transformation ,FT )定义为: Fourier 正变换:dt e t f t f f F t j ⎰+∞∞--==ωω)()]([)(;Fourier 逆变换:ωωπωd e f t F f t f t j ⎰∞+∞---==)(21)]([)(1,式中:1-=j ,ω 为频域变量。

f (x )与F (w )构成傅里叶变换对,可以证明傅里叶变换对总是存在的。

由于f (x )为实函数,则它的傅里叶变换F (w )通常是复函数,于是F (w )可写成F (w ) = R (w ) + j I (w ) (1)式中:R (w )和I (w )分别是F (w )的实部和虚部。

公式1可表示为指数形式:式中:F (w ) 为f (x )的傅里叶幅度谱,f (w )为f (x )的相位谱。

2. 二维连续傅里叶变换如果二维函数f (x , y )是连续可积的,即∞<⎰⎰+∞∞-dxdy y x f |),(,且F (u , v )是可积的,则二维连续傅里叶变换对可表示为:dt e y x f v u F t j ⎰⎰+∞∞--+∞∞-=ω),(),(dt e v u F y x F t j ⎰⎰∞+∞-∞+∞-=ω),(),(对于图像 f (x, y),F(u, v)是它的频谱。

变量u 是对应于x 轴的空间频率,变量v 是对应于y 轴的空间频率,与在一维的情况类似,可定义二维傅里叶变换的幅度谱和相位谱为:3.一维离散傅里叶变换对一个连续函数f (x)等间隔采样可得到一个离散序列。

设共采样N个,则这个离散序列可表示为{ f (0), f (1), f (2), , f (N -1)}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理的傅里叶变换1.课程设计目的和意义(1)了解图像变换的意义和手段(2)熟悉傅里叶变换的基本性质(3)热练掌握FFT的方法反应用(4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。

扩展理论知识,培养综合设计能力。

2.课程设计内容(1)熟悉并掌握傅立叶变换(2)了解傅立叶变换在图像处理中的应用(3)通过实验了解二维频谱的分布特点(4)用MATLAB实现傅立叶变换仿真3.课程设计背景与基本原理傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。

从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。

3.1课程设计背景数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。

3.2傅里叶变换(1)应用傅里叶变换进行数字图像处理数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。

20世纪20年代,图像处理首次得到应用。

20世纪60年代中期,随电子计算机的发展得到普遍应用。

60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。

利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。

数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。

随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等数字图像处理的傅里叶变换1.课程设计目的和意义(1)了解图像变换的意义和手段(2)熟悉傅里叶变换的基本性质(3)热练掌握FFT的方法反应用(4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。

扩展理论知识,培养综合设计能力。

2.课程设计内容熟悉并掌握傅立叶变换(2)了解傅立叶变换在图像处理中的应用(3)通过实验了解二维频谱的分布特点(4)用MATLAB实现傅立叶变换仿真3.课程设计背景与基本原理傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。

从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。

3.1课程设计背景数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。

3.2傅里叶变换(1)应用傅里叶变换进行数字图像处理数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。

20世纪20年代,图像处理首次得到应用。

20世纪60年代中期,随电子计算机的发展得到普遍应用。

60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。

利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。

数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。

随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。

领域。

傅里叶变换在数字图像处理中广泛用于频谱分析,傅里叶变换是线性系统分析的一个有力工具,它使我们能够定量地分析诸如数字化系统,采样点,电子放大器,卷积滤波器,噪声,显示点等地作用(效应)。

傅里叶变换(FT)是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。

因此,对涉及数字图像处理的工作者,深入研究和掌握傅里叶变换及其扩展形式的特性,是很有价值得。

(2)关于傅里叶(Fourier)变换在信号处理中,傅里叶变换可以将时域信号变到频域中进行处理,因此傅里叶变换在信号处理中有着特殊重要的地位。

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。

在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

傅里叶变换属于谐波分析。

傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。

3.3离散余弦变换离散余弦变换(discrete cosine transform,DCT)是一种可分离和正交变换并且是对称的。

它与傅里叶变换也有密切的联系,近年得到了广泛应用,特别是在图像压缩领域。

1-D离散余弦变换和其反变换由以下两式定义:x=0,1,...,N-1其中a(u)为归一化加权系数,由下式对由下面两式定义:4.设计步骤(1)打开计算机,安装和启动MATLAB程序;在“CurrentDirectory”中选择待处理图像文件所在文件夹。

(2)利用MatLab菜单栏中单击“File”→“New”→“M-File”,在弹出的Editor - Untitled窗口编辑区中输入程序代码。

(3)输入完成后单击Editor-Untitled菜单栏中的“Debug”→“SaveandRun”运行程序。

对该程序进行编译,检查错误并纠正,运行并显示结果,比较差异。

5、程序设计方法一:直接将彩色图像进行傅里叶变换,再求离散傅里叶频谱图程序如下:i=imread('maomi.bmp');figure(1)imshow(i);colorbar;%显示图像的颜色条title('原彩色图像')%图像命名X1=img(:,:,1);X2=img(:,:,2);X3=img(:,:,3);Y1=fft2(X1);%傅里叶变换Y2=fft2(X2);Y3=fft2(X3);Y11=real(ifft2(Y1)); %傅里叶反变换Y21=real(ifft2(Y2)); Y31=real(ifft2(Y3)); Y(:,:,1)=Y11;Y(:,:,2)=Y21;Y(:,:,3)=Y31;YY=uint8(Y);figure(2);imshow(YY,[ ]);colorbar;%显示图像的颜色条title('经过二维快速傅里叶变换再逆变换后的图像')%图像命名i=i(:,:,3);ffti=fft2(i);sffti=fftshift(ffti);%求离散傅里叶频谱%对原始图像进行二维离散傅里叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sffti);%取傅立叶变换的实部IIfdp1=imag(sffti);%取傅立叶变换的虚部a=sqrt(RRfdp1.^2+IIfdp1.^2);%计算频谱幅值a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;%归一化figure(5)%设定窗口imshow(real(a));%显示离散傅里叶频谱图像colorbar;%显示图像的颜色条title('原彩色图像的离散傅里叶频谱')%图像命名方法二:将彩色图像转换为灰度图像在进行傅里叶变换,再求原彩色图像的离散傅里叶频谱图程序如下:i=imread('maomi.bmp');%读入原图像文件figure(1);%设定窗口imshow(i);%显示原图像colorbar;%显示图像的颜色条title('原彩色图像')%图像命名I=rgb2gray(i);figure(2);%设定窗口imshow(I);colorbar;%显示图像的颜色条title('原彩色图像转换为灰度图像')%图像命名j=fft2(I);%二维离散傅里叶变换k=fftshift(j);%直流分量移到频谱中心l=log(abs(k));%数字图像的对数变换figure(3);%设定窗口imshow(l,[]);%显示过二维快速傅里叶变换后的图像colorbar;%显示图像的颜色条title('经过二维快速傅里叶变换后的图像')%图像命名n=ifft2(j)/255;%逆二维快速傅里叶变换figure(4);%设定窗口imshow(n);%显示经过二维快速傅里叶逆变换后的图像colorbar;%显示图像的颜色条title('经过二维快速傅里叶逆变换后的灰度图像')%图像命名i=i(:,:,3);ffti=fft2(i);sffti=fftshift(ffti);%求离散傅里叶频谱%对原始图像进行二维离散傅里叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sffti);%取傅立叶变换的实部IIfdp1=imag(sffti);%取傅立叶变换的虚部a=sqrt(RRfdp1.^2+IIfdp1.^2);%计算频谱幅值a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;%归一化figure(5)%设定窗口imshow(real(a));%显示离散傅里叶频谱图像colorbar;%显示图像的颜色条title('原彩色图像的离散傅里叶频谱')%图像命名6.运行结果对源代码检查无误运行后,通过这些图可以看出一幅图片经过不同类型的傅里叶变换后,能够达到不同的处理效果。

相关文档
最新文档