(整理)数字图像处理之频率滤波

合集下载

空间域滤波和频率域处理的特点

空间域滤波和频率域处理的特点

空间域滤波和频率域处理的特点1.引言空间域滤波和频率域处理是数字图像处理中常用的两种图像增强技术。

它们通过对图像进行数学变换和滤波操作来改善图像质量。

本文将介绍空间域滤波和频率域处理的特点,并比较它们之间的异同。

2.空间域滤波空间域滤波是一种直接在空间域内对图像像素进行处理的方法。

它基于图像的局部像素值来进行滤波操作,常见的空间域滤波器包括均值滤波器、中值滤波器和高斯滤波器等。

2.1均值滤波器均值滤波器是最简单的空间域滤波器之一。

它通过计算像素周围邻域的平均值来实现滤波操作。

均值滤波器能够有效地去除图像中的噪声,但对图像细节和边缘保留较差。

2.2中值滤波器中值滤波器是一种非线性的空间域滤波器。

它通过计算像素周围邻域的中值来实现滤波操作。

中值滤波器能够在去除噪声的同时保持图像细节和边缘,对于椒盐噪声有较好的效果。

2.3高斯滤波器高斯滤波器是一种线性的空间域滤波器。

它通过对像素周围邻域进行加权平均来实现滤波操作。

高斯滤波器能够平滑图像并保留图像细节,它的滤波核可以通过调整方差来控制滤波效果。

3.频率域处理频率域处理是一种将图像从空间域转换到频率域进行处理的方法。

它通过对图像进行傅里叶变换或小波变换等操作,将图像表示为频率分量的集合,然后对频率分量进行处理。

3.1傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学变换。

在图像处理中,可以应用二维傅里叶变换将图像从空间域转换到频率域。

在频率域中,图像的低频分量对应于图像的整体结构,高频分量对应于图像的细节和边缘。

3.2小波变换小波变换是一种基于小波函数的时频分析方法。

它能够在频率和时间上同时提供图像的信息,对于图像的边缘和纹理特征有较好的表达能力。

小波变换在图像压缩和特征提取等方面具有广泛应用。

4.空间域滤波与频率域处理的对比空间域滤波和频率域处理都可以用来改善图像质量,但它们有着不同的特点和适用场景。

4.1处理方式空间域滤波是直接对图像像素进行处理,操作简单直接,适用于小规模图像的处理。

频域滤波器设计(数字图像处理实验报告)

频域滤波器设计(数字图像处理实验报告)

数字图像处理作业——频域滤波器设计摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。

本文利用matlab软件,采用频域滤波的方式,对图像进行低通和高通滤波处理。

低通滤波是要保留图像中的低频分量而除去高频分量,由于图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓;高通滤波是要保留图像中的高频分量而除去低频分量,所以高通滤波可以保留较多的边缘轮廓信息。

本文使用的低通滤波器有巴特沃斯滤波器和高斯滤波器,使用的高通滤波器有巴特沃斯滤波器、高斯滤波器、Laplacian高通滤波器以及Unmask高通滤波器。

实际应用中应该根据实际图像中包含的噪声情况灵活地选取适当的滤波算法。

1、频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。

实验原理分析根据卷积定理,两个空间函数的卷积可以通过计算两个傅立叶变换函数的乘积的逆变换得到,如果f(x, y)和h(x, y)分别代表图像与空间滤波器,F(u, v)和H(u, v)分别为响应的傅立叶变换(H(u, v)又称为传递函数),那么我们可以利用卷积定理来进行频域滤波。

在频域空间,图像的信息表现为不同频率分量的组合。

如果能让某个范围内的分量或某些频率的分量受到抑制,而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。

频域空间的增强方法的步骤:(1)将图像从图像空间转换到频域空间;(2)在频域空间对图像进行增强;(3)将增强后的图像再从频域空间转换到图像空间。

低通滤波是要保留图像中的低频分量而除去高频分量。

图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。

理想低通滤波器具有传递函数:其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。

数字图像处理图像滤波ppt课件

数字图像处理图像滤波ppt课件
素位置重合; 读取模板下各对应像素的灰度值; 将这些灰度值从小到大排成一列; 找出这些值的中间值; 将这个值赋给对应模板中心位置的像素。
47
噪声图像
中值滤波3x3
48
平均滤波与中值滤波比较
噪声图像
均值滤波
中值滤波
均值滤波和中值滤波都采用的是2x2 的模板
49
均值,中值和最频值
均值是模板内像素点灰度的平均值,中值是数值排列 后处于中间的值,最频值是出现次数最多的灰度值;
8
常用像素距离公式
欧几里德距离
DE
(
p,
q)


x

s 2


y

t
2

范数距离
D( p, q) x s y t
棋盘距离
D( p, q) max x s , y t
9
像素间的基本运算
算术运算:
加法: p + q
减法: p - q
乘法: p * q
这三者都与直方图有着密切的关系; 直方图的一个峰对应一个区域,如果这个峰是对称的,
那么均值等于中值,等于最频值。
50
中值滤波的代码实现 Matlab中函数medfilt1和medfilt2,第一个是一维
的中值滤波,第二个是二维的中值滤波。 使用help查看函数功能
51
示例
52
代码讲解
0.25
0.10 0.05
0.125 01 2
34
56
7
P r 关系目标曲线 r
原始图像中的P-r点位置 对应变换后的P-r点位置
24
算法描述 设像素共分为L级(r = 0,1,2,…L1),变换后对应的

数字图像处理中的图像滤波研究

数字图像处理中的图像滤波研究

数字图像处理中的图像滤波研究一、引言图像滤波是数字图像处理中的重要技术之一,用于改善图像的质量和增强图像的特定特征。

图像滤波可以去除图像中的噪声和不必要的细节,从而提高图像的视觉效果和信息传输性能。

本文将深入探讨数字图像处理中的图像滤波研究。

二、图像滤波的基本原理图像滤波是通过对图像进行局部加权平均或差值运算,改变图像的灰度分布和空间响应,从而实现图像的模糊、锐化、增强等效果。

图像滤波主要包括线性滤波和非线性滤波两种方法。

2.1 线性滤波线性滤波是指通过卷积操作实现的滤波方法。

常见的线性滤波器包括均值滤波器、高斯滤波器和中值滤波器等。

均值滤波器通过对图像区域内像素值进行平均,从而实现图像的模糊效果;高斯滤波器则通过对图像区域内像素值进行加权平均,从而实现图像的模糊和去噪效果;中值滤波器则通过选取区域内像素值的中值,从而实现图像的去噪效果。

2.2 非线性滤波非线性滤波是指通过对图像像素值进行排序和比较,选择滤波器的操作方法。

常见的非线性滤波器包括基于排序统计的滤波器、自适应滤波器和边缘保留滤波器等。

基于排序统计的滤波器通过对图像像素值进行排序,并选择特定位置的像素值进行滤波,从而实现图像的锐化和边缘增强效果;自适应滤波器则通过根据图像局部统计特性改变滤波器参数,从而实现图像的自适应处理;边缘保留滤波器则通过保留图像边缘信息的方式进行滤波,从而实现图像的去噪效果。

三、图像滤波的应用图像滤波在各个领域都有广泛的应用。

3.1 图像去噪图像去噪是图像滤波的一大应用领域。

通过应用不同的滤波器和滤波方法,可以去除图像中的椒盐噪声、高斯噪声等不同类型的噪声,提高图像的质量和清晰度。

3.2 图像增强图像增强是通过滤波方法改善图像的对比度、边缘和细节,从而使图像更加鲜明和清晰。

常见的图像增强方法包括直方图均衡化、区域增强和多尺度增强等。

3.3 图像特征提取图像滤波还可以应用于图像特征提取。

通过选择合适的滤波器和滤波算法,可以有效地提取图像中的边缘、纹理和角点等特征,为后续图像处理和分析提供基础。

数字图像处理(冈萨雷斯)课件5-频域增强

数字图像处理(冈萨雷斯)课件5-频域增强

滤波在频率域中更为直观,但在空间域一般使用更小 的滤波器模板

可以在频率域指定滤波器,做反变换,然后在空间域 使用结果滤波器作为在空间域构建小滤波器模板的指导

频率域滤波

高斯频率域低通滤波器函数
H u Ae
u 2 / 2 2
对应空间域高斯低通滤波器为 h x 2 Ae 2 x
理想低通滤波器举例——具有振铃现象
结论:半径D0越小,模糊越大;半径D0越大,模糊越小
半径是5的理想低通滤 原图 波,滤除8%的总功率, 模糊说明多数尖锐细 节在这8%的功率之内
半径是15的理想低通 滤波,滤除5.4%的总 功率
半径是30的理想低通滤 波,滤除3.6%的总功率
半径是230的理想低通 滤波,滤除0.5%的总功 半径是80的理想低通 滤波,滤除2%的总功率 率,与原图接近说明 边缘信息在0.5%以上 的功率中
2 2

1 2
频率域图像增强

理想低通滤波器
说明:在半径为D0的圆内,所有频率没有衰减地通过滤 波器,而在此半径的圆之外的所有频率完全被衰减掉
频率域图像增强

理想低通滤波器

总图像功率值PT
P T Pu, v
u0 v0
M 1 N 1
Pu, v F u, v Ru, v I u, v

说明空间域乘法可以通过频率域的卷积获得 上述两个公式主要为两个函数逐元素相乘的 乘法
频率域滤波

定义:在(x0,y0),强度为A的冲激函数表示为
Axx0, y y0 ,定义为
M 1 N 1 x0 y 0
sx, yA x x , y y Asx , y

遥感数字图像处理复习整理

遥感数字图像处理复习整理

数字图像处理复习笔记整理:1.遥感数字图像处理的主要内容:(1)图像增强(2)图像校正(3)信息提取2.数字图像处理两个观点:(1)离散方法:一幅图像的存储和表示均为数字形式,数字是离散的,因此使用离散方法进行图像处理才是合理的。

与该方法相关的概念是空间域(2)连续方法:图像通常源于物理世界,它们服从可用连续数学描述的规律,因此具有连续性应该使用连续数学方法进行图像处理。

与该方法相关的主要概念是频率域。

频率域基于傅里叶变换,频率域的图像处理是对傅里叶变换后产生的反映频率信息的图像进行处理。

3.数字化的两个过程:(1)采样:将空间上连续的图像变换成离散点(即像素)的操作称为采样。

(2)量化:是将像素的灰度值转换成整灰度级的过程。

4.相干图像:微波遥感所产生的图像。

5.通用遥感图像数据格式:(1)BSQ格式:像素按波段顺序一次排列的数据格式(2)BIL格式:像素先以行为单位分块,在每个块内,按照波段顺序排列像素(3)BIP格式:以像素为核心,保持行的顺序不变,在列的方向上按列分块,每个块内为当前像素不同波段的像素值6.遥感图像可以表示为某一时刻t,在不同波长入和不同极化(偏振)方向p,能够收集到的位于坐标(x,y)的目标物所辐射的电磁波能量7.卷积是空间域上针对特定窗口进行的运算,是图像平滑、锐化中使用的基本的计算方法。

设窗口大小为mXn,(i,j)是中心像素,f(x,y)是图像像素值,g(i,j)是运算结果,h(x,y)是窗口模板(或称为卷积核,kernel),那么,卷积计算的公式为对于整个图像,从左上角开始,由左到右、由上到下按照窗口大小顺序进行遍历,即可完成整个图像的卷积计算。

对于图像边缘,由于无法满足窗口对中心像素的要求,其窗口外部的像素值可以用以下任意一种方法来处理:①设为0值;②按照对称原则从图像中取值;③保留原值,不进行计算8.纹理可分为人工纹理和自然纹理。

人工纹理:是由自然背景上的符号排列组成的,这些符号可以是线条、点、字母、数字等。

数字图像处理之频率域图像增强

数字图像处理之频率域图像增强
易于分析和处理。
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS

数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

F (u,v)
F *(u, v)
f ( x ,y ) ☆ h ( x ,y ) i f f t c o n j F ( u , v ) H ( u , v )
h(x,y):CD 周期延拓
PAC1
h:
PQ
QBD1
DFT
H (u,v)
F*(u,v)H(u,v)
IDFT
R(x,y):PQ
✓ 使用这组基函数的线性组合得到任意函数f,每个基函数的系 数就是f与该基函数的内积
图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
图像变换通常是一种二维正交变换。
一般要求: 1. 正交变换必须是可逆的; 2. 正变换和反变换的算法不能太复杂; 3. 正交变换的特点是在变换域中图像能量将集中分布在低频率 成分上,边缘、线状信息反映在高频率成分上,有利于图像处理
4.11 二维DFT的实现
沿着f(x,y)的一行所进 行的傅里叶变换。
F (u ,v ) F ( u , v ) (4 .6 1 9 )
复习:当两个复数实部相等,虚部互为相 反数时,这两个复数叫做互为共轭复数.
4.6
二维离散傅里叶变换的性质
其他性质:
✓尺度变换〔缩放〕及线性性
a f( x ,y ) a F ( u ,v ) f( a x ,b y ) 1 F ( u a ,v b ) |a b |
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质
✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四、频域滤波一、实验目的1.了解频域滤波的方法;2.掌握频域滤波的基本步骤。

二、实验内容1.使用二维快速傅立叶变换函数fft2( )及其反变换函数ifft2( )对图象进行变换;2.自己编写函数生成各种频域滤波器;3.比较各种滤波器的特点。

三、实验步骤1.图象的傅立叶变换a.对图象1.bmp 做傅立叶变换。

>> x=imread(‘1.bmp’);f=fft2(x);imshow(real(f)) %显示变换后的实部图像figuref1=fftshift(f);imshow(real(f1))变换后的实部图像中心平移后图像b.对图象cameraman.tif 进行傅立叶变换,分别显示变换后的实部和虚部图象。

思考:对图象cameraman.tif 进行傅立叶变换,并显示其幅度谱|F(U,V)|。

结果类似下图。

显示结果命令imshow(uint8(y/256))程序如下:x=imread('cameraman.tif');f=fft2(x);f1=fftshift(f);y0=abs(f);y1=abs(f1);subplot(1,3,1),imshow(x)title('sourceimage')subplot(1,3,2),imshow(uint8(y0/256))title('F|(u,v)|')subplot(1,3,3),imshow(uint8(y1/256))title('中心平移')2.频域滤波的步骤a.求图象的傅立叶变换得F=fft2(x)b.用函数F=fftshit(F) 进行移位c.生成一个和F 一样大小的滤波矩阵H .d.用F和H相乘得到G , G=F.*He.求G的反傅立叶变换得到g 就是我们经过处理的图象。

这其中的关键就是如何得到H 。

3.理想低通滤波器a.函数dftuv( )在文件夹中,它用生成二维变量空间如:[U V]=dftuv(11,11)b.生成理想低通滤波器>>[U V]=dftuv(51,51);D=sqrt(U.^2+V.^2);H=double(D<=15);Mesh(U,V,H)c.应用以上方法,对图象cameraman.tif进行低通滤波;>> close allQ=0.7F=imread('cameraman.tif')[U V]=dftuv(size(F,1),size(F,2));D=sqrt(U.^2+V.^2);H=double(D<= size(F,1)/2*Q); %修改系数Q为0.5,0.3,0.2FF=fft2(F);G=FF.*H;imshow(real(fftshift(FF)))figureimshow(real(fftshift(G)))g=real(ifft2(G));figureimshow(uint8(g))在以原点为圆心,以D0为半径的圆内无衰减的通过所有频率而在该圆外切断所有频率的二维低通滤波器,称为理想低通滤波器。

思考:观察理想低通滤波器不同滤波半径对滤波结果的影响。

即系数Q分别为0.7、0.5、0.3、0.2时,结果如何?并加以解释说明。

close allF=imread('cameraman.tif')[U V]=dftuv(size(F,1),size(F,2));D=sqrt(U.^2+V.^2);H=double(D<= size(F,1)/2*Q1); %修改系数Q为0.5,0.3,0.2 FF=fft2(F);G=FF.*H;subplot(4,3,1),imshow(real(fftshift(FF)))subplot(4,3,2),imshow(real(fftshift(G)))title('Q=0.7')g=real(ifft2(G));subplot(4,3,3),imshow(uint8(g))Q2=0.5F=imread('cameraman.tif')[U V]=dftuv(size(F,1),size(F,2));D=sqrt(U.^2+V.^2);H=double(D<= size(F,1)/2*Q2); %修改系数Q为0.5,0.3,0.2 FF=fft2(F);G=FF.*H;subplot(4,3,4),imshow(real(fftshift(FF)))subplot(4,3,5),imshow(real(fftshift(G)))title('Q=0.5')g=real(ifft2(G));subplot(4,3,6),imshow(uint8(g))Q3=0.3F=imread('cameraman.tif')[U V]=dftuv(size(F,1),size(F,2));D=sqrt(U.^2+V.^2);H=double(D<= size(F,1)/2*Q3); %修改系数Q为0.5,0.3,0.2 FF=fft2(F);subplot(4,3,7),imshow(real(fftshift(FF)))subplot(4,3,8),imshow(real(fftshift(G)))title('Q=0.3')g=real(ifft2(G));subplot(4,3,9),imshow(uint8(g))Q4=0.2F=imread('cameraman.tif')[U V]=dftuv(size(F,1),size(F,2));D=sqrt(U.^2+V.^2);H=double(D<= size(F,1)/2*Q4); %修改系数Q为0.5,0.3,0.2 FF=fft2(F);G=FF.*H;subplot(4,3,10),imshow(real(fftshift(FF)))subplot(4,3,11),imshow(real(fftshift(G)))title('Q=0.2')g=real(ifft2(G));subplot(4,3,12),imshow(uint8(g))随着Q值越小,即滤波半径越小,滤波后的图像越模糊,且滤波半径变小会出现振铃效应。

随着滤波器半径的增大,滤除的功率越来越少,导致模糊也越来越减弱。

4.巴特沃兹低通滤波器>> close allf=imread('cameraman.tif');PQ=size(f);[U V]=dftuv(PQ(1),PQ(2));D0=0.07*PQ(2);F=fft2(f,PQ(1),PQ(2)); % 与F=fft2(f)相同H=exp(-(U.^2+V.^2)/(2*(D0^2))); %高斯低通mesh(U,V,H)figureG=F.*H;imshow(real(fftshift(F))) figureimshow(real(fftshift(G))) g=real(ifft2(G));figureimshow(uint8(g))思考:使用二阶巴特沃兹滤波器对图象cameraman.tif进行低通滤波。

H=1./(1+(D./d0).^(2*n));d0取15、30、80,n=2表示二阶)close alld0=30;n=2;f=imread('cameraman.tif');PQ=size(f);[U V]=dftuv(PQ(1),PQ(2));D=sqrt(U.^2+V.^2);F=fft2(f,PQ(1),PQ(2)); % 与F=fft2(f)相同H=1./(1+(D./d0).^(2*n)) %d0取15、30、80,n=2表示二阶) %高斯低通mesh(U,V,H)figuresubplot(1,3,1)G=F.*H;imshow(real(fftshift(F)))subplot(1,3,2)imshow(real(fftshift(G)))g=real(ifft2(G));subplot(1,3,3)imshow(uint8(g))5. 高通滤波器(相当于锐化)a.我们可以参照理想低通滤波器的思路,得到>>[U V]=dftuv(51,51);D=sqrt(U.^2+V.^2);H=double(D>=115);Mesh(U,V,H)b.对图象cameraman.tif进行高通滤波close allx=imread('cameraman.tif');[U V]=dftuv(size(x,1),size(x,2));D=sqrt(U.^2+V.^2);H=double(D>= size(x,1)/2*0.4);F=fft2(x);G=F.*H;imshow(real(fftshift(F)))figureimshow(real(fftshift(G)))g=real(ifft2(G));figureimshow(uint8(g))w=histeq(g);figureimshow(w)高通滤波器会衰减傅里叶变换中的低频分量而不会扰乱高频信息。

D0越高,图像边缘越清晰,失真越小。

思考:使用高斯高通滤波器对图象cameraman.tif进行高通滤波。

H1=1-exp(-(U.^2+V.^2)./(2*(D0^2)));close allx=imread('cameraman.tif');[U V]=dftuv(size(x,1),size(x,2));D0=15H=1-exp(-(U.^2+V.^2)./(2*(D0^2))); F=fft2(x);G=F.*H;g=real(ifft2(G));subplot(3,2,1),imshow(uint8(g))title('D0=15')w=histeq(g);subplot(3,2,2),imshow(w)D0=30H=1-exp(-(U.^2+V.^2)./(2*(D0^2))); F=fft2(x);G=F.*H;g=real(ifft2(G));subplot(3,2,3),imshow(uint8(g))title('D0=30')w=histeq(g);subplot(3,2,4),imshow(w)D0=80H=1-exp(-(U.^2+V.^2)./(2*(D0^2))); F=fft2(x);G=F.*H;g=real(ifft2(G));subplot(3,2,5),imshow(uint8(g))title('D0=80')w=histeq(g);subplot(3,2,6),imshow(w)用高斯高通滤波器对图像进行滤波后,相对于前面滤波器,图像会更加平滑。

相关文档
最新文档