世界七大数学难题

合集下载

七大数学世纪难题的内容

七大数学世纪难题的内容

七大数学世纪难题的内容世纪难题是指那些曾经困扰了数学界很长一段时间的难题。

这些难题在历史上占据了重要的地位,让科学家们不得不深思熟虑。

本文将尝试更加深入地探讨七大数学世纪难题的内容:哥德巴赫猜想、弗洛伊德空间假设、斯坦福兹曲线假设、庞加莱正整式假设、素数对假设、图像和表征理论假设、和马尔可夫原理假设。

哥德巴赫猜想,最早由德国数学家克劳德哥德巴赫在17世纪提出,是数学界至今未能有效解答的难题。

该猜想提出至今都还是未解,它涉及到整数的拆分。

哥德巴赫猜想的精髓在于每一个偶数都可以分解成两个质数的和,比如16可以分解成2+2+2+2+5,或者3+3+5+5。

一直到现在,科学家们都未能验证该猜想是否成立。

弗洛伊德空间假设,最早被提出于20世纪30年代,是一个涉及到几何的难题。

该假设指出,任何一个二维几何体必须具备可以由它分割出的四个相等部分,而这四个部分必须都是正方形、正三角形或正六边形。

自从被科学家提出以来,弗洛伊德空间假设一直没有得到有效解答,它已经成为挑战科学家的一大难题。

斯坦福兹曲线假设,是18世纪几何家汤玛士斯坦福兹提出的一个难题。

该假设涉及到一种称为“斯坦福兹曲线”的几何图形,它无论经过多少次增大或缩小依然具有相同的形状。

直到今天,这个假设仍难以被证明,仍有许多科学家致力于研究这个难题。

庞加莱正整式假设,也被称为欧几里德线性假设,是一个数学难题,最早由法国数学家爱德华庞加莱在18世纪提出的。

该假设揭示了关于任意两个任意质数的积是否可以分解成正整数的情况。

一直到今天,这个假设仍未得到有效解决,也仍然是科学家们面临的一大难题。

素数对假设,也称为“大史特维斯假设”,是一个涉及到素数对的难题,最早由英国数学家约翰大史特维斯在18世纪初提出。

该假设揭示了素数对之间的关系,即每一个带负号的素数对,必然存在一定间隔的另一个素数对,而这个距离也必然是一个素数。

该假设一直未被有效证明,科学家们仍面临如何解决这个难题的挑战。

千禧年问题

千禧年问题

千禧年问题
七大千禧年难题有哪些?
千禧年七大问题分别是:
P对NP问题,霍奇猜想,黎曼假设,杨-米尔斯理论存在性与质量缺口,纳维-斯托克斯方程存在性与光滑性,BSD猜想。

2000年5月,由美国富豪出资建立的克雷数学研究所(Clay Mathematics Institute, 简称CMI),精心挑选了七大未解数学难题。

任何人只要解决其中一题,都可以领走高达一百万美金的奖金。

这七道题也被称为“千禧年数学七大难题”。

七大千禧年难题只有一题被解决:
可如今20年过去了,七道难题还剩下六道未解。

唯一已经被攻破的是曾经困扰人类近百年的“庞加莱猜想”。

用大众化可以理解语言可以定义为:在一个三维空间中,假如每一条封闭的曲线都能收缩成一点,那么这个空间一定是一个三维的圆球。

1904年,被誉为最后一个百科全书式的法国科学家庞加莱提出了这一猜想。

庞加莱猜想”拓扑学的基础难题,如果破解了这个难题,人类对于宇宙和空间的认识将更上一个深度。

这个难题被俄罗斯天才数学家格里高利·佩雷尔曼解决了,他与德国的彼得·舒尔茨并列为世界上最顶级的青年数学家,这两位都获得了数学界最顶级的菲尔兹奖。

世界七大数学难题

世界七大数学难题

世界七大数学难题世界七大数学难题是数学界的伟大,有着深远的影响力。

它们为人类社会提供了更有效的计算方法,更深入和令人叹为观止的探究,数学难题丰富了数学理论,这极大地拓宽了研究领域,推动了科学技术的发展。

首先,密歇根大学数学家布伦特(Andrew Wiles)于1995年解出有史以来最难的数学难题之一——哥德巴赫猜想(Goldbach Conjecture)。

它指出,任何大于2的偶数可以分解成两个质数的和,即,任何大于2的偶数,都可以由两个质数的和组成。

其次,费马大定理(Fermat’s Last Theorem)由法国数学家费马(Pierre De Fermat)提出,它指出,大于2的整数的n次方相加,永远不可能等于另一个整数的n次方。

第三,海涅猜想(Hilbert’s Tenth Problem)是由数学家海涅(David Hilbert)提出的,它旨在检测一个有理数系统中的算术结论是否可以通过以简单的方式证明。

第四,楔形问题(Kepler Conjecture)由德国数学家克卜勒(Johannes Kepler)提出,它认为放置在一个楔形盒中的球,排列以后,是以最小面积达到最大体积的。

第五,波涅猜想(Pólya Conjecture)由捷克数学家维涅夫斯基(G E Pólya)提出,它认为,给定一个有限的数学图形,总能找出一种类似着色的方法,使得整个图形中不同颜色的区域不连接。

此外,还有法恩斯坦-科尔曼数学难题(F-K Problem)由美国数学家法恩斯坦(Paul Erdös)和科尔曼(Alfred Korn)提出,它认为只有给定的数学方程的某些数值才能满足一定的标准,这些数值组合能构成一定的模式。

最后,就是山苏数学难题(Smale’s Problem),由美国数学家斯莫尔(Steve Smale)提出,关于在数学分析中研究动力系统的稳定性。

总之,世界七大数学难题都充分证明了数学家们极高的集体智慧,也揭示出其巨大的科学研究价值,它们既促进了数学的进步,也促进其它学科的发展,并且在全球现代化进程中发挥了重要作用。

世界七大数学难题之首的题目

世界七大数学难题之首的题目

世界七大数学难题之首的题目
世界七大数学难题是数学领域最具挑战性的研究课题,并被誉为
数学史上最伟大的问题。

它们分别是“毕达哥拉斯三角形定理”、
“珀西瓦尔三角形定理”、“波特律难题”、“弗洛伊德猜想”、
“哥德巴赫猜想”、“由Cayley-Hamilton定理自动化推导矩阵的方法”和“映射的解释对数学的影响”。

其中,毕达哥拉斯三角形定理
是世界七大数学难题之首,它指的是一个等腰三角形内角之和始终等
于180°。

该定理是古希腊数学家几何学家和哲学家毕达哥拉斯在
300BC时发现的,它可以用来证明很多其他几何定理。

毕达哥拉斯三角形定理的证明本质上是一个数学游戏。

以图像的
形式表达,它要求用一系列的线段连接三条边,以使边角之和为180°,而不必制作任何多余的线段。

这就是概念性上非常棘手的问题,它要
求学生根据其要求进行推理而不去探索关于证明的步骤,从而正确理
解它们之间的联系。

毕达哥拉斯三角形定理也有其实用价值,它可以用于证明许多有
关三角形的结论,以及可以用于计算最小角和最大角的等式,还可用
于测量力学的距离。

毕达哥拉斯三角形定理也给出了精确的计算方法,它有助于构建物理或者数学实验,更好地计算和分析三角形的面积或
者其他角度的形状和角色。

毕达哥拉斯三角形定理是世界七大数学难题之一,它不仅有概念
性上的价值,而且还有实用价值,是一个令人兴奋和惊讶的神童现象。

如今,在许多数学教材中,都有关于证明它的有关要点,从而使得它
变得更加有趣和具有挑战性,令人着迷。

世界上最难的数学题

世界上最难的数学题

世界上最难的数学题1、NP完全问题NP完全问题(NP-C问题),是世界七大数学难题之一。

NP的英文全称是Non-deterministic Polynomial的问题,即多项式复杂程度的非确定性问题。

简单的写法是NP=P?,问题就在这个问号上,到底是NP等于P,还是NP不等于P。

2、霍奇猜想霍奇猜想是代数几何的一个重大的悬而未决的问题。

由威廉瓦伦斯道格拉斯霍奇提出,它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想,属于世界七大数学难题之一。

3、庞加莱猜想庞加莱猜想(Poincar conjecture)是法国数学家庞加莱提出的一个猜想,其中三维的情形被俄罗斯数学家格里戈里佩雷尔曼于2003年左右证明。

2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。

后来,这个猜想被推广至三维以上空间,被称为高维庞加莱猜想。

提出这个猜想后,庞加莱一度认为自己已经证明了它。

4、黎曼假说概述有些数具有特殊的属性,它们不能被表示为两个较小的数字的乘积,如2,3,5,7,等等。

这样的数称为素数(或质数),在纯数学和应用数学领域,它们发挥了重要的作用。

所有的自然数中的素数的分布并不遵循任何规律。

然而,德国数学家黎曼(1826-1866)观察到,素数的频率与一个复杂的函数密切相关。

5、杨米尔斯的存在性和质量缺口杨米尔斯的存在性和质量缺口是世界七大数学难题之一,问题起源于物理学中的杨米尔斯理论。

该问题的正式表述是:证明对任何紧的、单的规范群,四维欧几里得空间中的杨米尔斯方程组有一个预言存在质量缺口的解。

该问题的解决将阐明物理学家尚未完全理解的自然界的基本方面。

6、纳维-斯托克斯方程建立了流体的粒子动量的改变率(加速度)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。

这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。

这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡,这在流体力学中有十分重要的意义。

世界七大数学难题与Hilbert的23个问题

世界七大数学难题与Hilbert的23个问题

世界七大数学难题与Hilbert的23个问题继上文《数学家的猜想错误》提到的七大数学难题和大卫·希尔伯特23个数学难题,今天我们就来详细了解下。

世界七大数学难题,这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。

千年大奖问题美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。

其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。

我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东做了证明的封顶工作。

)“千年大奖问题”公布以来,在世界数学界产生了强烈反响。

这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。

认识和研究“千年大奖问题”已成为世界数学界的热点。

不少国家的数学家正在组织联合攻关。

可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程。

01庞加莱猜想1904年,法国数学家亨利·庞加莱(HenriPoincaré)在提出这个猜想:'任何一个单连通的,封闭的三维流形一定同胚于一个三维的球面。

'换一种简单的说法就是:一个闭的三维流形就是一个没有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。

懵逼中为了大家便于理解庞加莱猜想,有人给出了一个十分形象的例子:假如在一个完全封闭(足够结实)的球形房子里,有一个气球(皮是无限薄的),现在我们将气球不断吹大,到最后,气球的表面和整个房子的墙壁是完全贴住,没有缝隙。

面对这个看似十分简单的猜想,无数位数学家前仆后继,绞尽脑汁,甚至是倾其一生都没能证明这个猜想。

【教育资料】世界七大数学难题 黎曼假设学习专用

【教育资料】世界七大数学难题 黎曼假设学习专用

世界七大数学难题黎曼假设世界七大数学难题,它们就像一道道亮丽的风景,吸引着世界各国的数学家的注意。

世界七大数学难题分别是:NP 完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想,这七个问题都被悬赏一百万美元。

今天我们来介绍一下黎曼假设。

世界七大数学难题:黎曼假设1、黎曼假设简介有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。

这样的数称为素数;它们在纯数学及其应用中都起着重要作用。

在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。

著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。

这点已经对于开始的1,500,000,000个解验证过。

证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

2、黎假设的背景黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。

希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。

现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。

3、黎曼猜想的描述与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。

黎曼猜想是当今数学界最重要的数学难题。

目前有消息指尼日利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决黎曼猜想,然而克雷数学研究所既不证实也不否认伊诺克博士正式解决了这一问题。

历史上关于黎曼猜想被证实的闹剧时常传出,近日所谓黎曼猜想被尼日利亚籍教授证明的网文中并没有说明克雷数学研究所已经承认并授予奖金,克雷数学研究所官网目前并无任何表态,而学界专业评价趋于消极。

世界上最难的数学题,世界七大数学难题难倒了全世界(美国克雷数学研究所公

世界上最难的数学题,世界七大数学难题难倒了全世界(美国克雷数学研究所公

世界上最难的数学题,世界七大数学难题难倒了全世界(美国克雷数学研究所公世界七大数学难题:1、P/NP问题(P versus NP)2、霍奇猜想(The Hodge Conjecture)3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。

4、黎曼猜想(The Riemann Hypothesis)5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)所谓世界七大数学难题,其实是美国克雷数学研究所于2000年5月24日公布的七大数学难题。

也被称为千年奖谜题。

根据克莱数学研究所制定的规则,所有难题的解答都必须在数学期刊上发表,并经过各方验证。

只要他们通过两年的验证期,每解决一个问题的求解者将获得100万美元的奖金。

这些问题与德国数学家大卫·希尔伯特在1900年提出的23个历史数学问题遥相呼应。

一百年过去了,很多问题都解决了。

千年奖谜题的解决很可能带来密码学、航空航天、通信等领域的突破。

一:P/NP问题P/NP问题是世界上最难的数学题之一。

在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年大奖难题之一。

P/NP问题中包含了复杂度类P 与NP的关系。

1971年史提芬·古克和Leonid Levin相对独立的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。

复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界七大数学难题
难题的提出
20世纪是数学大发展的一个世纪。

数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。

计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。

回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。

希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。

希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。

效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。

这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。

2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。

克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

2000年5月24日,千年数学会议在著名的法兰西学院举行。

会上,98年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。

克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。

克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。

每一个“千年大奖问题”获得解决并不能立即得奖。

任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖.
世界七大数学难题
这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。

美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣
布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。

其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已被我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了。


整个计算机科学的大厦就建立在图灵机可计算理论和计算复杂性理论的基础上,
一旦证明P=NP,将是计算机科学的一场决定性的突破,在软件工程实践中,将革命性的提高效率.从工业,农业,军事,医疗到生活,软件在它的各个应用域,都将是一个飞跃.
P=NP吗?这个问题是著名计算机科学家(1982年图灵奖得主)斯蒂文·考克(StephenCook)于1971年
发现并提出的.
“千年大奖问题”公布以来,在世界数学界产生了强烈反响。

这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。

认识和研究“千年大奖问题”已成为世界数学界的热点。

不少国家的数学家正在组织联合攻关。

可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程。

“千年难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克于1971年陈述的。

“千年难题”之二:霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

“千年难题”之三:庞加莱(Poincare)猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。

另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。

我们说,苹果表面是“单连通的”,而轮胎面不是。

大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。

这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

6月3日,新华社报道,中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了国际数学界关注上百年的重大难题——庞加莱猜想。

“千年难题”之四:黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。

这样的数称为素数;它们在纯数学及其应用中都起着重要作用。

在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。

著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。

这点已经对
于开始的1,500,000,000个解验证过。

证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

“千年难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。

大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。

基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。

尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。

特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。

在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

“千年难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。

数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。

虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。

挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

“千年难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。

欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。

事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。

当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。

特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

相关文档
最新文档