波色爱因斯坦凝聚
玻色爱因斯坦凝聚概念

玻色爱因斯坦凝聚概念一、引言玻色-爱因斯坦凝聚是物理学中的一个重要概念,它是指在低温下将大量玻色子(如氢原子、氦原子等)聚集在一起形成的一种新的物质状态。
这种凝聚态具有许多奇特的物理性质,如超流动、相干性等,因此受到了广泛的研究和应用。
二、基本概念1. 玻色子玻色子是一类遵循玻色-爱因斯坦统计规律的粒子,其特点是可以占据同一个量子态。
常见的玻色子有光子、声子和某些原子核等。
2. 凝聚态凝聚态是指由大量粒子组成的系统在低温下形成的一种新状态。
常见的凝聚态有固体、液体和气体等。
3. 玻色-爱因斯坦凝聚当低温下大量玻色子占据同一个能级时,它们将形成一个宏观量级的波函数,从而产生了相干性和超流动性质。
这种现象被称为玻色-爱因斯坦凝聚。
三、产生条件1. 低温玻色-爱因斯坦凝聚需要低于玻色子的临界温度,也就是玻色子能够占据同一能级的温度。
2. 高密度为了形成凝聚态,需要大量的玻色子。
这意味着需要将玻色子密集地聚集在一起。
3. 弱相互作用为了保持相干性和超流动性质,需要让玻色子之间的相互作用尽可能地弱化。
四、物理性质1. 相干性由于所有的玻色子处于同一波函数中,它们之间存在着相干性,即它们会同时偏离或回到平衡位置。
这种相干性使得整个系统表现出非常稳定的特点。
2. 超流动性质由于所有的玻色子都处于同一波函数中,它们可以无阻碍地穿过任何障碍物而不损失能量。
这种现象被称为超流动。
3. 凝聚态密度分布在玻色-爱因斯坦凝聚中,大量的玻色子将占据同一个能级,并形成一个密度分布曲线。
该曲线通常呈现出高度对称的形状,且具有明显的峰值。
五、应用1. 模拟宇宙学玻色-爱因斯坦凝聚可以用来模拟宇宙学中的暗物质,从而帮助我们更好地理解宇宙的形成和演化。
2. 超导材料由于玻色-爱因斯坦凝聚具有超流动性质,因此可以用来制造超导材料,从而实现能量损失极小的电力传输。
3. 量子计算玻色-爱因斯坦凝聚可以用来实现量子计算中的一些重要操作,如量子比特的存储和操作等。
物理玻色-爱因斯坦凝聚(共38张PPT)

Einstein predicted that if a gas is cooled to very low temperatures, all the atoms should gather in the lowest energy state. Matter waves of the individual atoms then merge into a single wave; indeed, they can be said to "sing in
图片中部的亮点是一团被俘获的冷却 钠原子。研究者们从1978年开始使 用激光冷却原子,当时最低能够到达 40开尔文。而仅仅十年之后他们就到 达这一记录的百万分之一,该技术的 突飞猛进导致更精确原子钟的产生以 及在极低温下观察到新的超冷物质凝 聚态。
可以用静磁阱来囚禁具有磁偶极矩的中性原子
§4 BEC研究的新进展
知 为T和n的函数。
Predicted 1924.
新领域:非线性原子光学
波长长,频率小,能量小
化学势随温度的降低而升高,当温度降至某一临界温度
Phillips)和斯坦福大学的朱棣文(Steven Chu)首先实现了激光冷却原子的实验,并得到了极低温度(24μK)的钠原子气体。
" Thousands of atoms behave like one big superatom.
玻色-爱因斯坦凝聚
Bose-Einstein Condensation (BEC)
BEC - What is it and where did the idea come from?
BEC in a gas: a new form of matter at the coldest temperatures in the universe...
玻色爱因斯坦凝聚的现象及其特性

玻色爱因斯坦凝聚的现象及其特性玻色-爱因斯坦凝聚的现象及其特性玻色-爱因斯坦凝聚是一种量子物理现象,是由一群玻色子聚集到低温下的同一量子态中而产生的。
在这个状态下,大量的玻色子会占据量子态的基态,形成具有凝聚性质的集体行为。
本文将介绍玻色-爱因斯坦凝聚的基本原理、特性以及与其他凝聚性质的对比。
一、玻色-爱因斯坦凝聚的原理与条件玻色-爱因斯坦凝聚的基本原理可以通过玻色子的统计性质来解释。
不同于费米子(如电子)遵循的泡利不相容原理,玻色子(如光子、重子)服从玻色-爱因斯坦统计,即多个玻色子可以处于同一个量子态。
当将大量的玻色子冷却到足够低的温度时,它们将趋向于占据能量最低的基态,形成凝聚。
实现玻色-爱因斯坦凝聚有一定的条件,包括低温(通常在绝对零度附近)、高浓度的玻色子和强相互作用。
低温条件可以通过使用激光冷却和磁性冷却等技术来实现。
为了增加玻色子的浓度,可以采用玻色子气体的束缚或限制技术,使玻色子在有限的空间内大量积聚。
此外,强相互作用可以通过调节玻色子之间的相互作用力来实现,例如通过调控外加磁场或改变库仑作用等。
二、玻色-爱因斯坦凝聚的特性1. 超流性:玻色-爱因斯坦凝聚物体现出超流性,即无粘性流动的性质。
这是由于玻色-爱因斯坦凝聚体内的玻色子处于同一量子态,能够以集体的形式流动而不受阻碍。
2. 凝聚波:玻色-爱因斯坦凝聚体中的玻色子在凝聚态形成的波函数体现出凝聚波的特性。
凝聚波可以通过干涉实验来观察,表现出干涉条纹和波动性质。
3. 凝聚体大小:玻色-爱因斯坦凝聚体的尺寸通常在微米到毫米的尺度范围内。
凝聚体的大小与温度、浓度以及相互作用力等因素密切相关。
4. 凝聚体密度:玻色-爱因斯坦凝聚体内玻色子的密度较高,通常高于普通气体数个数量级。
这导致了凝聚态的宏观量子性质的观测,在一些实验中能够直接看到玻色-爱因斯坦凝聚体的形态。
三、玻色-爱因斯坦凝聚与费米凝聚的对比玻色-爱因斯坦凝聚与费米凝聚是量子统计的两种极端情况。
玻色_爱因斯坦凝聚的研究

玻色———爱因斯坦凝聚的研究谢世标(广西民族学院物理与电子工程系,广西 南宁 530006) 摘 要: 综述了玻色—爱因斯坦凝聚的由来、概念及其形成条件,并介绍了当前国内外玻色—爱因斯坦凝聚研究的动态与进展及其前景展望。
关键词: 玻色—爱因斯坦凝聚;临界温度;激光冷却;磁陷阱中图分类号: O469 文献标识码:A 文章编号:1003-7551(2002)03-0047-041 玻色—爱因斯坦凝聚的由来我们知道,自然界中,粒子按统计性质分为玻色(Bose)子和费米(Fermi)子。
自旋为整数的粒子,如光子、π介子和α粒子是玻色子,玻色子服从玻色—爱因斯坦统计;自旋为半整数的粒子,如电子、质子、中子、μ介子是费米子,费米子服从费米—狄拉克统计。
1924年6月24日,30岁的印度物理教师玻色送一份手稿给爱因斯坦,试图不依赖经典电动力学来推导普朗克(黑体辐射)定律的系数8πν2/c3,办法是假定相空间最基本区域的体积为h3。
爱因斯坦亲自把玻色的手稿译成德文,送去发表,并在文末加注说:“我以为玻色对普朗克公式的推导乃是一项重大进步,所用方法也将导致理想气体的量子理论”。
爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究。
他于1924年和1925年发表两篇论文,将玻色对光子的统计方法推广到某类原子,并预言当这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色—爱因斯坦凝聚。
但在很长一段时间里,没有任何物理系统认为与玻色—爱因斯坦凝聚现象有关。
直到1938年,伦敦(F.London)指出,超流和超导现象可能是玻色—爱因斯坦凝聚的表现,玻色—爱因斯坦凝聚才真正引起物理学界的重视。
不过这两种现象都发生在强相互作用的体系中。
超流液氦中只有10%的原子凝聚;超导与玻色—爱因斯坦凝聚的关系要经过电子的配对,涉及更复杂的相互作用。
只有近理想或弱相互作用的玻色气体的玻色—爱因斯坦凝聚,才更易于同理论比较,但一直没有实验证实。
玻色爱因斯坦凝聚态

玻色爱因斯坦凝聚态玻色一爱因斯坦凝聚态(BEC)原子气体是一种新的量子流体,已经被公认为物质的第五种状态,已经形成一种间于原子物理与凝聚态之间的新的学科增长点,借助激光与蒸发冷却技术在将一种稀薄原子气体冷却到nK温度时可产生该种物质状态[1]。
玻色一爱因斯坦凝聚态发现与研究自1924年爱因斯坦提出玻色-爱因斯坦凝聚态以来,在实验室水平上实现中性原子气体的这种凝聚态一直是物理学家的目标。
终于在1995年,科罗拉多大学、莱斯大学和麻省理工学院的研究小组在实验室水平上实现了碱金属原子气体的这种凝聚态。
随之诞生了大量相关的理论研究成果。
然而,多数理论研究仅仅限于所谓的二体碰撞作用研究方面,或更进一步扩展到G-P方程,或玻色一爱因斯坦凝聚态的一些基本特性研究。
实际情况是在nK温度时,玻色一爱因斯坦凝聚态表现出很强的集体性,因此,我们不得不从原子结团角度重新审视该种物态的基本特性。
更为重要的是,如果我们能够把握玻色一爱因斯坦凝聚态的内在结团特性,那么我们就可以有一套行之有效的方法处理二个分离的玻色一爱因斯坦凝聚态或更多该种物态之间的相互作用。
因此,故该问题是我们研究的焦点[2]。
理论模型冷原子气体热动力学的主要特征是作为玻色-爱因斯坦凝聚态主要特性的相变温度的存在,传统的说法是在实现该凝聚态时,表现出来的宏观特征为所有的原子占据同一个宏观量子态,尽管玻色一爱因斯坦凝聚态的提出时间可以推溯到1924年,但是其相变问题直到最近才被人们所理解,特别是蒙特一卡诺计算方法的兴起与推行,关于原子之间作用对相变问题的探索才被系统的开发出来,一般的情况是对于小的作用强度,温度是随着原子作用的增加而加大;但是对于大的原子作用,情况正好相反,可以从临界温度的下降来理解有效质量效应。
运动原子通过所感受的场来对其它的原子产生拖拉作用,使有效原子质量加大,由于TcoCl/m,相应地临界温度呈现下降趋向,传统的对弱作用原子气体理论研究,使得弱原子气体情况更为大家所熟悉,直观的理解是原子之间的排斥作用使得凝聚态原子密度波动幅度减小,因此使动量等于零的模式的布局数增加,进而使得温度有所升高,该临界温度的求解,数学性很强,物理解释不直接,玻色原子云通过短程势发生作用,其哈密顿量为:其中as,是散射长度,bq是动量为q的粒子消灭算符,m是粒子的质量,V=L3是系统的体积,我们感兴趣的函数是凝聚态原子数的几率分布,分布几率的表达式为:这里期望值是针对自由系综而言的,Fo F(a=0)是无相互作用体系的自由能。
玻色-爱因斯坦凝聚(BEC)简介.

玻色-爱因斯坦凝聚(BEC )玻色-爱因斯坦凝聚现象最早由爱因斯坦预言。
因为玻色子遵循的统计规律,玻色气体中的原子在温度趋近绝对零度时将全部凝聚到能量的基态上。
理想情况下的BEC 完全由玻色气体原子的统计性质造成,而与原子间的相互作用无关。
实验上实现BEC ,需要对玻色气体进行束缚、稀释和冷却,其中的冷却过程在技术上难度最大,也是BEC 实验的关键。
1995年在铷原子气中实现了第一个BEC 系统。
2000年在实验上发现了BEC 中的超流现象,这是继液氦系统之后的第二种超流系统。
与液氦系统相比,BEC 系统具有极弱的相互作用,因而在理论上更容易分析。
同时,BEC 系统的各种物理参数如密度、动能等都在实验上可调。
另外,利用具有自旋的BEC 系统可以进行与自旋有关的超流现象研究,如存在自旋-轨道耦合的BEC 超流及不伴随净质量流的自旋超流等。
相关的理论和实验工作仍在不断取得进展。
本文先通过讨论理想玻色气体在低温下的性质阐明BEC 的量子统计来源,再介绍实验上实现BEC 的束缚、冷却和观测技术,然后介绍与BEC 超流有关的理论和实验方法,最后会简单提及与自旋有关的BEC 超流现象。
1.BEC 的起源:玻色子的统计性质根据量子力学,玻色子在一个量子态上的数目不受任何限制。
以此为基础利用统计系综的方法可以得到理想玻色气体在均匀势场中的粒子数按能级的分布: 111-=-βεεe z a (1) 据此可计算粒子数密度: z z V e z d m h n -+-=⎰∞-111)2(2012/12/33βεεεπ (2) 其中2/32)2(1hmkT n e z πα==-。
右边第二项为基态的粒子数密度。
当温度较高时,1<<z ,(2)式中右边第二项可以忽略,即所有原子都处在0>ε的激发态上。
随着温度降低,使z 接近1时,该项不可忽略,意味着有宏观数目的原子凝聚到基态上。
这便是玻色-爱因斯坦凝聚(BEC )。
波色爱因斯坦凝聚

波色-爱因斯坦凝聚玻色-爱因斯坦凝聚。
研究范围:质量不为零,粒子数守恒的波色粒子组成的理想气体。
概念:这种粒子不受泡利不相容原理的限制,当T→0Κ时,几乎所有的玻色子会聚集到能量为0,动量为0的基态,这是并不奇怪的。
令我们感兴趣的是,研究表明,当温度降低到一个有限的低温T(大约为3K)时,就会有宏观数量的波色粒子聚集在基态。
这一情况与蒸汽凝聚有些类似,因而称为玻色-爱因斯坦凝聚(BEC)。
历史概况:20世纪头20年,物理学界正在萌发量子力学的新兴学科。
在黑体辐射和光电效应的研究中诞生了量子的概念,光的量子被称为光子。
德国物理学家普朗克找到了一个经验公式,很好地符合了黑体辐射观测得到的曲线,但是他当时不能解释这一经验公式的物理含义。
时光推到1924年,当时年仅30岁的玻色,接受了黑体辐射是光子理想气体的观点,他研究了“光子在各能级上的分布”问题,采用计数光子系统所有可能的各种微观状态统计方法,以不同于普朗克的方式推导出普朗克黑体辐射公式,证明了普朗克公式可以从爱因斯坦气体模型导出。
兴奋之余,他写了一篇题为《普朗克准则和光量子假设》的文章投到英国的《哲学杂志》,但被拒绝了。
不得已,他把那篇只有六页的论文寄给了爱因斯坦,期望爱因斯坦能理解他的发现。
爱因斯坦立即意识到玻色工作的重要性,他亲自将文章翻译成了德文,帮助在《德国物理学报》发表了。
之后,爱因斯坦把波色统计方法推广到静止质量不为零、粒子数不变的系统上,建立了量子统计学中波色—爱因斯坦统计。
爱因斯坦将玻色的理论用于原子气体中,于1924和1925年发表了两篇文章,他推测到,在正常温度下,原子可以处于任何一个能级,但在非常低的温度下,大部分原子会突然跌落到最低的能级上,原来不同状态的原子突然“凝聚”到同一状态。
后来物理界将这种现象称为玻色-爱因斯坦凝聚。
在波色之前,传统理论认为一个体系中所有的原子(或分子)都是可以辨别的,例如我们可以分辨氧原子、氢原子、碳原子。
玻色 爱因斯坦凝聚的动力学

玻色爱因斯坦凝聚的动力学
(最新版)
目录
1.玻色 - 爱因斯坦凝聚态简介
2.玻色 - 爱因斯坦凝聚的动力学特点
3.玻色 - 爱因斯坦凝聚的动力学研究意义
正文
一、玻色 - 爱因斯坦凝聚态简介
玻色 - 爱因斯坦凝聚态(Bose-Einstein condensation, BEC)是指在一定温度和压强下,大量玻色子凝聚到量子态最低的状态。
在这种状态下,大量的玻色子聚集在一个量子态上,形成一个巨大的量子波动。
这种现象最早由爱因斯坦和玻色在 1924 年理论预言,并在 1995 年被实验证实。
二、玻色 - 爱因斯坦凝聚的动力学特点
1.动力学平衡:在玻色 - 爱因斯坦凝聚态中,粒子之间的相互作用和量子波动达到平衡,使得整个系统表现出一种稳定的状态。
2.波函数描述:玻色 - 爱因斯坦凝聚态可以用一个波函数来描述,这个波函数包含了凝聚态中所有粒子的信息。
3.凝聚体的性质:在玻色 - 爱因斯坦凝聚态中,凝聚体具有一些特殊的性质,例如:凝聚体的密度可以无限大,凝聚体的压缩性可以无限大,凝聚体的能量可以无限低等。
三、玻色 - 爱因斯坦凝聚的动力学研究意义
1.基础研究:玻色 - 爱因斯坦凝聚的动力学研究有助于我们深入理解量子力学和统计力学的一些基本原理。
2.应用前景:玻色 - 爱因斯坦凝聚态在量子通信、量子计算、超精密测量等领域具有重要的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bose-Einstein condensation (BEC)玻色-爱因斯坦凝聚(BEC)是科学大师在70年前预言的一种新物态。
那个地址的“凝聚” 与日常生活中的凝聚不同,它表示原先不同状态的原子突然“凝聚”到同一状态(一样是基态)。
即处于不同状态的原子“凝聚”到了同一种状态。
形象地说,这就像让无数原子“齐声歌唱”,其行为就仿佛一个玻色子的放大,能够想象着给咱们明白得微观世界带来了什么。
这一物质形态具有的专门性质,在芯片技术、周密测量和纳米技术等领域都有美好的应用前景。
此刻全世界已经有数十个室验室实现了8种元素的BEC。
主若是碱金属,还有氦原子和钙等。
玻色-爱因斯坦冷凝态常温下的气体原子行为就象台球一样,原子之间和与器壁之间相互碰撞,其彼此作用遵从经典力学定律;低温的原子运动,其彼此作用那么遵从量子力学定律,由德布洛意波来描述其运动,现在的德布洛意波波长λdb小于原子之间的距离d,其运动由量子属性自旋量子数来决定。
咱们明白,自旋量子数为整数的粒子为玻色子,而自旋量子数为半整数的粒子为费米子。
玻色子具有整体特性,在低温时集聚到能量最低的同一量子态(基态);而具有相互排斥的特性,它们不能占据同一量子态,因此其它的费米子就得占据能量较高的量子态,原子中的电子确实是典型的费米子。
早在1924年玻色和爱因斯坦就从理论上预言存在另外的一种物质状态——玻色爱因斯坦冷凝态,即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。
现在,所有的原子就象一个原子一样,具有完全相同的物理性质。
依照量子力学中的德布洛意关系,λdb=h/p。
粒子的运动速度越慢(温度越低),其物质波的波长就越长。
当温度足够低时,原子的德布洛意波长与原子之间的距离在同一量级上,现在,物质波之间通过彼此作用而达到完全相同的状态,其性质由一个原子的波函数即可描述;当温度为时,现象就消失了,原子处于理想的玻色爱因斯坦冷凝态。
在理论提出70年以后,2001年的诺贝尔物理学奖取得者就从实验上实现了这一现象(在1995年)。
实验是利用碱性原子实现的,碱性原子形成的冷凝态,是一种纯粹的玻色爱因斯坦冷凝态,因此能够对玻色爱因斯坦冷凝态现象进行充分的研究。
前些年的物理研究也部份的实现了玻色爱因斯坦冷凝态,例如超导中的库泊电子对无电阻现象,超流体中的无摩擦现象,但其系统专门复杂,难以对玻色爱因斯坦冷凝态现象进行充分的研究。
(它们也是取得诺贝尔物理学奖的研究功效,超流体中的无摩擦现象1962年,超导中的库泊电子对无电阻现象1972年。
)[]碱性原子的玻色爱因斯坦冷凝态的实现咱们明白原子气体在低温时容易形成液体,利用碱性原子铷87Rb 和钠23Na能够幸免液体的形成。
两种原子都具有整数的自旋量子数和弱的排斥力,实验中原子的速度只有几个毫米/秒,这对应的温度为100 nK(1 nK =10的-9次方K)。
这极低的温度是用激光冷却的方法(1997年的诺贝尔物理学奖功效)来达到的。
其大体原理是通过原子与光子的动量互换来达到冷却原子的目的,冷却后的原子由磁场与激光组成的磁-光囚禁阱囚禁,然后在囚禁阱中继续用蒸发冷却的方法达到所需要的温度,即把热的原子蒸发掉。
在囚禁阱的边缘部份,磁场很强,操纵原子磁极的射频场的频率很高,通过慢慢的降低频率能够把温度高的原子排出阱外,从而达到冷却的目的。
道理就象茶在茶杯中变凉一样。
在磁-光囚禁阱中原子是靠偶极磁场力来约束的,若是原子的磁极发生反转,就会使吸引力变成排斥力,因此需要用射频场来操纵原子磁极的反转。
可是在囚禁阱的中心电磁场为零,这就不能操纵原子自旋态(磁极)的转变。
为此,埃里克·康奈尔采纳旋转磁场装置使原子始终不能达到磁场为零的位置,以达到操纵原子自旋态的的目的,从而在1995年的6月实现了87Rb的玻色爱因斯坦冷凝态。
[]JILA研究组的铷原子玻色爱因斯坦冷凝态科罗拉多大学JILA研究组的实验结果显示,囚禁阱中排出的原子云形成玻色爱因斯坦冷凝态的进程俯视图,左以下图为侧视图。
图形为吸收图,通过共振激光照射原子云而用摄取原子云的阴影(下同)。
第一个图为玻色爱因斯坦冷凝态形成之前,第二个图为玻色爱因斯坦冷凝态形成当中,背景为热运动,第三个图为几乎所有的原子都形成了玻色爱因斯坦冷凝态,热运动背景为球形对称的。
右边的图形显示随着温度的降低,更多的原子蒸发了。
实验图是通过从囚禁阱中排出原子云后利用共振光的阴影形成的,形成图形的大小取决于原子从囚禁阱中排出时动量的大小,实验中热运动背景为球形对称的,而玻色爱因斯坦冷凝态的峰图反映了代表动量的波函数是不对称的,这和当前的玻色爱因斯坦冷凝态理论是一致的。
因为实验是破坏性的,因此就要求有专门好的可重复性。
MIT的沃尔夫冈·克特勒从1990年开始也在沿着上述方式用钠原子来独立的做此研究,所不同的是,他采纳强激光束来阻止原子进入囚禁阱中心磁场为零的区域[4]。
沃尔夫冈·克特勒的实验成功仅掉队于卡尔·维曼和埃里克·康奈尔几个月的时刻,而且实验结果相当的出色,形成玻色爱因斯坦冷凝态的原子数要高出2个量级,如图3所示,这为研究玻色爱因斯坦冷凝态的物理性质提供了更大的可能性。
左图为随着温度的降低玻色爱因斯坦冷凝态的密度增加进程,图形宽度为1.0mm,冷凝态中的原子数为7×10的5次方。
右图为玻色爱因斯坦冷凝态形成进程中密度转变数据,为了清楚,上面的四条曲线是从下面移上去的。
[]MIT研究组的纳原子玻色爱因斯坦冷凝态两个研究小组的实验都专门好的证明了理论上对囚禁冷凝态大体性质的计算。
JILA研究组通过冷却两部份样品的其中之一,然后通过它与另外的样品进行碰撞而达到冷却的目的,从而形成了两部份冷凝态,用实验证明了理论预言现象。
MIT小组的非共振光成像方式实现了冷凝态的无损坏探测,能够对冷凝态与时刻的关系进行直接的动力学观测。
玻色爱因斯坦冷凝态间的干与现象相位关联是玻色爱因斯坦冷凝态的一个重要的物理性质,MIT小组通过把冷凝态分为两部份而观看到了它们之间的干与图样,证明了相位关联现象的存在。
MIT研究组的纳原子玻色爱因斯坦冷凝态的干与现象在两部份冷凝态之间的干与实验中,用激光束对原子的排斥力将冷凝态分为两部份,冷凝态被分为两部份以后被排出阱外在引力场中自由下落,40毫秒以后,两部份相位相关的原子云在下落进程中相互扩大到一路,因为它们之间的相位是一致的,故在原子云叠加的区域显现了干与现象。
图中的干与图是激光吸收图,图形宽度为1.1毫米,干与图形的条纹间距为15微米,这对应着超级大的物质波长,常温下的原子德布洛意波长只有0.05纳米,小于原子的尺度。
因此这是一个重要的冷凝态相位相关现象。
[]“原子激光”的实现为了利用相位一致的原子云,就必需把它排出阱外而不损坏它的量子力学性质,MIT研究小组在实验上实现了这一目的。
从冷凝态中能够取得原子脉冲,因为冷凝态的相位一致性,这些从冷凝态出来的原子脉冲仍然维持此特性,就象从激光器中发出的光子一样,因此,这种现象称为“原子激光”,“原子激光”确实是能够产生大量相位一致的原子束,像激光中的光子束一样。
大量的相位一致的原子在囚禁阱中产生(玻色爱因斯坦冷凝态),然后通过输出装置把原子束从阱中排出。
JILA研究组还研究了冷凝态涡流的形成和集体激发等方面的物理特性,MIT研究组还进一步进展了冷凝态的无损坏成像技术使得多次测量成为可能;观测到了对冷凝态特性有重要阻碍的原子间作使劲的磁场依托性;另外还观测到了“原子激光”有与一般激光相似的增益现象。
[]物质第五态——玻色-爱因斯坦凝聚态℃)吧,在如此的极低温下,物质又会显现什么奇异的状态呢?这时,奇迹显现了——所有的原子似乎都变成了同一个原子,再也分不出你我他了!这确实是物质第五态——玻色-爱因斯坦凝聚态(以下简称“玻爱凝聚态”)。
玻色-爱因斯坦凝聚态那个新的第五态的发觉还得从1924年提及,那一年,年轻的印度物理学家玻色寄给爱因斯坦一篇论文,提出了一种关于原子的新的理论,在传统理论中,人们假定一个体系中所有的原子(或分子)都是能够分辨的,咱们能够给一个原子取名张三,另一个取名李四……,而且可不能将张三认成李四,也可不能将李四认成张三。
但是玻色却挑战了上面的假定,以为在原子尺度上咱们全然不可能区分两个同类原子(如两个氧原子)有什么不同。
玻色的论文引发了爱因斯坦的高度重视,他将玻色的理论用于原子气体中,进而推测,在正常温度下,原子能够处于任何一个能级(能级是指原子的能量像台阶一样从低到高排列),但在超级低的温度下,大部份原子会突然跌落到最低的能级上,就仿佛一座突然坍塌的大楼一样。
处于这种状态的大量原子的行为像一个大超级原子。
打个例如,练兵场上散乱的士兵突然接到指挥官的命令“向前齐步走”,于是他们迅速集合起来,像一个士兵一样整齐地向前走去。
后来物理界将物质的这一状态称为玻色-爱因斯坦凝聚态(BEC),它表示原先不同状态的原子突然“凝聚”到同一状态。
这确实是崭新的玻爱凝聚态。
但是,实现玻爱凝聚态的条件极为苛刻和矛盾:一方面需要达到极低的温度,另一方面还需要原子体系处于气态。
极低温下的物质如何能维持气态呢?这实在令无数科学家头疼不已。
后来物理学家利用稀薄的金属原子气体,金属原子气体有一个专门好的特性:可不能因制冷显现液态,更可不能高度聚集形成常规的固体。
实验对象找到了,下一步确实是制造出能够冷却到足够低温度的条件。
由于激光冷却技术的进展,人们能够制造出与绝对零度仅仅相差十亿分之一度的低温。
而且利用电磁操纵的磁阱技术能够对任意金属物体实行无触移动。
如此的实验系统通过不断改良,终于在玻色—爱因斯坦凝聚理论提出71年以后的1995年6月,两名美国科学家康奈尔、维曼和德国科学家克特勒别离在铷原子蒸气中第一次直接观测到了玻爱凝聚态。
这三位科学家也因此而荣膺2001年度诺贝尔物理学奖。
尔后,那个领域经历着暴发性的进展,目前世界上己有近30个研究组在稀薄原子气中实现了玻爱凝聚态。
玻爱凝聚态有很多独特的性质,请看以下几个方面:这些原子组成的集体步伐超级一致,因此内部没有任何阻力。
激光确实是光子的玻爱凝聚,在一束细小的激光里拥堵着超级多的颜色和方向一致的光子流。
超导和超流也都是玻爱凝聚的结果。
玻爱凝聚态的凝聚效应能够形成一束沿必然方向传播的宏观电子对波,这种波带电,传播中形成一束宏观电流而无需电压。
原子凝聚体中的原子几乎不动,能够用来设计精准度更高的原子钟,以应用于太空航行和精准定位等。
玻爱凝聚态的原子物质表现出了光子一样的特性正是利用这种特性,前年哈佛大学的两个研究小组用玻色-爱因斯坦凝聚体使光的速度降为零,将光贮存了起来。
玻爱凝聚态的研究也能够延伸到其他领域,例如,利用磁场调控原子之间的彼此作用,能够在物质第五态中产生类似于超新星暴发的现象,乃至还能够用玻色-爱因斯坦凝聚体来模拟。