微波遥感期末知识点复习资料全

合集下载

微波遥感期末知识点复习资料全

微波遥感期末知识点复习资料全

1.微波遥感分类• 主动微波遥感,被动微波遥感• 微波辐射计,微波散射计,微波高度计,成像雷达• 真实孔径雷达,合成孔径雷达,机载和星载• 干涉SAR,极化SAR2.微波遥感的意义全天候,全天时,植被穿透性,地表穿透性,独特的遥感机理,干涉测量能力,多极化,多波段,高分辨率,与其它遥感手段互补电磁波谱微波波谱微波波段:0.1-100cm短K->X->C->S->L->P 长为什么星载雷达系统不采用K/P波段?答:K波段波长短,虽然有较好精确性,但是此波长可以被水蒸气强烈吸收,使这一波段的雷达不能在雨中和有雾的天气使用。

P波段波长较长,由于微波穿过大气层时会产生法拉第旋转,低频长波旋转程度大,极大限制了空基P波段微波遥感系统的可行性。

且由于波长较长其分辨率低。

目标的散射特性与哪些因素有关?电磁波辐射在非均匀媒质或各向异性媒质中传播时多方位、多角度地改变原来传播方向的现象,即目标对入射电磁波能量的重定向。

瑞利散射:(a < 0.1λ)散射光波长等于入射光波长,散射粒子远小于入射光波长。

米氏散射:(0.1λ < a<10λ)当大气中粒子的直径与辐射的波长相当时发生的散射。

光学(非选择性)散射(10λ < a)散射粒子的粒径比辐射波长大得多时发生的散射,散射系数与波长无关。

目标的散射特性首先取决于目标尺寸和雷达波长间的关系(粗糙度),入射角、介电特性(介电常数增加,反射增加)和极化特性。

如何提高真实孔径雷达分辨率?距离分辨率(地距分辨率)Rg = (tc/2) secβ斜距分辨率Rr=tc/2 (沿波束方向)脉冲宽度越小,俯角越小,距离分辨率越高,俯角太小地形影响严重,当俯角一定时,减小脉冲宽度可提高距离分辨率,所以合成孔径雷达在距离向采用脉冲压缩技术chirp(距离压缩)方位向分辨率Ra = (λ/d) R(又R=H/sinβ=H/cosθ )提高方位分辨率=>加大天线孔径,波长较短电磁波,缩短观测距离合成孔径技术合成孔径雷达分辨率与哪些参数相关?距离向分辨率Rg=(tc/2)/cosβ方位向分辨率Ls=βsR=D/2什么是多视?多视:用平均法减低相干观测系统上特有的乘性随机噪声光斑;把合成孔径长度分为N个区间,每区间内方位压缩后相加平均,N为视数降低了空间分辨率,换取辐射分辨率的提高SAR图像有哪些特点?1.穿透性:大气对电磁波的衰减与电磁波有关,波长越长,衰减越小2.斑点噪声:雷达图像上每个像素的信号是电磁波与各微散射体相互之间加强或减弱作用的集成,在影像中以斑点的形式表现出来。

微波遥感 期末复习

微波遥感 期末复习

微波遥感哟不要第一章:微波遥感:利用某种传感器接收地面各种地物发射或反射的微波信号,藉以识别、分析地物,提取所需信息。

红外遥感是利用0.76~1000微米的红外涉嫌与各类地物关系来进行资源与环境调查和检测。

为什么微波遥感这么具有吸引力,它究竟具有什么优越性?一、微波能穿透云雾、雨雪,具有全天候工作能力。

二、微波对地物有一定穿透能力。

三、微波能提供不同于可见光和红外遥感所能提供的某些信息。

四、微波遥感的主动方式,雷达遥感不仅可以记录电磁波振幅信号,而且可以记录电磁波相位信息。

微波遥感分为主动和被动方式。

波长越长,穿透能力越强。

同一种土壤温度越小,穿透越深。

干涉测量:由数次同侧观测得到的数据可以计算出针对地面上每一点的相位差,进而计算出这一点的高程,其精度可以达到几米。

微波主动式传感器获得的图像常成为雷达图像,这是因为成像微波遥感常采用真实孔径雷达和合成孔径雷达,都是由雷达发展而来。

微波遥感也可以采用被动工作方式,这主要是微波辐射计的工作。

微波辐射计目前也成为重要的微波遥感工具。

所谓电磁波,就是以波动形式在空间传播并传递电磁能量的交变电磁场。

电磁波具有波长、传播方向、振幅和偏振面四个基本物理量。

这四个物理量一旦确定,一个平面电磁波就被完全决定了。

一般来说,振幅是指电场振动的幅度,它表示电磁波传递的能量大小,极化面是指电厂振动方向所在的平面。

电磁波的基本特性与微波微波是电磁波的一种形式,因此了解电磁波的一些基本特征也是对微波基本特征的了解。

1.叠加原理2.相干性和非相干性3.衍射4.极化(p7)在一定条件下,任何物体都能向外发射电磁辐射,而这种因热物体都会发射出由这一温度所决定的热辐射,一般只要温度在0 K以上,一切物体都会发射出由这一温度所决定的热辐射。

所有的物体都能吸收电磁辐射,吸收能力越强,其辐射能力也就越强。

大气对微波的衰减作用主要有大气中的水分子和氧分子对微波的吸收,大气微粒对微波的散射。

氧分子的吸收作用较强。

微波遥感复习

微波遥感复习

第一章微波遥感基础1、微波遥感的概念及分类微波遥感是利用某种传感器接收地面各种地物反射或散射的微波信号,藉以识别、分析地物,提取所需的信息。

主要分为主动微波遥感和被动微波遥感,被动微波遥感包括微波成像仪和微波探测仪;主动微波遥感包括雷达高度计、雷达散射计和成像雷达。

2、微波遥感的优越性(1)微波能穿透云雾、雨雪,具有全天候、全天时的工作能力,优于可见光和红外波段的探测能力(2)微波对地物有一定的穿透能力,对地物的穿透深度因波长和物质的不同而有很大差异,波长越长,穿透能力越强。

(3)微波能提供不同于可见光和红外遥感所能提供的某些信息,比如微波高度计和合成孔径雷达具有测量距离的能力,可以用于测定大地水准面,还可以利用微波探测海面风场。

(4)雷达可以进行干涉测量3、微波遥感的不足(1)微波传感器的空间分辨率要比可见光和红外传感器低(2)其特殊的成像方式使得数据处理和藉以相对困难些(3)与可见光和红外传感器数据不能在空间位置上一致4、合成孔径雷达(SAR)特性及优势(1)全天候,不受云雾雪的影响,雨的影响有限(2)全天时,主动遥感系统(3)对地表有一定的穿透能力,与土壤含水量有关,依赖于波长(4)对植被有一定的穿透能力,依赖于波长和入射角(5)高分辨率,分辨率与距离无关(6)独特的辐射和集合特性(7)干涉测量能力(8)多极化观测能力5、极化,指得是电磁波的电场振动方向的变化趋势。

极化方式有线极化、椭圆极化、圆极化。

第二章微波遥感系统1、常见的微波遥感传感器在海洋、陆地、大气微波遥感应用中,常用的有效的传感器有五种:散射计、高度计、无线电地下探测器(以上为非成像系统);微波辐射计、侧视雷达(以上为成像系统)。

2、散射计微波散射计是一种有源微波遥感器,专门用来测量各种地物的散射特性。

它是通过测量地物对微波的散射强度,达到测定地物的后向散射系数的相对值。

散射计按照观测方式可以分为以下四类:侧视观测散射计;前视(后视)观测散射计;斜视观测散射计;笔式光束环形扫描散射计。

遥感复习资料

遥感复习资料

遥感复习资料遥感复习总结第一章1、遥感:应用探测器一起,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

2、遥感系统:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。

3、遥感的类型:按遥感平台分(地面遥感、航空遥感、航天遥感、航宇遥感),按传感器探测波段(紫外遥感、可见光遥感0.38-0.76、红外遥感、微波遥感、多波段遥感),按工作方式(主动和被动)4、遥感的特点:大面积的同步观测、数据的综合性和可比性、时效性、经济性、局限性。

第二章5、电磁波谱:将各种电磁波在真空中的波长按其长短,依次排列制成的图表6、辐射能量:电磁辐射的能量;辐射通量:单位时间内通过某一面积的辐射能量;辐照度:被辐射的物体表面单位面积上的辐射通量;辐射出射度:辐射源物体表面单位面积上的辐射通量。

7、绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,这个物体叫做绝对黑体8、维恩位移定律:黑体温度越高,其曲线的峰顶就越往左移,即往波长短的方向移动9、大气分层:对流层、平流层、中间层、热层、散逸层10、大气散射:辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开11、大气散射三种情况:瑞利散射、米氏散射、无选择性散射12、为什么无云的天空呈现蓝色?答:蓝光波长短,散射强度较大,因此蓝光向四面八方散射,使整个天空蔚蓝,使太阳辐射传播方向的蓝光被大大削弱。

13、为什么说微波具有穿云透雾的能力?答:大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对于微波来说,微波波长比粒子的直径大的多,散射强度与波长的四次方成反比,波长越长散射强度越小,所以微波才可能有最小散射、最大投射,而被称为具有穿云透雾的能力14、大气窗口:把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口15、地球辐射的分段特性★0.3-2.5微米波段(主要在可见光与近红外波段),地表以反射太阳辐射为主,地球自身的辐射可以忽略;★2.5-6.0微米波段(主要在中红外波段),地表反射太阳辐射和地球自身的热辐射均为被动遥感的辐射源;★ 6.0微米以上的热红外波段。

遥感导论复习资料(全)

遥感导论复习资料(全)

填空1.微波是指波长在1mm-1m之间的电磁波。

2.就遥感而言,被动遥感主要利用可见光、红外等稳定辐射,使太阳活动对遥感的影响减至最小。

3.1999年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原发射成功。

ndsat和SPOT的传感器都是光电成像型,具体是光机扫描仪、CCD阵列。

5.SPOT1、2、3卫星上有HRV高分辨率可见光扫描仪,可以用作两种观测垂直观测、倾斜观测也是SPOT卫星的优势所在。

6.美国高分民用卫星有IKONOS、QUICK BIRD。

7.灰度重采样的方法有:最邻近法、双线性内插法、三次卷积内插法。

8.四种分辨率来衡量传感器的性能:空间分辨率、时间分辨率、光谱分辨率、辐射分辨率9.数字图像增强的主要方法有:对比度变换、空间滤波、彩色变换、图像运算、多光谱变换。

10.常用的彩色变换方法有:单波段彩色变换、多波段彩色变换、HLS变换。

11.遥感系统包括五种:目标物的电磁波特性、信息的获取、信息的传输、信息的处理、信息的运用。

12.遥感传感器的探测波段分为:紫外遥感、可见光波段、红外遥感、微波遥感、多波段遥感。

13.常用的锐化方法有:罗伯特梯度、索伯尔梯度、拉普拉斯算法、定向检测。

14.目标地物识别特征包括:色调、颜色、阴影、形状、大小、纹理、图形、位置、拓扑结构。

15.地物的空间关系主要表现为:方位、包含、相邻、相交、相贯。

16.地质遥感包括:岩性识别、地质构造的识别、构造运动的分析。

17.试举三个陆地卫星:Landsat、SPOT、CBERS。

18.遥感影像变形的原因有:遥感平台位置和运动状态变化的影响、地形起伏的影响、地球曲率的影响、地球自转的影响、大气折射。

19.平滑是为了达到什么目的:去除噪声。

20.热红外影像的阴影是:目标地物与背景之间辐射差异造成的。

21.遥感扫描影像的特征有:综合概括性强、信息量大、动态观测。

22.微波影像的阴影是:与目标地物之间存在障碍物阻挡了雷达波的传播。

微波遥感复习题

微波遥感复习题

第一章1. 微波遥感的微波波段:频率范围:300MHz – 40GHz ;波长范围:1m – 0.75cm.。

太阳辐射微波小于地球辐射 微波。

地球辐射微波:100MHz – 10GHz :3 nWm-2,100MHz – 1GHZ :29 pWm-2。

有鉴于 此,微波遥感多为主动遥感。

2.微波遥感的特点:由于微波的波长较长,能穿透云、雾而不受天气影响,所以能进行全天时全天候的遥感探测。

微波对某些物质具有一定的穿透能力,能直接透过植被、冰雪、土壤等表层覆盖物。

因此广覆盖。

全天候、全气候、广覆盖。

3.微博遥感中较多应用相同相位、微小频率差的干涉。

第二章1.成像几何的一些概念斜距方向:微波束传播方向。

地距方向:地面上与飞行器飞行方向垂直的方向。

方位方向:飞行器飞行方向。

天线覆盖区:天线波束射到地面的覆盖区。

幅宽 :在地距方向上,微波束’照亮’地球表面的宽度。

天线覆盖区在地距方向的 宽度。

近地距线 :幅宽最接近地面轨迹的边。

远地距线:幅宽最远离地面轨迹的边。

视角:天线到地面的垂线与斜距方向的夹角。

(技术参数)入射角:入射线与地面点的法线 的夹角。

入射角越小地面起伏越大,反射越强图像上越亮 星下点:飞行器在地面的垂直投影点。

卫星高度:飞行器离开地面的高度 H 。

天线尺度:方位长度 la 和垂直长度 lv 。

方位长度平行与飞行方向,垂直长度垂直与飞行方向。

2. 距分辨率:雷达系统在距方向上分辨两个相邻目标点的能力,即返回脉冲在时间上没有重叠 3.斜距分辨率: r r =2τc 地距分辨率: g r =θτsin 2c关于距分辨率:当 = 0,地距分辨率 rg 无穷大 采用侧视 雷达的原因;地距和斜距分辨率均与搭载平台的飞行高度 H 无关;地距分辨率与入射角 有关。

近地距 处的分辨率低于远地距处的分辨率。

4. 脉冲压缩技术(关键技术,提高地距分辨率) 知道过程发射调频宽脉冲,其频率随时间线性变化,称为线性调频脉冲;返回的线性调频脉冲与发射线性调频脉冲的副本经相关器压缩成窄脉冲。

遥感复习整理

遥感复习整理

第一章1偏振在微波技术中称为“极化”,一般有四种极化方式(HH、VV、HV、VH )。

21860年基尔霍夫(德国):好的吸收体也是好的辐射体●绝对黑体—任何波长的电磁辐射全部吸收●一个不透明的物体,对入射到它上面的电磁波只有光谱吸收率α(λ,T)和光谱反射率ρ(λ,T),二者之和恒等于1。

●绝对黑体:α(λ,T)=1,ρ(λ,T)=0●绝对白体:α(λ,T)=0,ρ(λ,T)=13 散射的方式随电磁波波长与大气分子直径、气溶胶微粒大小之间的相对关系而变,主要有米氏(Mie)散射、均匀散射、瑞利(Rayleigh)散射等。

4介质中不均匀颗粒的直径a与入射波长λ同数量级时,发生米氏散射介质中不均匀颗粒的直径a>>入射波长λ时,发生均匀散射介质中不均匀颗粒的直径a小于入射波长λ的十分之一时,发生瑞利散射5 不同电磁波段通过大气后衰减的程度是不一样的,因而遥感所能够使用的电磁波有限。

有些大气中电磁波透过率很小,甚至完全无法透过电磁波。

这些区域就难于或不能被遥感所使用,称“大气屏障”。

6有些波段的电磁辐射通过大气后衰减较小,透过率较高,对遥感十分有利,这些波段通常称为“大气窗口”辐射传输方程7辐射传输方程?8地物的反射类型:镜面反射,漫反射,方向反射9影响地物光谱反射率变化的因素太阳高度(日期、时间)大气条件地形(阴影)地形(坡度)气候、植物的病变环境状况第三章遥感传感器及其成像原理1传感器分类摄影类型的传感器扫描成像类型的传感器雷达成像类型的传感器非图像类型的传感器2全景畸变由于地面分辨率随扫描角发生变化,使红外扫描影像产生畸变,这种畸变通常称之为全景畸变,形成原因是像距保持不变,总在焦面上,而物距随扫描角发生变化所致。

3扫描线的衔接当扫描镜的某一个反射镜面扫完一次后,第二个反射镜面接着重复扫描,飞机的飞行使得两次扫描衔接。

如何让每相邻两条带很好地衔接,可由以下的关系式来确定。

假定旋转棱镜扫描一次的时间为t,一个探测器地面分辨率为a,若要使两条扫描带的重叠度为零,但又不能有空隙,则必须W=a/t W为飞机的地速Wt>a :将出现扫描漏洞Wt<a :将出现扫描重叠Wt=a=ßH W/H=ß/t瞬时视场和扫描周期都为常数,所以只要速度w与航高H之比为一常数,就能使扫描线正确衔接,不出现条纹图像4成像板成像板上排列有24+2个玻璃纤维单元,按波段排列成4列,每列有6个纤维单元,每个纤维单元为扫描仪的瞬时视场的构像范围,由于瞬时视场为86μrad,而卫星高度为915km,因此它观察到地面上的面积为79m×79m。

遥感导论期末考试知识点总结

遥感导论期末考试知识点总结

遥感导论期末考试知识点总结第⼀章1、遥感的概念:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来⾃⽬标地物的电磁波信息,经过对信息的处理,判别出⽬标地物的属性的综合性技术。

2、遥感系统包括:被测⽬标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应⽤3、遥感的分类⽅法(1)按遥感平台分:地⾯遥感:传感器设置在地⾯平台上航空遥感:传感器设置在航空器上航天遥感:传感器设置在环地球的航空器上航宇遥感:传感器设置在星际飞船上(2)按传感器的探测波段分:紫外遥感:探测波段在0.05-0.38可见光遥感:探测波段在0.38-0.76红外遥感:探测波段在0.76-1000(近红外&远红外)微波遥感:探测波段在1mm-1m之间多波段遥感:探测波段在可见光波段和红外波段范围内,分成若⼲窄波段来探测⽬标。

(3)按⼯作⽅式分:主动遥感:不依靠太阳,由探测器主动发射⼀定电磁波能量并接受⽬标的后向散射信号被动遥感:传感器不向⽬标发射电磁波,仅被动接收⽬标物的⾃⾝发射和对⾃然辐射源的反射能量。

成像遥感:传感器接收的⽬标电磁辐射信号可转换成(数字或模拟)图像⾮成像遥感:传感器接收的⽬标电磁辐射信号不能形成图像(4)按遥感应⽤的⽬的分:环境遥感、农业遥感、林业遥感、地质遥感4、遥感的特点(若为简答)(1)遥感范围⼤,可实施⼤⾯积的同步观测遥感观测为地⾯探测提供了最佳获取信息的⽅式,并且不受地物阻隔的影响。

遥感平台的范围越⼤,视⾓越⼤,可以同步观测的地⾯信息就越多。

(2)时效性,获取信息快,更新周期短,具有动态监测的特点对于天⽓预报、⽕灾和⽔灾等灾情监测,以及军事⾏动等具有重要作⽤。

(3)数据的综合性和可⽐性,具有⼿段多、技术先进的特点能够反映许多⾃然⼈⽂信息,能较⼤程度排除⼈为⼲扰。

(4)经济性。

经济效益⾼,⽤途⼗分⼴泛(5)局限性:遥感技术所利⽤的电磁波还很有限,仅是其中的⼏个波段范围,已被利⽤的遥感波谱段,对许多地物某些特征不能准确反映。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.微波遥感分类• 主动微波遥感,被动微波遥感• 微波辐射计,微波散射计,微波高度计,成像雷达• 真实孔径雷达,合成孔径雷达,机载和星载• 干涉SAR,极化SAR2.微波遥感的意义全天候,全天时,植被穿透性,地表穿透性,独特的遥感机理,干涉测量能力,多极化,多波段,高分辨率,与其它遥感手段互补电磁波谱微波波谱微波波段:0.1-100cm短K->X->C->S->L->P 长为什么星载雷达系统不采用K/P波段?答:K波段波长短,虽然有较好精确性,但是此波长可以被水蒸气强烈吸收,使这一波段的雷达不能在雨中和有雾的天气使用。

P波段波长较长,由于微波穿过大气层时会产生法拉第旋转,低频长波旋转程度大,极大限制了空基P波段微波遥感系统的可行性。

且由于波长较长其分辨率低。

目标的散射特性与哪些因素有关?电磁波辐射在非均匀媒质或各向异性媒质中传播时多方位、多角度地改变原来传播方向的现象,即目标对入射电磁波能量的重定向。

瑞利散射:(a < 0.1λ)散射光波长等于入射光波长,散射粒子远小于入射光波长。

米氏散射:(0.1λ < a<10λ)当大气中粒子的直径与辐射的波长相当时发生的散射。

光学(非选择性)散射(10λ < a)散射粒子的粒径比辐射波长大得多时发生的散射,散射系数与波长无关。

目标的散射特性首先取决于目标尺寸和雷达波长间的关系(粗糙度),入射角、介电特性(介电常数增加,反射增加)和极化特性。

如何提高真实孔径雷达分辨率?距离分辨率(地距分辨率)Rg = (tc/2) secβ斜距分辨率Rr=tc/2 (沿波束方向)脉冲宽度越小,俯角越小,距离分辨率越高,俯角太小地形影响严重,当俯角一定时,减小脉冲宽度可提高距离分辨率,所以合成孔径雷达在距离向采用脉冲压缩技术chirp(距离压缩)方位向分辨率Ra = (λ/d) R(又R=H/sinβ=H/cosθ )提高方位分辨率=>加大天线孔径,波长较短电磁波,缩短观测距离合成孔径技术合成孔径雷达分辨率与哪些参数相关?距离向分辨率Rg=(tc/2)/cosβ方位向分辨率Ls=βsR=D/2什么是多视?多视:用平均法减低相干观测系统上特有的乘性随机噪声光斑;把合成孔径长度分为N个区间,每区间内方位压缩后相加平均,N为视数降低了空间分辨率,换取辐射分辨率的提高SAR图像有哪些特点?1.穿透性:大气对电磁波的衰减与电磁波有关,波长越长,衰减越小2.斑点噪声:雷达图像上每个像素的信号是电磁波与各微散射体相互之间加强或减弱作用的集成,在影像中以斑点的形式表现出来。

成像前:多视处理成像后:滤波处理3. SAR侧视成像的几何特征:(1) 斜距显示的距离压缩斜距成像的雷达影像在距离向呈图像压缩的几何失真现象靠近星下点的目标成像压缩现象严重(2) 侧视SAR阴影起伏地形的雷达影像在后坡出现暗区的图像缺失现象(3) 侧视SAR透视收缩起伏地形的雷达影像山坡长度按比例计算后,比实际长度短(4) 侧视SAR叠掩(顶底位移)山顶部分的回波比山脚部分的回波更早被雷达接收记录,从而使山顶影像“叠置”在山底之前的图像失真现象(5) SAR图像左右、上下倒置列出常用的星载SAR系统及其主要参数SEASAT美国、ERS-1欧洲、JERS-1日本、ERS-2、RADARSAT-1加拿大、SRTM美国、ASAR(美国Envisat卫星)、POLSAR(日本ALOS卫星)、TerraSAR-X德国、RADARSAT-2、TanDEM-X 德国InSAR基本原理与处理流程基本原理:基本步骤流程:影像配准过程:1.相干系数法2.最大干涉频谱法3.平均波动函数法从粗到细匹配策略:特征点提取⇒选择兴趣算子挑选候选点基于灰度的粗匹配⇒确定下一级匹配的初始值整体概率松弛匹配⇒改善抗噪声能力,提高可靠性最小二乘匹配⇒逐点精化,达到子像素级的精度卷积频谱的截止频率2η对应于信号的奈奎斯特(Nyquist)频率,即采样频率1/T不能够小于截止频率的2倍过采样:在进行影像相乘的操作之前,增加原始的复数影像之采样率。

简单地说,先对原始影像进行2倍的重采样。

干涉图生成的前置滤波和后置滤波:•前置滤波:在生成干涉图之前对原始的复数干涉影像进行滤波•后置滤波:在形成干涉图后,对干涉图进行滤波去除平地效应:假设一个平均的高度,根据轨道参数估算平地效应。

计算干涉图的频谱,取出最大频率值,并去除掉该频率分量的影响。

滤波的目的:•提高信噪比,改善干涉条纹的视觉效果•保持好相位差原有的分布规律基础上,消除噪声影响自适应平滑滤波原理流程:相位解缠的基本原理和典型方法从干涉图中得到的相位差实际上只是主值,其取值范围在(−π,π]之间,要得到真实的相位差必须在这个值的基础上加上或减去2π的整数倍,这样的过程称为相位解缠相位解缠的两个主要步骤1,估计相邻像素之间真实相位的差值2,按照某种策略对相位差值进行积分Nyquist标准:干涉图中,相邻象素的解缠相位值必须在一个周期之内对于缠绕相位的差分结果再缠绕后求和,可得干涉图所包含的真实相位(缠绕运算--取一次以2π为模的主值)m −1ϕ( m ) = ϕ(1) + Σ w{Δ{w{ϕ(t)}}}n =1相位的不一致性:解缠后的相位数据矩阵中任意两个点之间的相位差与这两点之间的路径有关。

什么是残数:在2*2模板上的线积分结果称为残数的总值。

相位解缠方法:枝切法、质量图法、最小二乘法、网络流法。

什么是永久散射体:散射特性较稳定、对雷达波反射较强的硬目标就称为永久散射体极化:极化描述了电场矢量末端轨迹的方向和形状完全极化波:单色波且无噪声分量,完全极化的单色波的w, δ 都是常数。

雷达的发射波一般可视为完全极化波。

部分极化波:包含随机量、时变量或噪声分量。

雷达接收的回波一般可视为部分极化波。

水平极化:电场矢量与入射面垂直垂直极化:电场矢量与入射面平行Jones矢量只适用于完全极化波Stokes矢量对完全极化波和部分极化波均有效Poincare球:球面,完全极化波球内,部分极化波球心,非极化波散射坐标系:根据接受天线所处坐标系的+k轴方向与散射波传播方向的关系(相同或相反),有前向散射坐标系和后向散射坐标系。

其坐标原点分别为发射天线和接受天线。

前向散射坐标系、后向散射坐标系、单站散射坐标系(属后向散射系)散射矩阵、Muller矩阵、协方差矩阵、相干矩阵及其关系。

极化散射矩阵-给出入射与散射波Jones矢量关系(完全极化波)Muller矩阵-入射与散射波Stokes矢量(不完全极化波)Pauli矢量化—>共轭相乘,多视平均—>极化相干矩阵散射矩阵典排序矢量化->共轭相乘,多视平均->极化协方差矩阵(极化协方差矩阵对角线上元素反映通道的功率)常用的极化目标分解分几类,每类的方法有那些?相干分解:Pauli、Cameron(互易性、对称性)、Krogager非相干分解:Freeman(三分量:体散射、偶次散射、单次散射)、Yamaguchi(+螺旋体散射,适用于城市)、Huynen、Cloude奇次散射模型:静止的水面、宽大的马路、大型建筑的平顶、机场跑道漫散射Bragg模型:草地、沙漠、裸露的农田、波浪起伏的水面偶次散射模型:城区建筑物、树干与地表、角反射器体散射模型:森林(林地)Cloude分解及其分类原理熵H:即目标的散射机理在统计上杂乱无序的程度(水体小、植被大)散射角α:表示散射类型,[0°,90°]与目标朝向无关,代表散射目标内部自由度各向异性度A:对于低熵和中等熵,熵不能提供有关两个较小特征值之间关系的信息常用及最新的极化SAR信息提取方法有那些?星载sar将以多通道、多基、多平台、多极化、多模式优化装置、多传感器数据融合等技术为手段,以快速获取地球与空间的多维动态信息为目的,将人类带入一个高分辨率、宽测绘带、多层次、多维、多角度、多模式协同工作的对地观测时代。

利用InSAR生成DEM 具有全天候、全天时,一定的穿透能力以及精度高、速度快等特点.是未来遥感领域发展的新方向但是由于InSAR数据处理的复杂性、数据处理的专业性,实现InSAR数据高精度配准、有效抑制噪声、高精度相位展开以及生成高精度的DEM 等方面还是存在较大的困难。

故此利用InSAR生成DEM数据处理流程中的上述存在的问题有待进一步深入研究3.1复图像对的高精度自动配准。

众所周知,SAR影像由于斑点、噪声的影像,无论是对其人[配准还是自动配准都比光学影像之间的配准要困难得多。

所以高精度的自动配准方法是下一步研究的重点之一3.2斑点噪声滤除及误差因素分析。

InSAR技术对原始数据要求非常高,往往因为数据难以满足干涉条件造成相干结果不能满足实际需求,这就要求对原始数据进行滤波,同时对潜在的误差因素进行分析,尽量减少误差对DEM的影响。

3.3相位解缠算法的改进提高。

由于相位解缠的复杂性以及数据本身质量的差异,使得相位解缠的难度变大虽然目前众多学者对相位解缠方法进行研究,但是,还没有一种公认的、有效的解缠算法能够适用各种情况的高精度相位解缠。

因此,相位解缠仍然是InSAR数据处理技术的难点和热点。

3.41nSAR生成DEM处理工具的实用化。

利用InSAR生成DEM技术的应用已经在世界上许多国家得以实现,也有一些软件的部分功能可以实现InSAR数据处理流程。

但是我国在这方面才刚刚起步.研究工作主要集中在理论研究方面,实用化进展缓慢。

所以要想有效的使用InSAR数据,就需要研究一套可行的实用化的工具.使利用InSAR 生成DEM走向实用化。

相关文档
最新文档