小学奥数全国推荐四年级奥数通用学案附带练习题解析答案46抽屉原理(二)
小学经典应用题抽屉原理题型解析

【例5】据说人的头发不超过20万根,据统计上海市常驻人口2350万人,根据这些数据,你 知道上海市常驻人口至少有多少人头发根数同样多吗?
解法: 人的头发不超过20万根,可看作20万个“抽屉”,2350万人可看作2350万个 “元素”, 把2350万个“元素”放到20万个“抽屉”中,得到2350÷20= 117......10 根据抽屉原则的推广规律,可知k+1=118 答:上海市常驻人口至少有118人的头发根数同样多。
【例1】幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个 小朋友能得两件玩具?
解法:至少拿42个
抽屉原理(二):
基本的抽屉原则是:,如果把n+ 1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个 或更多的物体(元素)
【抽屉原则可以推广为:】 如果有m个抽屉,有k×m+r (0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。通俗 地说:如果元素的个数是抽屉个数的k倍多一些, 那么至少有一个抽屉要放(k+1)个或更多的元素
抽屉原理(一):
基本的抽屉原则是:,如果把n+ 1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个 或更多的物体(元素) 【抽屉原则可以推广为:】 如果有m个抽屉,有k×m+r (0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。通俗 地说:如果元素的个数是抽屉个数的k倍多一些, 那么至少有一个抽屉要放(k+1)个或更多的元素
【例3】幼儿园里有120个小朋友,各种玩具有364件,把这些玩具分给小朋友,是否有人得 到4件或4件以上的玩具?
解法: 364÷120=3····4 至少 如果有m个抽屉,有k×m+r (0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。通俗 地说:如果元素的个数是抽屉个数的k倍多一些, 那么至少有一个抽屉要放(k+1)个或更多的元素
四年级奥数习题及答案:抽屉原理

四年级奥数习题及答案:抽屉原理抽屉原理是四年级的学生非常头疼的奥数题目,多做多练多学,这样对于有这类型的题目就轻而易举了,快来看看吧!习题一构造抽屉最关键的在于找到题目中的苹果和抽屉,并确定它们的数量。
对于四年级孩子,我们只要求能解决一些简单的问题。
例:幼儿园新购了熊猫、大象、长颈鹿3种玩具分给7个小朋友,每种玩具都有很多,每个小朋友可以选择两个玩具,可以相同也可以不同。
请证明肯定有两个小朋友选的玩具是相同的。
分析:三种玩具选两个,因为可以相同,所以共有六种不同的选择方式:[(熊,熊)(象,象)(鹿,鹿)(熊,象)(熊,鹿)(象,鹿)];7个小朋友可看作7个苹果,6种选择方式看作6个抽屉,7÷6=1(人)……1(人)所以肯定至少有两个小朋友选的玩具是相同的!习题二例:有1根红筷子,5根绿筷子,7根黄筷子,8根蓝筷子;问:(1)至少取几根筷子才能保证取到颜色相同的一双筷子?(2)至少取几根筷子才能保证取到颜色相同的两双筷子?(3)至少取几根筷子才能保证取到颜色不同的两双筷子?分析:(1)要取到颜色相同的一双筷子,即是要取到两根颜色相同的筷子,从最倒霉的角度去思考,需要每种颜色各取一根,再任取1根即可。
1+1+1+1+1=5(根)(2)要取颜色相同的两双筷子,即是要取颜色相同的4根筷子,从最倒霉的角度去思考,需要每种颜色各取3根,再任取1根,而红色只有1根,取完即可。
1+3+3+3+1=11(根)(3)要取颜色不同的两双筷子,即是要取颜色不同的筷子各两根,则先把数量最多的颜色先取完,其他颜色各取一根,再任取一根即可。
8+1+1+1+1=12(根)这类问题中要注意:筷子,袜子这些东西都是成双成对的,一双由两只组成。
习题三这里要注意理解两个词的含义,保证:确定,肯定,万无一失!最不利:最倒霉,最繁琐,最糟糕!最不利原则要求我们从最极端的角度去考虑事件。
我们分两类去讨论:例:口袋里共有5个红球,4个黄球,3个绿球;问:(1)至少取几个球才能保证取到一个红球?(2)至少取几个球才能保证取到三种颜色的球各一个?分析:(1)要取到一个红球,从最倒霉的角度去思考,需要先取到4个黄球,3个绿球,再取一个红球,所以共计4+3+1=8(个)(2)要取到三种颜色的球各一个,从最倒霉的角度去思考,需先取到5个红球,4个黄球,再取一个绿球即可,所以共计5+4+1=10(个) (这里要注意下顺序,从最多数量的颜色开始取)。
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案45抽屉原理(一)

年级四年级学科奥数版本通用版课程标题抽屉原理(一)如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。
道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与放5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。
同样地,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。
以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
利用抽屉原理,可以说明(证明)许多有趣的现象或结论。
不过,抽屉原理不是拿来就能用的,关键是要能运用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是1件,或者没有。
这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定的“这n个抽屉中,每一个抽屉内的物品都不到2件”的条件不能成立,从而知抽屉原理1成立。
应用抽屉原理解题的步骤:第一步:分析题意。
即分清什么可作“物品”,什么可作“抽屉”。
第二步:制造“抽屉”。
这是关键的一步,即如何设计“抽屉”。
根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“抽屉”及其个数,为使用抽屉原理铺平道路。
第三步:运用抽屉原理。
观察题设条件,结合第二步,恰当运用各个原则或综合运用几个原则,以解决问题。
例1从全校学生中任意找来13名同学,其中至少有2名同学在同一个月过生日。
你能说出为什么吗?分析与解:一年有12个月,任何一个人的生日,一定在其中的某一个月。
如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
小学奥数教案——抽屉原理(解析版)

小学奥数教案——抽屉原理(解析版)第一篇:小学奥数教案——抽屉原理(解析版)教案抽屉原理一本讲学习目标初步抽屉原理的方法和心得。
二概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。
三例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
小学数学 抽屉原理 完整版题型训练+详细答案

抽屉原理例题讲解:板块一:基础题型1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?答案:7详解:60÷(8+1)=6……6,6+1=7个。
2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?答案:3详解:答案的结果有23=8种情况,即8个抽屉。
17÷8=2……1,2+1=3名。
3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.详解:两位数的情况共4种:12,21,11,22。
六位数可以截取出5个两位数,所以必有重复。
4.将1至6这6个自然数随意填在图2,图中的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。
详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。
5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明:(1)在这51个数中,一定有两个数的差等于50;详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。
选出51个数,必有两数来自一组,即差为50.(2)在这51个数中,一定有两个数差1.详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。
必有两数来自一组,即差为1.6.从1,2,3,…,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?答案:12详解:构造差为4的抽屉:(1,5)、(2,6)、(3,7)、(4,8)、(9,13)、(10,14)、(11,15)、(12,16)、(17,21)、(18)、(19)、(20)共12个抽屉,最多取12个数。
小学奥数——抽屉原理题库2(含详细答案)

奥数——抽屉原理题库2(含详细答案)一.解答题(共40小题)1.一个体育代表团共有997名运动员,他们着装运动服上的号码数两两不同,但都小于1992. 证明:至少有一名运动员的号码数恰等于另外两名运动员的号码数之和.2.某校初中二年级共有210名学生,则至少有18名同学是在同一个月里出生的.3.证明:从1,2,3,⋯,11,12这12个数中任意取出7个数,其中至少有两个数之差为6.4.对于任意给定的n 个自然数,其中一定存在若干个数,它们的和是n 的倍数.5.从1,2,3,⋯,n 中任取10个数,使得其中两个数比值大于23,小于32,那么n 的最大值是91.6.从1到100这100个自然数中,任意取出51个数,其中一定存在两个数,这两个数中的一个是另一个的整数倍.7.证明:在121-,221-,321-,⋯,121n --这1n -个数中,至少有一个数能被n 整除(其中n 为大于1的奇数).8.在1,2,3,⋯,90,91这91个自然数中,任取k 个数,使得其中必有两个自然数p 、q 满足2332q p 剟,试确定自然数k 的最小值并说明理由. 9.证明:如果在边长分别为3和4的矩形中有任意6个点,那么一定可以选出两个点,它.10.如果在长度为1的线段上有1n +个点,那么其中必有两点,它们之间的距离不超过1n. 11.我们把在直解坐标平面内横坐标都是整数的点称为整点.证明:对于平面内任意给定的五个整点,其中一定存在两个整点,这两个点的连线的中点仍为整点.12.在边长为1. 13.将59⨯的长方形分成边长为整数的长方形,无论怎样分法,分得的长方形中必有两个是完全相同的,请你说明理由.14.从1到100这100个自然数中至少要取出多少个数,才能保证一定存在两个数是互质的.15.对于平面上给定的25个点,如果其中任何3个点中都有某两个点的距离小于1,那么在这些给定的点中,一定可以找到13个点,这13个点都位于一个半径为1的圆内.16.证明:在任意给定的100个整数中,一定存在两个数,它们的和或差是100的倍数.17.将2002张卡片分别标记1,2,3,⋯,2002的数,数字面朝上放在桌上.二位玩家轮流自桌上各取一张牌,直到桌上的牌取光为止.先计算每个人所有取的牌的数之总和,再比较这两个总和的个位数,较大者为胜方.请问两位玩家中哪一位有必胜之策略(无论对手如何对应)?如果有,这个必胜策略是什么?18.如果三个完全平方数之和能被9整除,那么可以从这三个数中选出两个来,使得这两个完全平立数之差也能被9整除.19.某夏令营组织1987名营员去游览故宫、景山公园、北海公园,规定每人必须去一处,至多去两处游览.求证:至少有332人游览的地方完全相同.20.设1a ,2a ,3a ⋯,41a 是任意给定的互不相等的41个正整数.问能否在这41个数中找到6个数,使它们的一个四则运算式的结果(每个数不重复使用)是2002的倍数?如果能,请给出证明;如果不能,请说明理由.21.一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋.22.证明:对任意三角形,一定存在两条边,它们的长u ,v 满足1u v <…. 23.在1818⨯的方格纸上的每个方格中均填入一个彼此不相等的正整数.求证:无论哪种填法,至少有两对相邻小方格(有一条公共边的两个小方格称为一对相邻小方格),每对小方格中所填之数的差均不小于10.24.在1,4,7.10⋯,100中任选20个数,其中至少有不同的两组(每组两个数),其和等于104,试证明之.25.从连续自然数1,2,3,⋯,2008中任意取n 个不同的数,(1)求证:当1007n =时,无论怎样选取这n 个数,总存在其中的4个数的和等于4017.(2)当1006(n n …是正整数)时,上述结论成立否?请说明理由.26.求证:在小于100的27个正奇数中,必可找到两个数,它们的和等于102.27.设X 是一个56元集合.求最小的正整数n ,使得对X 的任意15个子集,只要它们中任何7个的并的元素个数都不少于n ,则这15个子集中一定存在3个,它们的交非空.28.在100个连续自然数1,2,⋯,100中,任取51个数.证明:这51个数中,一定有两个数,其中一个数是另一个数的倍数.29.设有22n n ⨯个正方形方格棋盘,在其中任意的3n 个方格中各有一枚棋子.求证:可以选出n行和n列,使得3n枚棋子都在这n行和n列中.30.从1,2,3,⋯,3919中任取2001个数.证明:一定存在两个数之差恰好为98.31.有17个科学家,他们中的每一个都和其他的科学家通信,在他们的通信中仅仅讨论三个问题,每一对科学家互相通信时,仅仅讨论同一个问题.证明至少有三个科学家关于同一个题目互相通信.32.从1,2,⋯,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值.33.环行跑道的一周插了若干红、黄两种颜色的彩旗,已知一共变色了46次(一个红旗与一个黄旗相邻或一个黄旗与一个红旗相邻,称为一次变色),现可将相邻的旗子对调,如果若干次对调后,变色次数减少为26次.试说明:在对调过程中,必有一个时刻,彩旗的变色次数恰好为28次.34.九条直线中的每一条直线都把正方形分成面积比为2:3的两个四边形.证明:这九条直线中至少有三条经过同一点.35.连接圆周上9个不同点的36条直线染成红色或蓝色,假定由9点中每3点所确定的三角形都至少含有一条红色边.证明有四点,其中每两点的连线都是红色的.36.一个口袋内有100个球,其中有红球28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个.从袋中任意取球,如果要求一次取出的球中至少有15个球的颜色相同,那么至少要从袋中取出多少个球?37.把1到3这三个自然数填入1010⨯的方格内,每格内填一个数,求证:无论怎样填法都能使在各行、各列、两条对角线上的数字和中,必有两个是相同的.38.有50名同学站在操场上玩游戏,他们彼此间的距离都各不相等.每人手中有一把水枪,游戏规则是:每人都向离自己最近的人打一枪.试证明:每一个人至多挨了5枪.(提示:也就是要证明:假定有一个人至少挨6枪是不可能的)39.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,证明至少有5人植树的株数相同.40.41名运动员所穿运动衣号码是1,2,⋯,40,41这41个自然数,问:(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举一例;若不能办到,请说明理由.。
四年级下册数学试题-奥数培优:简单抽屉原理与最不利原则(下)全国通用【精品】
【精品】简单抽屉原理与最不利原则(下)(★★★)在一个盒子里装着形状相同的三种口味的果冻,分别是苹果口味、巧克力口味和香芋口味的,每种果冻都有20个,现在闭着眼睛从盒子里拿果冻。
请问:⑴至少要从中拿出多少个,才能保证拿出的果冻中有香芋口味的?⑵至少要从中拿出多少个,才能保证拿出的果冻中至少有两种口味?(★★★)口袋中有三种颜色的筷子各10根,问:⑴至少取多少根才能保证三种颜色都取到?⑵至少取多少根才能保证有2双颜色不同的筷子?⑶至少取多少根才能保证有2双颜色相同的筷子?(★★★)一个布袋里有大小相同的颜色不同的一些球,其中红色的有10个,白色的有9个,黄色的有8个,蓝色的有3个,绿色的有1个。
那么一次最少取出多少个球,才能保证有4个颜色相同的球?(★★★★)将1只白手套、2只黑手套、3只红手套、8只黄手套和9只绿手套放入一个布袋里,请问:⑴一次至少要摸出多少只手套才能保证一定有颜色相同的两双手套?⑵一次至少要摸出多少只手套才能保证一定有颜色不同的两双手套?(两只手套颜色相同即为一双)(★★★★)一副扑克牌54张。
⑴一次至少要抽出多少张才能保证有3张花色相同?⑵一次至少要抽出多少张才能保证3种花色都有?(★★★★★)⑴从大街上至少选出多少人,才能保证至少有3人属相相同?⑵为保证至少5个人的属相相同,但不保证有6人属相相同,那么总人数应在什么范围内?(★★★★★)幼儿园小朋友分200块饼干,无论怎样分都有人至少分到8块饼干,这群小朋友至多有多少名?重点例题:例2,例4,例6在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.(★★★)在一个袋子里装着形状相同的四种口味的糖果,分别是草莓口味、巧克力口味、菠萝口味和苹果口味的,每种糖果各有15块。
现在闭着眼睛从盒子里拿果冻,那么至少要从中拿出( )块,才能保证拿出的果冻中有菠萝口味的糖果。
A.16B.31C.46D.602.(★★★)口袋中有四种颜色的筷子各6双,至少取( )根才能保证四种颜色都取到;至少取( )根才能保证有2双颜色相同的筷子。
四年级奥数之简单抽屉原理与最不利原则(二)
简单抽屉原理与最不利原则(二)
本讲主线
1.最不利原则
2.最不利原则与抽屉
1. 最不利原则:
这是一种从反面考虑的思想,要保证能够在最坏的情况下都能保证事情肯定发生的思考方式
实例:盒子里,有
双完整的筷子
相同的点数?
相的点数
只兔子在埋头偷吃胡萝卜.
“砰”的一枪打死了一只兔子. 请问:菜园里还剩多少只兔子?
3.抽屉原理:
抽屉原理:
⑴10个苹果放到
个苹果
⑵本质:平均数思想,肯定有人要不低于平均数
⑶用途:证明题
知识大总结平均数思想,肯定有人要不低于平均数;。
小学四年级数学思维专题训练—抽屉原理 (含答案解析)
小学四年级数学思维专题训练—抽屉原理1、某校六年级有3个班,在一次数学竞赛中,至少有人获奖才能保证获奖的同学中一定有4名学生同班。
2、某超级市场有128箱苹果,每箱至少有120个至多有144个。
装苹果个数相同的箱子称为一组,装苹果个数相同的箱子称为一组,其中数量最多的一组箱子个数为N。
那么,N的最小值是。
3、现在有61个乒乓球,20个乒乓球盒,每个盒子最多能放5个乒乓球,如果把这些球全部放入盒内,不许有空盒,那么至少有个乒乓球盒里的乒乓球数目相同。
4、一幅扑克牌共有54张,最少要抽取几张牌,才能保证其中至少有2张牌的点数相同?5、一副扑克牌有四种花色,每种花色13张,从中任意抽出多少张牌才能保证有4张是同一花色的?6、有一叠含20张红色、20张黄色、20张绿色及10张蓝色的纸牌。
请问至少要抽出多少张纸牌,才能保证其中有12张纸牌的颜色相同?7、袋子里有18个大小相同的彩色球其中红球3个,黄球5个,绿球10个,现在一次从中任意取出N 个,至少有5个球是同色的。
那么,从袋中一次至少取出个球。
A、5个B、8个C、12个D、13个8、一袋有70只球,其中20只红球,20只绿球,20只黄球,其余为白球和黑球,至少取只球,才保证有10只同色的球。
9、一个不透明的袋中放有黑、黄、红、绿颜色的手套各8只,不许用眼看,则至少要从袋中取出只手套才能保证配成5双(一双是指颜色相同的两只手套,不分左右手).10、从1到20 最多能取出个数,使任意两个数不是3倍关系。
11、新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸出两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分,结果发现总有两人取的球相同,由此可知,参加取球的至少有人。
12、有红黄蓝白黑五种形状大小完全一样的小球若干,每人必须从中选3只小球,要使有两人得到球的颜色完全一样,至少有个人参加选球。
13、有足够多的苹果、香蕉、橘子三种水果,最少要把它分成堆(每堆都有三种水果)才能保证找得到这样的2堆,把2堆合并后,三种水果的个数都是偶数。
(小学奥数讲座)抽屉原理(二)
抽屉原理(二)导言:这里介绍除最不巧原则之外的另一种思维来解答抽屉原理问题。
先让我们来做个试验,把4个苹果放在3个抽屉里,会出现什么情况?我们把这几种情况分别表示出来:4=4+0+0;4=3+1+0;4=2+2+0;4=2+1+1。
观察上面放苹果的各种情况,我们发现,不管怎么放,总有一个抽屉里至少有2个苹果。
像这种现象,我们称之为抽屉原理。
它是由德国数学家狄利克雷最早发现的,也称之为狄利克雷原理。
我们利用这一原理,可以解决生活中很多有趣但又觉得无从入手的问题。
抽屉原理一把n+1个苹果放入n个抽屉中,则至少有一个抽屉至少放了两个苹果例1.任意13名同学中,必有2名同学出生在同一个月份,为什么?解析:把13名同学当作13个苹果,把一年12个月看作12个抽屉,13=12+1,根据抽屉原理一,至少有2名同学出生在同一个月份。
这题我们也可以用最不巧原理来解答。
出生月份只有1、2、、、、12月这12种情况,最不巧的是这13名同学中的12名同学的出生月份,分别是这12种情况,互不相同。
但第13名同学肯定是12种情况中的一种,这样,至少有2名同学出生在同一个月份中。
例2.有红、黄、蓝、白4色的小球各10个,混合放在一个布袋里。
一次摸出8个小球,其中至少有几个小球的颜色是相同的。
解析:把红、黄、蓝、白4色小球看作成4个抽屉,8个小球看作8个苹果,因为8=4+4,根据抽屉原理一,至少有2个小球的颜色是相同的。
例3.在长度是10厘米的线段上任意取11个点,试说明至少有2个点间的距离不大于1厘米?解析:把长度10厘米的线段分成10等份,那么每段长都是1厘米,我们把这样的每段看成一个抽屉,共有10个抽屉。
把11个点放入10个抽屉中,根据抽屉原理一,必有2个点放在同一个抽屉中,所以,至少有2个点间的距离不大于1厘米。
例4.用红、黄两种颜色将下图中的小方块随意涂色,每个小方格涂一种颜色,那么,必有两列方格中所涂颜色完全相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级四年级学科奥数版本通用版
课程标题抽屉原理(二)
这一讲我们学习抽屉原理的另一种情况。
先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。
道理很简单,如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子,剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。
这个例子所体现的数学思想,就是下面的抽屉原理2。
抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。
假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件,这与多于m×n件物品的假设相矛盾。
这说明一开始的假定不能成立,所以至少有一个抽屉中物品的件数不少于(m +1)件。
“抽屉原理1”和“抽屉原理2”的区别是:“抽屉原理1”物体多,抽屉少,数量比较接近;“抽屉原理2”虽然也是物体多,抽屉少,但是数量相差较大,物体个数比抽屉个数的几倍还多几。
不是每一个类似问题的“抽屉”都很明显,有时候“抽屉”需要我们来构造,这个“抽屉”可以是日期、扑克牌、考试分数、年龄、书架等变化的量。
例1有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?
分析与解:将40名小朋友看成40个抽屉。
有玩具122件,而122=3×40+2,应用抽屉原理2,取n=40,m=3,立即知道至少有一个抽屉中放有4件或4件以上的玩具,也就是说,至少会有一个小朋友得到4件或4件以上的玩具。
例2 布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?
分析与解:把4种不同颜色看做4个抽屉,把布袋中的球看做元素。
根据抽屉原理2,要使其中一个抽屉里有3个颜色一样的球,那么放入的球的个数最少应比抽屉个数的2倍多1,即最少取出(3-1)×4+1=9(个)球。
例3 有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?
分析与解:关键是构造合适的“抽屉”。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余学生的成绩均在75~95分之间,而75~95分中共有21个不同的分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
则有44÷21=2……2,根据抽屉原理2,至少有1个抽屉中至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。
例4学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(也可以不参加)。
问:至少有多少名学生,才能保证有不少于5名学生参加学习班的情况完全相同?
分析与解:首先要弄清参加学习班有多少种不同的情况:不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。
共有1+3+3=7(种)情况。
将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证有不少于5名学生参加学习班的情况完全相同,那么至少有学生7×(5-1)+1=29(名)。
例5夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?
分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
营员数已经有了,现在的问题是应当搞清有多少个抽屉。
因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的情况有3种,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。
则有2000÷6=333……2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是完全相同的。
(答题时间:30分钟)
1. 五名同学在一起练习投篮,共投进了41个球,那么至少有一个人投进了几个球?
2. 有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、两种或三种。
问:至少有多少名学生订阅的杂志种类相同?
3. 篮子里有苹果、梨、桃和橘子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?
4. 放体育用品的仓库里有许多足球、排球和篮球,有66名同学来仓库拿球,要求每人至
少拿1个球,至多拿2个球。
问:至少有多少名同学所拿的球的种类是完全一样的?
5. ①求证:任意25个人中,至少有3个人的属相相同。
②要想保证至少有5个人的属相相同,但不能保证有6个人的属相相同,那么人的总数应在什么范围内?
1. 解:将5个同学投进的球数作为抽屉,将41个球放入抽屉中,41=5×8+1,所以至少有一个抽屉中放了9个球,即至少有一个人投进了9个球。
2. 解:首先应当弄清订阅杂志的种类共有多少种不同的情况。
订一种杂志有:订甲、订乙、订丙3种情况;
订两种杂志有:订甲乙、订乙丙、订丙甲3种情况;
订三种杂志有:订甲乙丙1种情况。
总共有3+3+1=7(种)订阅方法。
我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。
因为100=14×7+2。
根据抽屉原理2,至少有14+1=15(名)学生所订阅的杂志种类是相同的。
3. 解:首先应弄清不同的水果搭配有多少种。
两个水果是相同的有4种,两个水果不同的有6种:苹果和梨、苹果和桃、苹果和橘子、梨和桃、梨和橘子、桃和橘子,所以不同的水果搭配共有4+6=10(种)。
将这10种搭配作为10个“抽屉”,因为81=8×10+1,根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果是相同的。
4. 解:拿球的配组方式有以下9种:{足},{排},{篮},{足,足},{排,排},{篮,篮},{足,排},{足,篮},{排,篮}。
把这9种配组方式看作9个抽屉,因为66=7×9+3,所以至少有7+1=8(名)同学所拿的球的种类是完全一样的。
5. 解:①把12种属相看作12个抽屉,因为25=2×12+1,所以根据抽屉原理2,至少有3个人的属相相同。
②要保证有5个人的属相相同,总人数最少为4×12+1=49(人)。
不能保证有6个人的属相相同的最多人数为5×12=60(人)。
所以总人数应在49人到60人的范围内。