贝叶斯算法
贝叶斯公式算法

n
Bi B j (i j )
A ABi
n i 1
n i 1
( ABi )( AB j ) (i j )
P( A) P( ABi ) P( Bi ) P( A Bi )
( P( Bi ) 0, i 1, 2,, n)
一、引例
有三个箱子,分别编号为1、2、3,1号箱装有1 个红球4个白球,2号箱装有2个红球3个白球,3号箱 装有3红球.某人从三箱中任取一箱,从中任意摸出 一球,发现是红球,求该球是取自1号箱的概率.
?
1红 4白
1
2
3
记 Bi={球取自i号箱}, i=1,2,3;
A ={取得红球} 求P(B1|A). 1红 4白
?
1
2
3
P( B1 A) P( B1 | A) P( A)
P( B1 ) P( A | B1 )
P( B ) P( A | B )
i 1 i i
3
二、贝叶斯公式 设 B1 , B2 , , Bn为样本空间 的一个划分,A为样本空间
第二次检出阳性
P(C A1 A2 ) 0.7392
接连两次检出阳性,此人患病的可能性过半
P(C A1 A2 A3 ) 0.9854
第三次检出阳性
连续三次检出阳性几乎可断定已患病
的事件,且 P( A) 0, P( Bi ) 0(i 1, 2, n),则
n
P( Bi | A) P( Bi ) P( A|Bi )
P(B )P( A|B )
j 1 j j
i 1,2, n
该公式于1763年由贝叶斯 (Bayes) 给出.它是在观 察到事件A已发生的条件下,寻找导致 A发生的每个原 因的概率.
贝叶斯算法原理

贝叶斯算法原理贝叶斯算法是一种基于贝叶斯定理的统计学分类方法,它被广泛应用于机器学习和数据挖掘领域。
贝叶斯算法的核心思想是利用已知的先验概率和新的证据来更新我们对事件的概率估计,从而实现对未知事件的分类预测。
在本文中,我们将深入探讨贝叶斯算法的原理及其在实际应用中的重要性。
首先,我们来了解一下贝叶斯定理的基本概念。
贝叶斯定理是一种用来计算在给定先验条件下事件的后验概率的方法。
在统计学中,它被表示为P(A|B) = (P(B|A) P(A)) / P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率,P(B|A)表示在事件A 发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的先验概率。
贝叶斯定理的核心思想是通过已知的先验概率和新的证据来更新对事件的概率估计,从而得到事件的后验概率。
在贝叶斯算法中,我们将要分类的对象表示为x,将对象的特征表示为特征向量x=(x1,x2,...,xn),将类别表示为C,我们的目标是要计算在给定特征向量x的条件下,对象属于类别C的概率P(C|x)。
根据贝叶斯定理,我们可以将P(C|x)表示为P(C)P(x|C)/P(x),其中P(C)表示类别C的先验概率,P(x|C)表示在类别C的条件下特征向量x的概率分布,P(x)表示特征向量x的先验概率。
在实际应用中,我们通常将P(x)视为一个常数,因此我们只需要计算P(C)P(x|C)来比较不同类别的后验概率,从而进行分类。
贝叶斯算法的原理非常简单直观,但它在实际应用中却有着广泛的应用。
首先,贝叶斯算法可以很好地处理小样本学习问题,因为它可以利用先验概率来对数据进行合理的分类。
其次,贝叶斯算法可以很好地处理多类别分类问题,因为它可以通过计算不同类别的后验概率来进行分类。
此外,贝叶斯算法还可以很好地处理多特征问题,因为它可以通过计算特征向量的条件概率来进行分类。
在实际应用中,贝叶斯算法被广泛应用于文本分类、垃圾邮件过滤、情感分析等领域。
- 贝叶斯近似算法介绍

- 贝叶斯近似算法介绍全文共四篇示例,供读者参考第一篇示例:贝叶斯近似算法(Bayesian Approximation Algorithm)是一种基于贝叶斯统计推断原理的近似算法,通常用于解决模型复杂、数据量大的问题。
在机器学习领域中,贝叶斯方法是一种常见且有效的方法,它不仅可以用于分类、回归等监督学习任务,还可以应用于聚类、降维、推荐系统等无监督学习任务。
贝叶斯近似算法的核心思想是基于贝叶斯定理进行概率推断,通过对参数的后验分布进行近似推断,从而得到参数的估计结果。
与传统的最大似然估计方法相比,贝叶斯方法能够更好地利用先验知识,对参数的不确定性进行更合理的建模,同时还能够避免过拟合的问题。
在实际应用中,由于后验分布的计算通常是非常困难甚至不可行的,因此需要借助于贝叶斯近似算法来进行推断。
常见的贝叶斯近似算法包括马尔科夫链蒙特卡洛(MCMC)方法、变分推断方法、拉普拉斯近似方法等。
马尔可夫链蒙特卡洛方法是一种基于随机模拟的推断方法,通过构建马尔可夫链来模拟参数的后验分布。
通过多次迭代采样,最终得到参数的后验分布的近似值。
但是MCMC方法的计算复杂度较高,收敛速度较慢,在处理大规模数据时可能会面临挑战。
变分推断方法是另一种常见的贝叶斯近似算法,它通过最优化一个参数化的分布来近似真实的后验分布。
变分推断方法通常会引入一些近似假设,例如独立性假设、指数族假设等,从而简化推断的计算复杂度。
变分推断方法的优点是计算效率高,但是可能会引入一定的偏差。
拉普拉斯近似方法是一种基于高斯分布的近似推断方法,通过在后验分布的峰值处进行局部近似,得到参数的估计结果。
拉普拉斯近似方法通常适用于后验分布近似是单峰分布的情况,当后验分布是多峰分布时可能会出现不准确的情况。
贝叶斯近似算法是一种在处理复杂、大规模数据时非常有效的推断方法。
通过合理地选择适当的近似算法,结合先验知识和数据信息,可以得到更加准确和稳健的模型参数估计结果。
贝叶斯分类算法介绍

贝叶斯分类算法介绍贝叶斯分类算法是一种在机器学习领域应用广泛的算法,它的名字来自于18世纪英国数学家贝叶斯。
该算法是基于贝叶斯定理而发展出来的,主要用于处理分类问题。
1. 贝叶斯分类算法的原理在理解贝叶斯分类算法前,需要先了解贝叶斯定理。
贝叶斯定理是关于随机事件A和B的条件概率的一则公式,即P(A|B) =P(B|A)*P(A)/P(B)。
其中,P(A|B)表示在事件B发生的前提下事件A发生的概率,P(B|A)表示在事件A发生的前提下事件B发生的概率,P(A)和P(B)分别表示事件A和B发生的概率。
贝叶斯分类算法基于以上原理,通过根据已知的分类样本学习出一个条件概率模型,然后使用该模型来对未知的样本进行分类。
具体来说,就是将需要分类的样本进行各个特征的判断,然后求出该样本可能属于各个类别的概率,选择概率最大的类别作为分类结果。
2. 贝叶斯分类算法的应用贝叶斯分类算法在实际应用中的表现非常出色,尤其是在文本分类、垃圾邮件过滤等方面。
在文本分类中,贝叶斯分类算法可以通过学习已有的样本数据来判断任意一个文本属于哪一个分类。
例如,我们可以通过学习已有的样本数据来创建一份“体育文章”和“政治文章”的分类模型,然后用该模型来对新发布的文章进行分类,以达到自动分类文章的效果。
在垃圾邮件过滤方面,贝叶斯分类算法同样表现优秀。
我们可以通过已知的垃圾邮件和非垃圾邮件的训练数据集,构建出一个分类模型,然后用该模型来对新收到的邮件进行分类,只有当其被分类为非垃圾邮件时才会被传递给用户,以避免用户接收到大量垃圾邮件的骚扰。
3. 贝叶斯分类算法的优点和缺点贝叶斯分类算法相较于其他分类算法,具有一些明显的优点。
首先,该算法可以利用先验知识并通过不断学习来提高分类准确度。
其次,贝叶斯分类算法对于数据样本的大小不敏感,能够适应各种规模的数据样本。
此外,该算法在处理文本分类等问题时表现优秀,并且可以很好地处理多分类问题。
当然,贝叶斯分类算法的缺点也不可避免。
贝叶斯算法总结

贝叶斯算法总结一、前言贝叶斯算法是机器学习领域中的一种重要算法,其基本思想是根据已知数据和先验概率,通过贝叶斯公式计算出后验概率,从而进行分类或预测。
在实际应用中,贝叶斯算法具有许多优点,例如对于小样本数据具有较好的分类性能、能够处理多分类问题等。
本文将对贝叶斯算法进行全面详细的总结。
二、贝叶斯公式贝叶斯公式是贝叶斯算法的核心公式,它描述了在已知先验概率和条件概率的情况下,如何求解后验概率。
P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B)表示在B发生的条件下A发生的概率;P(B|A)表示在A 发生的条件下B发生的概率;P(A)表示A发生的先验概率;P(B)表示B发生的先验概率。
三、朴素贝叶斯分类器朴素贝叶斯分类器是一种基于贝叶斯定理和特征独立假设的分类方法。
其基本思想是将待分类样本向量中各个特征出现的次数作为条件概率的估计值,从而计算出各个类别的后验概率,最终将待分类样本分到后验概率最大的类别中。
朴素贝叶斯分类器具有训练速度快、分类效果好等优点,但是其假设特征之间相互独立的前提在实际应用中并不一定成立。
四、高斯朴素贝叶斯分类器高斯朴素贝叶斯分类器是一种基于朴素贝叶斯算法和高斯分布假设的分类方法。
其基本思想是将待分类样本向量中各个特征服从高斯分布的假设作为条件概率的估计值,从而计算出各个类别的后验概率,最终将待分类样本分到后验概率最大的类别中。
高斯朴素贝叶斯分类器适用于连续型特征数据,并且能够处理多维特征数据。
但是其对于离群点比较敏感。
五、多项式朴素贝叶斯分类器多项式朴素贝叶斯分类器是一种基于朴素贝叶斯算法和多项式分布假设的分类方法。
其基本思想是将待分类样本向量中各个特征出现的次数作为条件概率的估计值,从而计算出各个类别的后验概率,最终将待分类样本分到后验概率最大的类别中。
多项式朴素贝叶斯分类器适用于离散型特征数据,并且能够处理多维特征数据。
但是其对于连续型特征数据不适用。
python库中的5种贝叶斯算法

python库中的5种贝叶斯算法Python是一种广泛使用的编程语言,拥有丰富的库和工具包,其中包括了多种贝叶斯算法。
贝叶斯算法是一类基于贝叶斯定理的统计学方法,可以用于分类、聚类、概率估计等任务。
在Python中,我们可以使用以下5种常见的贝叶斯算法来解决不同的问题。
1. 朴素贝叶斯算法(Naive Bayes)朴素贝叶斯算法是一种简单而有效的分类算法,它假设所有特征之间相互独立。
在文本分类、垃圾邮件过滤等任务中得到了广泛应用。
在Python中,我们可以使用scikit-learn库中的`sklearn.naive_bayes`模块来实现朴素贝叶斯算法。
该模块提供了多种朴素贝叶斯分类器的实现,如高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯。
2. 高斯朴素贝叶斯算法(Gaussian Naive Bayes)高斯朴素贝叶斯算法假设特征的概率分布服从高斯分布。
它常用于处理连续型特征的分类问题。
在Python中,我们可以使用scikit-learn库中的`sklearn.naive_bayes.GaussianNB`类来实现高斯朴素贝叶斯算法。
该类提供了`fit`和`predict`等方法,可以用于拟合模型和进行预测。
3. 多项式朴素贝叶斯算法(Multinomial Naive Bayes)多项式朴素贝叶斯算法适用于处理离散型特征的分类问题,如文本分类中的词频统计。
在Python中,我们可以使用scikit-learn库中的`sklearn.naive_bayes.MultinomialNB`类来实现多项式朴素贝叶斯算法。
该类同样提供了`fit`和`predict`等方法,可以用于拟合模型和进行预测。
4. 伯努利朴素贝叶斯算法(Bernoulli Naive Bayes)伯努利朴素贝叶斯算法适用于处理二值型特征的分类问题,如文本分类中的二进制词袋模型。
在Python中,我们可以使用scikit-learn库中的`sklearn.naive_bayes.BernoulliNB`类来实现伯努利朴素贝叶斯算法。
贝叶斯算法简单介绍
贝叶斯算法简单介绍贝叶斯算法是一种基于统计学的算法,主要用于机器学习与人工智能领域中的分类问题。
该算法是在 18 世纪由英国数学家托马斯·贝叶斯发明的,因此得名贝叶斯算法。
在机器学习领域中,贝叶斯算法被用于解决分类问题。
分类问题就是将一个实例归类到已有类别中的某一个类别中,如将一条邮件归类为垃圾邮件或非垃圾邮件。
贝叶斯算法的基本思想是:给定一个分类问题和一组特征,通过求解特征的条件概率来得到每个类别的概率,从而将实例分到概率最大的那个类别中。
在贝叶斯算法中,最重要的是先验概率和后验概率。
先验概率是指在没有任何与特征相关的信息时,每个类别的概率。
例如,在分类汉字的问题中,让我们假设“大” 字比“小” 字常见,这样我们就可以认为“大” 字的先验概率比“小” 字的先验概率高。
后验概率是基于输入数据的特征,通过学习得出的概率。
例如,当给出一个汉字时,通过学习得出该字是“大” 字的后验概率。
通过计算先验概率和后验概率,就得到了分类问题的最终概率。
下面我们来看一个具体的例子,假设我们要通过贝叶斯算法判断一个邮箱中的邮件是否是垃圾邮件。
我们可以将邮件的内容和标题等相关特征看成先验概率,将垃圾邮件和非垃圾邮件看成后验概率,应用贝叶斯公式进行计算。
具体步骤如下:首先,我们需要收集一些已知类别的邮件数据,将其分为两个类别:垃圾邮件和非垃圾邮件。
然后,我们需要对每个单词进行分析,看它们与垃圾邮件和非垃圾邮件的关系。
例如,“买药”这个词汇就与垃圾邮件有强关系,而“会议”这个词汇就与非垃圾邮件有强关系。
接下来,我们将每个单词与它们在垃圾邮件和非垃圾邮件中的出现次数进行记录。
这个过程中,我们需要使用平滑处理的技巧,避免数据稀疏问题。
之后,通过贝叶斯公式,我们可以得到该邮件为垃圾邮件的概率,也可以得到非垃圾邮件的概率。
根据这些概率,我们可以将邮件进行分类,并进行后续的处理。
当然,贝叶斯算法并不仅仅适用于垃圾邮件分类问题,还可以应用于医学诊断、自然语言处理、金融风险管理等领域。
贝叶斯算法简介
贝叶斯算法简介
贝叶斯算法是一种基于贝叶斯定理的分类算法,它在机器学习中被广
泛应用。
贝叶斯算法的核心思想是通过计算在已知的先验概率下的后
验概率来预测未知的事件或数据分类。
具体来说,贝叶斯算法将待分类的数据集合和已知的训练数据集合进
行比较,计算它们属于某一类的概率,并选择具有最高概率的类别作
为预测结果。
简单来说,贝叶斯算法就是根据已有的统计规律来预测
未来事件的概率。
贝叶斯算法的优点在于对数据的处理非常灵活,可以对不同类型的数
据进行分类。
此外,贝叶斯算法的计算成本较低,且对于新数据的处
理速度也很快,因此被广泛应用于搜索引擎、垃圾邮件过滤、情感分
析等领域。
贝叶斯算法的基本思路是先验概率和后验概率的计算。
先验概率是指
在未知信息的情况下,两个假设的概率,例如男生和女生的概率。
后
验概率是指在已知一些信息的情况下,所推算出的另一个事件的概率。
举个例子:假设一个人想要预测一封邮件是否为垃圾邮件。
他可以计
算每一个邮件被分类为垃圾邮件的概率,如果当前邮件属于垃圾邮件
的概率超过了某个阈值,那么就将它归为垃圾邮件。
贝叶斯算法的核心是先验概率的修正和样本重要性权重的计算。
先验概率的修正是指在不断的观察和学习中,对概率进行更新和修正。
样本重要性权重的计算是指对样本进行权重调整,使得重要的样本得到更高的权重,从而提高分类的准确率。
总的来说,贝叶斯算法是一种简单而有效的分类算法,可应用于多个领域,有效提高分类应用的准确率。
十大经典算法朴素贝叶斯讲解PPT
在人工智能领域,贝叶斯方法是一种非常具有 代表性的不确定性知识表示和推理方法。
贝叶斯定理:
P(A)是A的先验概率或边缘概率。之所以称为“先验”是因为它不考 虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称 作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称 作B的后验概率。 P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant).
购买电脑实例:
购买电脑实例:
P(X | buys_computer = “no”) P(buys_computer = “no”) = 0.019×0.357 = 0.007
因此,对于样本X,朴素贝叶斯分类预测 buys_computer =”yes” 特别要注意的是:朴素贝叶斯的核心在于它假设向量 的所有分量之间是独立的。
扩展:
该算法就是将特征相关的属性分成一组,然后假设不 同组中的属性是相互独立的,同一组中的属性是相互 关联的。 (3)还有一种具有树结构的TAN(tree augmented naï ve Bayes)分类器,它放松了朴素贝叶斯中的独 立性假设条件,允许每个属性结点最多可以依赖一个 非类结点。TAN具有较好的综合性能。算是一种受限 制的贝叶斯网络算法。
Thank you!
贝叶斯算法处理流程:
第二阶段——分类器训练阶段: 主要工作是计算每个类别在训练样本中出现 频率以及每个特征属性划分对每个类别的条件 概率估计。输入是特征属性和训练样本,输出 是分类器。 第三阶段——应用阶段:
Hale Waihona Puke 这个阶段的任务是使用分类器对待分类项进行分类 ,其输入是分类器和待分类项,输出是待分类项与类 别的映射关系。
贝叶斯算法简介
贝叶斯算法简介一、什么是贝叶斯算法贝叶斯算法是一种基于贝叶斯定理的统计学方法,用于计算给定某个条件下另一个条件的概率。
该算法通过将先验概率与数据的观测结果相结合,得出后验概率,进而进行分类、预测等任务。
贝叶斯算法具有较强的理论基础和广泛的应用领域,例如文本分类、垃圾邮件过滤、信息检索等。
二、贝叶斯定理的基本原理贝叶斯算法的核心是贝叶斯定理,该定理描述了两个事件之间的条件概率关系。
假设有事件A和事件B,贝叶斯定理可以表示为:P(A|B) = (P(B|A) * P(A)) / P(B)其中,P(A|B)表示在事件B已经发生的条件下事件A发生的概率,P(B|A)表示在事件A已经发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的先验概率。
三、贝叶斯算法的应用贝叶斯算法在许多领域都有广泛的应用,以下是其中一些典型的应用场景:1. 文本分类文本分类是贝叶斯算法的典型应用之一。
通过使用贝叶斯算法,可以根据已知的文本特征,将文本分类为不同的类别。
在文本分类中,先验概率可以通过统计已知样本数据中的文本分布来估计。
2. 垃圾邮件过滤垃圾邮件过滤是贝叶斯算法的另一个重要应用。
通过使用贝叶斯算法,可以根据已知的垃圾邮件和非垃圾邮件样本,计算出标记新邮件为垃圾邮件的概率。
具体而言,可以统计已知样本中包含垃圾邮件特征的概率,以及邮件包含这些特征的条件下是垃圾邮件的概率。
3. 信息检索贝叶斯算法在信息检索中也有广泛应用。
通过使用贝叶斯算法,可以根据查询词和文档之间的关联性概率,计算出给定查询词的条件下,相关文档的概率。
在信息检索中,先验概率可以根据已知文档的分类信息来估计。
四、贝叶斯算法的优缺点贝叶斯算法具有一些优点和缺点,以下是其主要的优缺点:优点1.贝叶斯算法在处理小样本数据时表现较好,能够有效利用有限的数据进行分类和推断。
2.贝叶斯算法具有较强的可解释性,可以通过先验概率和后验概率来解释分类结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝叶斯一、贝叶斯公式贝叶斯定理是以英国数学家贝叶斯命名,用来解决两个条件概率之间的关系问题。
已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。
这里先解释什么是条件概率:P(B|A)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。
其基本求解公式为:。
贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P (A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路.贝叶斯定理:P(A)、P(B)是”先验概率”(Prior probability).先验概率是指我们主观通过事件发生次数对概率的判断。
P(A|B)是已知B发生后A的条件概率,叫做似然函数(likelihood)。
似然函数是通过事件已经发生的概率推算事件可能性的概率。
P(B|A)是已知A发生后B的条件概率,是我们要求的值,叫做后验概率。
P(A|B)/P(A)是调整因子:调整因子是似然函数与先验概率的比值,这个比值相当于一个权重,用来调整后验概率的值,使后验概率更接近真实概率.因此,贝叶斯定理可以理解为通过先验概率和调整因子来获得后验概率二、分类问题已知集合:和,确定映射规则y=f(x),使得任意x i有且仅有一个y j使得y j=f(x i)成立.其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器.分类算法的任务就是构造分类器f.这里要着重强调,分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。
例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系.三、朴素贝叶斯1.4。
1、朴素贝叶斯分类的原理与流程朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。
为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础.朴素贝叶斯分类的正式定义如下:1、设为一个待分类项,而每个a为x的一个特征属性。
2、有类别集合。
3、计算。
4、如果,则.那么现在的关键就是如何计算第3步中的各个条件概率。
我们可以这么做:1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。
2、统计得到在各类别下各个特征属性的条件概率估计。
即。
3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:因为分母对于所有类别为常数,因为我们只要将分子最大化皆可.又因为各特征属性是条件独立的,所以有:根据上述分析,朴素贝叶斯分类的流程可以由下图表示(暂时不考虑验证):可以看到,整个朴素贝叶斯分类分为三个阶段:第一阶段-—准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。
这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。
这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。
第二阶段-—分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。
其输入是特征属性和训练样本,输出是分类器。
这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成.第三阶段—-应用阶段。
这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。
这一阶段也是机械性阶段,由程序完成。
1。
4。
2、估计类别下特征属性划分的条件概率及Laplace校准这一节讨论P(a|y)的估计。
由上文看出,计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。
当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布).即:而因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值.均值与标准差的计算在此不再赘述。
另一个需要讨论的问题就是当P(a|y)=0怎么办,当某个类别下某个特征项划分没有出现时,就是产生这种现象,这会令分类器质量大大降低.为了解决这个问题,我们引入Laplace校准,它的思想非常简单,就是对没类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。
1。
4。
3、朴素贝叶斯分类实例:检测SNS社区中不真实账号下面讨论一个使用朴素贝叶斯分类解决实际问题的例子,为了简单起见,对例子中的数据做了适当的简化.这个问题是这样的,对于SNS社区来说,不真实账号(使用虚假身份或用户的小号)是一个普遍存在的问题,作为SNS社区的运营商,希望可以检测出这些不真实账号,从而在一些运营分析报告中避免这些账号的干扰,亦可以加强对SNS社区的了解与监管。
如果通过纯人工检测,需要耗费大量的人力,效率也十分低下,如能引入自动检测机制,必将大大提升工作效率。
这个问题说白了,就是要将社区中所有账号在真实账号和不真实账号两个类别上进行分类,下面我们一步一步实现这个过程.首先设C=0表示真实账号,C=1表示不真实账号。
1、确定特征属性及划分这一步要找出可以帮助我们区分真实账号与不真实账号的特征属性,在实际应用中,特征属性的数量是很多的,划分也会比较细致,但这里为了简单起见,我们用少量的特征属性以及较粗的划分,并对数据做了修改。
我们选择三个特征属性:a1:日志数量/注册天数,a2:好友数量/注册天数,a3:是否使用真实头像。
在SNS社区中这三项都是可以直接从数据库里得到或计算出来的。
下面给出划分:a1:{a〈=0.05, 0.05<a〈0。
2, a>=0.2},a1:{a〈=0。
1, 0.1<a<0.8, a〉=0。
8},a3:{a=0(不是),a=1(是)}。
2、获取训练样本这里使用运维人员曾经人工检测过的1万个账号作为训练样本。
3、计算训练样本中每个类别的频率用训练样本中真实账号和不真实账号数量分别除以一万,得到:4、计算每个类别条件下各个特征属性划分的频率5、使用分类器进行鉴别下面我们使用上面训练得到的分类器鉴别一个账号,这个账号使用非真实头像,日志数量与注册天数的比率为0。
1,好友数与注册天数的比率为0。
2。
可以看到,虽然这个用户没有使用真实头像,但是通过分类器的鉴别,更倾向于将此账号归入真实账号类别。
这个例子也展示了当特征属性充分多时,朴素贝叶斯分类对个别属性的抗干扰性。
1。
5、分类器的评价虽然后续还会提到其它分类算法,不过这里我想先提一下如何评价分类器的质量。
首先要定义,分类器的正确率指分类器正确分类的项目占所有被分类项目的比率。
通常使用回归测试来评估分类器的准确率,最简单的方法是用构造完成的分类器对训练数据进行分类,然后根据结果给出正确率评估。
但这不是一个好方法,因为使用训练数据作为检测数据有可能因为过分拟合而导致结果过于乐观,所以一种更好的方法是在构造初期将训练数据一分为二,用一部分构造分类器,然后用另一部分检测分类器的准确率。
2。
1、摘要在上一篇文章中我们讨论了朴素贝叶斯分类。
朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立).当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。
这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。
2。
2、重新考虑上一篇的例子上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。
在那个解决方案中,我做了如下假设:i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像.ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。
但是,上述第二条假设很可能并不成立.一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。
因此,我们为了获取更准确的分类,可以将假设修改如下:i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。
ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的.iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。
上述假设更接近实际情况,但问题随之也来了,由于特征属性间存在依赖关系,使得朴素贝叶斯分类不适用了。
既然这样,我去寻找另外的解决方案.下图表示特征属性之间的关联:上图是一个有向无环图,其中每个节点代表一个随机变量,而弧则表示两个随机变量之间的联系,表示指向结点影响被指向结点.不过仅有这个图的话,只能定性给出随机变量间的关系,如果要定量,还需要一些数据,这些数据就是每个节点对其直接前驱节点的条件概率,而没有前驱节点的节点则使用先验概率表示。
例如,通过对训练数据集的统计,得到下表(R表示账号真实性,H表示头像真实性):纵向表头表示条件变量,横向表头表示随机变量。
上表为真实账号和非真实账号的概率,而下表为头像真实性对于账号真实性的概率.这两张表分别为“账号是否真实”和“头像是否真实”的条件概率表。