海上风电基础概述

合集下载

海上风机基础形式

海上风机基础形式

海上风机基础形式(原创实用版)目录一、引言二、海上风力发电基础形式概述1.定义及分类2.发展背景及意义三、海上风电机组基础结构1.现今主要形式2.各类基础结构的适用情况及优缺点四、海上风电基础的发展趋势五、结论正文一、引言随着全球气候变暖和能源价格的持续上涨,发展新能源和可再生能源已成为世界各国的共同关注。

其中,海上风力发电作为一种清洁、可再生的能源形式,得到了越来越多国家的重视。

为更好地推广和应用海上风电技术,本文将对海上风力发电基础形式进行分析和探讨,以期为海上风电场的建设提供借鉴和参考。

二、海上风力发电基础形式概述1.定义及分类海上风力发电基础形式是指支撑海上风电机组的建筑物或结构物。

根据不同的分类标准,海上风电基础形式可以分为以下几类:(1)固定式基础:包括单桩、群桩等类型,主要适用于浅海区域。

(2)漂浮式基础:主要包括单体漂浮式、群体漂浮式等类型,适用于深海区域。

(3)海底固定式基础:如海底电缆、海床锚等类型,适用于深海区域。

2.发展背景及意义随着全球能源消耗的持续增长和环境污染问题日益严重,各国政府纷纷提出发展可再生能源的战略目标。

海上风力发电具有资源丰富、占地面积小、对环境影响较小等优点,成为各国政府和企业竞相发展的领域。

海上风力发电基础形式的研究和创新,对于提高海上风电场的安全性、稳定性和经济性具有重要意义。

三、海上风电机组基础结构1.现今主要形式目前,海上风电机组的基础结构主要有以下几种:(1)单桩基础:单桩基础是海上风电场中最常见的一种基础形式,其结构简单,施工方便,适用于各种海况。

(2)群桩基础:群桩基础由多根桩基组成,可以提高风电机组的稳定性,适用于海况较恶劣的区域。

(3)漂浮式基础:漂浮式基础适用于深海区域,其主要特点是可以随着海浪的波动而上下浮动,以减小对海底的影响。

(4)海底固定式基础:海底固定式基础通过海底电缆、海床锚等结构将风电机组固定在海底,适用于深海区域。

2.各类基础结构的适用情况及优缺点(1)单桩基础:适用情况广泛,优点是结构简单、施工方便,缺点是对海况要求较高。

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的适用范围1 海上风电机组基础结构设计需考虑的因素海上风电机组基础结构设计中,基础形式选择取决于水深、水位变动幅度、土层条件、海床坡率与稳定性、水流流速与冲刷、所在海域气候、风电机组运行要求、靠泊与防撞要求、施工安装设备能力、预加工场地与运输条件、工程造价和项目建设周期要求等。

当前阶段国内外海上风电机组基础常用类型包括单桩基础、重力式基础、桩基承台基础(潮间带风电机组)、高桩承台基础、三脚架或多脚架基础、导管架基础等。

试验阶段的风电机组基础类型包括悬浮式、吸力桶式、张力腿式、三桩钢架式基础等形式,但仅处于研究或试验阶段。

基础型式结构特征优缺点造价成本适用范围安装施工重力式有混凝土重力式基础和钢沉降基础结构简单、抗风浪袭击性能好;施工周期长,安装不便较低浅水到中等水深(0~10m)大型起重船等单桩式靠桩侧土压力传递风机荷载安装简便,无需海床准备;对土体扰动大,不适于岩石海床高浅水到中等水深(0~30m)液压打桩锤、钻孔安装多桩式上部承台/三脚架/四脚架/导管架适用于各种地质条件,施工方便;建造成本高,难移动高中等水深到深水(>20m)蒸汽打桩锤、液压打桩锤浮式直接漂浮在海中(筒型基础/鱼雷锚/平板锚)安装灵活,可移动、易拆除;基础不稳定,只适合风浪小的海域较高深水(>50m)与深水海洋平台施工法一致吸力锚利用锚体内外压力差贯入海床节省材料,施工快,可重复利用;“土塞”现象,倾斜校正低浅水到深水(0~25m)负压下沉就位表1 当前常用风电基础形式的比较2 中国各海域适用风电基础形式的分析我国渤海水深较浅,辽东湾北部浅海区水深多小于10 m ,海底表层为淤泥、粉质粘土、淤泥质粉砂,粉土底部沉积物以细砂为主,承载力相对较大,可作持力层。

和粉砂层,承载力小,易液化,不适宜作持力层;而黄河口海域多为黄河泥沙冲淤海底,因此,渤海的大部分海域为淤泥质软基海底,冲刷现象也较为严重,且冬季有冰荷载的作用,不宜采用重力式基础和负压桶基础,可采用单桩结构。

《海上风电综述》课件

《海上风电综述》课件
《海上风电综述》PPT课 件
海上风电是指在海上建设风力发电机组,利用海域上的风能发电。它是一种 新兴的清洁能源,具有巨大的发展潜力。
海上风电概述
介绍海上风电的基本概念和背景,解释为何海上风电成为新兴的清洁能源。
海上风力发电历史
回顾海上风力发电的发展历程,探讨早期海上风电项目的先驱和里程碑。
海上风电的优势
2 抗风性能优化
改进风力涡轮机的设计,使其能够适应更高的风速和恶劣的风向条件。
3 维修与保养技术
提高风力涡轮机的运行寿命,降低维护成本。
海上风电的发电原理
解释海上风力发电是如何将风能转化为电能的,介绍风力涡轮机发电的基本原理。
详细描述海上风电相对于传统能源的优势,包括可再生性、较高的发电效率 和更稳定的风能资源。
海上风电的挑战
分析海上风电面临的关键挑战,如海洋环境的恶劣条件、建设和运维成本的增加等。
海上风电技术发展现状
介绍当前海上风电技术的发展水平,包括风力发电机组技术和连接网格技术的进展。
海上风电的组成部分
风力涡轮机
发电最重要的组件,将风能转化为机械能。
输电海缆
将海上风电产生的电能传输到陆地上的电网。
浮式海洋基础
用于支撑风力涡轮机的基础结构,具有良好的 稳定性。
智能监控系统
实时监测风力涡轮机的状态以及环境数据,提 高运维效率。
海上Hale Waihona Puke 电的核心技术1 深水架设技术
克服海上水深和流速等复杂条件,实现风力涡轮机的安全架设。

海上风电场工程基础结构灌浆连接技术规程_概述及解释说明

海上风电场工程基础结构灌浆连接技术规程_概述及解释说明

海上风电场工程基础结构灌浆连接技术规程概述及解释说明1. 引言1.1 概述本文旨在对海上风电场工程基础结构灌浆连接技术规程进行概述和解释说明。

随着可再生能源的迅速发展,海上风电场工程作为清洁能源的重要组成部分,得到了广泛关注。

而在海上风电场的建设中,基础结构的稳固连接是确保风机安全运行和延长寿命的关键环节。

1.2 文章结构本文分为五个主要部分。

首先在引言部分对文章内容进行简要介绍。

第二部分概述海上风电场基础结构,并对灌浆连接技术进行简单介绍。

接下来第三部分对海上风电场工程基础结构灌浆连接技术规程进行详细解释说明,包括灌浆材料选择与性能要求、连接方式和工艺流程以及施工质量控制与检验要求。

第四部分是总结和展望,总结文章的主要内容并展望未来该领域的发展趋势。

最后一个部分是参考文献,列出本文所引用的相关资料。

1.3 目的本文旨在提供一份清晰明确且全面的海上风电场工程基础结构灌浆连接技术规程概述,帮助读者更加深入了解这一重要领域的相关知识。

通过对灌浆连接技术规程进行详细解释说明,读者可以了解到灌浆材料选择与性能要求、连接方式和工艺流程以及施工质量控制与检验要求等方面的具体内容。

同时,通过总结和展望部分,读者可以对未来海上风电场工程基础结构灌浆连接技术的发展趋势有一定的了解。

通过本文的阅读,读者将能够更好地理解和应用海上风电场工程基础结构灌浆连接技术规程,并为相关领域的研究和实践提供参考。

2. 海上风电场工程基础结构灌浆连接技术规程概述2.1 海上风电场基础结构概述海上风电场是指将风力发电机组安装在海洋中的固定或浮动式平台上,利用海洋中的风能来发电。

为了确保海上风电场的稳定性和可靠性,需要建立合适的基础结构。

海上风电场的基础结构通常包括桩基和桩帽两个主要部分。

桩基是通过钢管桩或混凝土滨海墙将发电机组固定在海床上,而桩帽则与桩基相连,支撑起发电机组。

2.2 灌浆连接技术简介灌浆连接技术是在海上风电场工程中用于固定和加固桩帽与桩基之间连接的一种关键技术。

海上风电论证报告-概述说明以及解释

海上风电论证报告-概述说明以及解释

海上风电论证报告-概述说明以及解释1.引言1.1 概述概述海上风电作为一种可再生能源发电方式,近年来受到全球能源行业的广泛关注。

相比于传统的陆地风电项目,海上风电具有更加丰富的资源、更大的发展空间和更高的发电效率。

本报告旨在对海上风电进行全面的论证,以揭示其在能源转型和环境保护方面的重要性。

本篇报告将从海上风电的背景、优势以及面临的挑战等方面展开论述。

首先,我们将介绍海上风电的背景,包括其起源、发展历程以及目前的全球发展态势。

其次,我们将详细分析海上风电相对于陆地风电的优势,包括资源丰富度、技术成熟度、发电效率等方面的比较。

同时,我们也将深入探讨海上风电在面对海洋环境、海上施工和运维等方面所面临的挑战,并提出相应的解决办法。

最后,我们将对海上风电的论证进行总结,并展望其未来的发展前景。

根据目前的技术进展和市场需求,海上风电有望成为未来可再生能源领域的重要组成部分,并在实现能源转型和解决环境问题方面发挥重要作用。

在未来的发展中,我们还需要加大对海上风电技术的研发投入,推动政策支持和市场竞争,以进一步发展海上风电产业。

综上所述,本报告将对海上风电的论证进行全面的概述和分析,旨在为相关利益方提供决策依据和建议,推动海上风电的可持续发展。

1.2 文章结构本文由以下几个部分组成:引言、正文和结论。

在引言部分,我们将概述海上风电的背景,并明确本文的目的。

通过对海上风电的背景进行介绍,读者可以对海上风电的基本概念和发展历程有一个整体的了解。

同时,我们会明确本文的目的,即通过论证,探讨海上风电的优势和挑战,并对其未来发展进行展望。

在正文部分,我们将详细讨论海上风电的优势和挑战。

首先,我们会介绍海上风电的背景,包括其起源和发展情况。

然后,我们将重点探讨海上风电的优势,包括其可再生性和环保性,以及其对能源安全和经济发展的贡献。

同时,我们也会深入分析海上风电面临的挑战,如技术难题、成本和可持续性等方面的问题。

通过对海上风电的优势和挑战进行全面论述,读者可以更加全面地了解海上风电的现状和发展前景。

海上风电机组基础结构课件

海上风电机组基础结构课件

能源安全
海上风力发电可以减少对 化石燃料的依赖,提高能 源安全性。
经济发展
海上风力发电项目可以促 进当地经济发展,提高就 业率,同时为政府带来税 收收入。
海上风电机组的基础结构类型
单桩基础
单桩基础由一个大型桩柱 和上部结构组成,通过桩 柱将机组重量传递到海底 地基。
导管架基础
导管架基础由一个或多个 导管架组成,上面安装有 叶片和机舱等设备。
疲劳分析
考虑到海上风电机组运行过程中承受的疲劳载荷 ,对关键部位进行疲劳分析和优化。
结构设计的优化
材料选择
选择高强度、轻质、耐腐蚀的材料,提高基础结构的性能和耐久 性。
构造优化
通过优化基础结构的构造方式,提高整体性能和稳定性。
细节处理
对关键部位进行细节处理,如加强筋、倒角等,提高结构的安全性 和可靠性。
安装质量控制
验收质量控制
在安装过程中,进行质量检验和监督,确 保安装精度和质量。
在验收时,进行质量检验和评估,确保基 础结构的质量和安全性。
安装过程中的问题及解决方案
定位精度问题
在安装过程中,可能存在定位精度不足的问题,导致安装 困难。解决方案是使用高精度的GPS等定位设备,提高定 位精度。
支撑架稳定性问题
浮体基础
浮体基础由浮体和锚链组 成,通过锚链将机组固定 在指定位置。
海上风电机组的基础结构材料
高强度钢材
用于制造桩柱、导管架和锚链 等结构件。
铝合金
用于制造叶片和其他轻量化部件。
复合材料
用于制造机舱罩、导流罩等部件, 具有轻量化和抗腐蚀等优点。
02
海上风电机组基础结构设 计
结构设计原则
安全性
海上风电机组基础结构应能够承 受极端自然环境和地震等自然灾 害的影响,确保结构安全性和稳

海上风电机组基础结构-第四章

海上风电机组基础结构-第四章
预制下水。下水后的沉箱用拖轮拖至现 场,定位后用灌水压载法将其沉放在整
沉箱基础特点
沉箱结构水下工作量小,结构 整体性好、抗震性能强,施工
平好的基床上,再用砂或块石填充沉箱
内部。有条件时,沉箱也可采用吊运安 装。
速度快,需要钢材多,需要专门
的施工设备和合适的施工条件。
4.1.2大直径圆筒基础
大直径圆筒基础
块石质量要求:遇水不软化、不破裂,不被夯碎
在水中饱和状态下的抗压强度,对于夯实基床不低于 50MPa,对于不夯实基床不低于80MPa 未风化,不成片状,无严重裂纹。
4.2.1 基床 预留沉降量
在基床、上部结构和设备的施工及安装过程中,最着竖向荷载 的不断增大,基床及下部地基被压缩变形,导致整体结构发生 沉降,为了保证建筑物在允许沉降范围内正常工作,基床顶面 应预留沉降。
海上风电机组基础结构 陈达
重力式基础
重力式基础简介
重力式基础是一种传统的基础型式,一般为 钢筋混凝土结构,是所有的基础类型中体积 最大、重量最大的基础,依靠自身的重力使 风机保持垂直。在制作时,一般利用岸边的 干船坞进行预制,制作好以后,再由专用船 舶装运或浮运至海上指定位置安装。海床预 先处理平整并铺上一层碎石,然后再将预制 好的基础放于碎石之上。
表 4-3 计算工况 正常运行荷载工况 多遇地震工况 极端荷载工况 各计算工况基底允许脱开面积指标 基底脱开面积 AT /基底面积 A(100%) 不允许脱开 25%
4.3.2 地基承载力计算
海上风电机组基础要求
(2)对地震基本烈度为 VII 度及以上地区,应根据地基土 振动液化的判别成果,通过技术经济比较采取稳定基础的 对策和处理措施。
预留沉降量的设计
对于夯实基床,设计时只按地基沉降量预留, 对于不夯实基床,还需预留基床压缩沉降量。基床压缩沉 降量按下式估算: D = ak s d

海上风电机组基础结构-第五章详解

海上风电机组基础结构-第五章详解
系泊系统的频率耦合易发生共振运动。
5.1 浮式基础结构型式及其特点
5.1.3 半潜式基础
半潜式基础通过位于海面位置的浮箱 来保证风电机组在水中的稳定,再通 过辐射式不知的悬链线来保证风电机 组的位置。 半潜式基础的浮箱平面尺寸较大,高 度较小,依靠浮箱半潜于水中提供浮 力支撑,浮箱平面尺寸足够大,以保 证风电机组抗倾稳定性。
可分为Spar式、张力腿式和半潜式三种结构型式。 5.1.1 Spar式基础 Spar式基础的上部主体是一个大直径、大吃 水的具有规则外形的浮式柱状结构,主体中 有一个硬舱,位于壳体的上部,用来提供平 台的浮力。中间部分是储存舱,在平台建造 时,底部为平衡稳定舱。 当平台已经系泊并准备开始生产时,这些舱 则转化为固定压载舱,用于吃水控制。中部 由系泊索呈悬链线状锚泊于海底。系泊索由 海底桩链、锚链和钢缆组成。锚所承受的上 拔荷载由打桩或负压法安装的吸力式沉箱来 承担。
5.1 浮式基础结构型式及其特点
张力腿式基础
张力腿式基础是利用绷紧状态下的锚索产生 的拉力与平台的剩余浮力相平衡的。
张力腿式基础也是采用锚泊定位的,但与一 般半潜式平台不同,其所用锚索绷紧成直线, 不是悬垂曲线,钢索的下端与水底不是相切 的,而是几乎垂直的。用的是桩锚(即打入 水底的桩为锚)或重力式锚(重块)等,不 是一般容易起放的抓锚。
5.2 浮式基础的一般构造及设计要点
锚链系统
锚固系统的弹性程度取决于锚链的重量和预紧力,得到最佳的预紧力
并选取相应的锚链规格,应按不同组合进行模型试验,记录相应峰值,
然后通过综合分析,确定最大链力Fmax 。 最大链力确定后,可以计算出所需锚链的长度;对于搁置于水平海底
上的锚链长度,可按下式计算:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Describes a physical model study of the run-up heights and run-up distribution on two shapes of foundations for offshore wind turbines, including both regular and irregular waves. 2006
模型试验
Hale Waihona Puke 实际工程理论计算Company Logo
海上风电基础的研究进展
M.B. Zaaijer
Erica Bush
Leen De Vos
Yifeng LIN Xuan ZHOU
A stiffness matrix at the mudline is found to be the best solution for monopiles. 2006
上海东海大 桥风电结构 特征和基础 设计, 设计,2010
LOGO
LOGO
海上风电基础
刘莹
Company Logo
Contents
1 开发海上风电资源的意义、关键问题 开发海上风电资源的意义、 2 3 4
海上风电基础的受荷特点 海上风电基础结构类型 海上风电基础研究进展
Company Logo
开发海上风电的意义和关键问题
发 展 风能 便利 土地 发电 成本 低 成 成 本 的 海风 能 7.5 风能 3 上 的 海 地 电 成本 海上风电的 开发 上土地 利 目前折合0.42 目前折合 /kWh 成本 和 15~25% 上风电 5~10% 一 个 主 要 途 径 本 的 海 上 风 电 基 础 结 构 是 降 低 总
我国的风电产业将以桩基结构为主要的基础结构形式, 我国的风电产业将以桩基结构为主要的基础结构形式,其中单桩结构对于 渤海和东海的水深和地质条件是较为合理的基础结构形式。 渤海和东海的水深和地质条件是较为合理的基础结构形式。
Company Logo
海上风电基础的研究进展
影响分析
数值模拟
经验公式
研究 进展
Company Logo
海上风电基础的受荷特点
海冰 风暴潮 波浪
船舶 冲撞
海洋环境荷载
洋流 风轮机 运转荷载
海上风电结构的固有频率应该避开风机运转频率和波浪频率, 海上风电结构的固有频率应该避开风机运转频率和波浪频率, 以免引发共振。 以免引发共振。
Company Logo
海上风电基础的受荷特点
对海床地基土承载 力要求较高,适用 面较小。
材料和安装成本低 于桩基础。大直径 圆柱形,底部开口 ,顶端封闭,通过 抽取筒中的空气形 成向下的压力。适 用于软粘性沉积物 海岸。
Company Logo
预成孔式海上风电桩基础的安装过程
Company Logo
负压筒式基础
Company Logo
我国海上风电基础结构的适用性分析
Investigate the effect of alternative monopile foundation models on extreme loads. Fixed-base, apparent fixity, coupled springs, and distributed springs foundation models are compared.2009
风力 偏心距 偏心距产生的最 大附加力矩 启动荷载 匀速转动荷载 海冰荷载 浪流荷载
Company Logo
海上风电基础结构类型
Company Logo
海上风电基础结构类型
桩基础
重力式 基础
负压筒式 基础
海上风电基础结构 的水平荷载和倾覆 力矩远大于海洋石 油平台,竖向荷载 却小于石油平台, ,因此单桩结构桩 径较大,4~7m, 其基础的承载形式 和特点不同于海上 石油平台。
渤海水深浅,海底表层为淤泥、粉质粘土、淤泥质粉砂,承载力小, 渤海水深浅,海底表层为淤泥、粉质粘土、淤泥质粉砂,承载力小, 易液化;底部沉积物以细砂为主,承载力相对较大,可做持力层; 易液化;底部沉积物以细砂为主,承载力相对较大,可做持力层;而 黄河口海域冲刷现象严重,不宜采用重力式和负压筒式基础, 黄河口海域冲刷现象严重,不宜采用重力式和负压筒式基础,可采用 单桩基础。 单桩基础。 东海水深在5~15 M的海域多为淤泥质软基海底,不宜采用重力式 的海域多为淤泥质软基海底, 东海水深在 的海域多为淤泥质软基海底 和负压筒式基础,可采用桩基基础。 和负压筒式基础,可采用桩基基础。如东海大桥风电场选择四角架基 础。 南海北部湾和琼州海峡的海底表层沉积物主要为陆源碎屑堆积,颗粒 南海北部湾和琼州海峡的海底表层沉积物主要为陆源碎屑堆积 颗粒 较细,主要为淤泥质粉质粘土和粉砂 并发育有大中型沙波。 主要为淤泥质粉质粘土和粉砂, 较细 主要为淤泥质粉质粘土和粉砂,并发育有大中型沙波。海底沙 波的存在使海底坎坷不平,同时它们的存在表明海底泥沙运动较强 同时它们的存在表明海底泥沙运动较强,海 波的存在使海底坎坷不平 同时它们的存在表明海底泥沙运动较强 海 底稳定性差。因此,也不宜采用重力式基础和负压桶基础 也不宜采用重力式基础和负压桶基础,桩基础是较 底稳定性差。因此 也不宜采用重力式基础和负压桶基础 桩基础是较 好的选择。 好的选择。
相关文档
最新文档