低功耗型运算放大器

合集下载

opa836,2836 低功耗运算放大器

opa836,2836  低功耗运算放大器

版权 © 2011–2013, Texas Instruments Incorporated English Data Sheet: SLOS712
OPA836 OPA2836
ZHCS019E – JANUARY 2011 – REVISED SEPTEMBER 2013

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
• 工作温度范围: -40°C 至 +125°C
宽,这些放大器为轨到轨放大器设定了一个业界领先水 平的功耗-性能比。
对于功耗十分重要的电池供电型便携式应用而 言,OPA836 和 OPA2836 的低功耗及高频性能为设 计人员提供了其他器件所无法获得的性能与功耗比。 与流耗小于 1.5μA 的节能模式组合在一起,此器件为 电池供电应用中的高频放大器提供了一款极具吸引力的 解决方案。
• 转换率:560V/μs
的电流消耗仅为 1mA,并具有 205MHz 的单位增益带
• 上升时间:3ns (2VSTEP) • 稳定时间:22ns (2VSTEP) • 过驱恢复时间:60ns
• 信噪比 (SNR):在 1kHz (1VRMS) 时为 0.00013% (-117.6dBc)
• 总谐波失真 (THD):在 1kHz (1VRMS) 时为 0.00003% (-130dBc)

LD27L2-超低功耗运算放大器

LD27L2-超低功耗运算放大器

LD27L2双通道精密运算放大电路1、概述LD27L2是一款有极低失调电压、高输入阻抗、轨对轨的运算放大器电路。

主要应用于各种需要使用精密运算放大器的领域,其特点如下:z极低的输入失调电压,典型条件下小于1mV;z超低功耗,静态工作电流小于3uAz宽电压工作范围,1.8V~6.0Vz高输入阻抗,典型为1013Ω;z超低的失调点偏移z单位增益带宽14KHzz封装形式:SOP82、功能框图与引脚说明2. 1、功能框图2. 2、引脚排列图2. 3、引脚说明与结构原理图序号管脚名功能描述1 OUT1 运放1的输出端2 IN1‐ 运放1的反向输入端3 IN1+ 运放1的正向输入端4 GND 电源地5 IN2+ 运放2的正向输入端6 IN2‐ 运放2的反向输入端7 OUT2 运放2的输出端8 VDD 电源输入端3、电特性3. 1、极限参数参 数 名 称 符 号额 定 值单 位 最大电源电压 IVsmax 6 V 输入电压范围 V I GND-0.3~VDDV差分输入电压 VDD-GND V 工作环境温度 T amb -40~+85 ℃ 贮存温度T stg -55~+125℃ 3. 2、电特性(VDD=2.2~5V ,T A =25℃)参 数 名 称 符 号 测 试 条 件规 范 值单 位最小 典型最大 工作电压 V DD 1.8-6.0V静态工作电流 I DD - 0.8 3 uA 输入失调电压 V OS- 1 2 mV输入失调温度系数-40℃~+85℃- 1.3 - uV/℃电源抑制 V PSRR -8590dB输入偏置电流 I B - 1 - pA 输入失调电流 I OS - 1 - pA 共模输入阻抗 Z CM - 1013- Ω 差模输入阻抗 Z DIFF - 1013- Ω 共模输入电压 V CMR GND-0.3- VDD+0.3 V共模抑制比 CMRR VDD=5V 6090-dB单位增益带宽 B I VI=10mV 14 KHz输出短路电流 I SCVDD=2.2V - 3 - mA VDD=5V - 20 - mA4、典型应用线路全差分输入放大电路5、封装尺寸与外外形图。

运算放大器的分类简介以及主要特点有哪些?

运算放大器的分类简介以及主要特点有哪些?

运算放大器的分类简介以及主要特点有哪些?运算用来调整和放大模拟信号,它是用途非常广泛的器件,接入适当的反馈网络,可用作精密的沟通和直流放大器、有源、及。

其应用领域已经延长到、通信、消费等各个领域,并将在将来技术方面饰演重要角色。

按参数可分为如下几类:通用型运算放大器:主要特点是价格低廉、产品量大面广,其性能指标能适合于普通性用法。

低温漂型运算放大器:在精密仪器、弱信号检测等自动控制仪表中,总是希翼运算放大器的失调电压要小且不随温度的变幻而变幻。

高阻型运算放大器:特点是差模输入阻抗十分高,输入偏置十分小,普通rid>1GΩ~1TΩ,IB为几皮安到几十皮安。

高速型运算放大器:主要特点是具有高的转换速率和宽的频率响应。

低功耗型运算放大器:因为集成化的最大优点是能使复杂电路小型轻巧,所以随着便携式仪器应用范围的扩大,必需用法低电源电压供电、低功率消耗的运算放大器相适用。

高压大功率型运算放大器:运算放大器的输出电压主要受供电电源的限制。

可编程控制运算放大器:在仪器仪表得用法过程中都会涉及到量程得问题.为了得到固定电压得输出,就必需转变运算放大器得放大倍数。

运算放大器的工作原理:[size=1.1] 运算放大器具有两个输入端和一个输出端,1所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,假如先后分离从这两个输入端输入同样的信号,则在输出端会得到电压相同但极性相反的输出信号:输出端输出的信号与同相输入端的信号同相,而与反相输入端的信号反相。

[size=1.1]运算放大器所接的电源可以是单电源的,也可以是双电源的。

运算放第1页共2页。

聚洵低功耗运算放大器GS8551 GS8552 GS8554

聚洵低功耗运算放大器GS8551 GS8552 GS8554

描述:GS8551/GS8552/GS8554放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供1.8MHz的带宽,轨至轨输入和输出以及1.8V至5.5V的单电源供电。

GS855X使用斩波稳定技术来提供非常低的失调电压(最大值小于5µV),并且在整个温度范围内漂移接近零。

每个放大器的静态电源电流低至180µA,输入偏置电流极低,仅为20pA,因此该器件是低失调,低功耗和高阻抗应用的理想选择。

GS855X提供了出色的CMRR,而没有与传统的互补输入级相关的分频器。

该设计为驱动模数转换器带来了卓越的性能转换器(ADC),而不会降低差分线性度。

GS8551提供SOT23-5和SOP-8封装。

GS8552提供MSOP-8和SOP-8封装。

GS8554 Quad具有绿色SOP-14和TSSOP-14封装。

在所有电源电压下,-45oC至+ 125oC的扩展温度范围提供了额外的设计灵活性。

特点:+ 1.8V〜+ 5.5V单电源供电•嵌入式RF抗EMI滤波器•轨到轨输入/输出•小型封装:•增益带宽乘积:1.8MHz(典型@ 25°C)GS8551采用SOT23-5和SOP-8封装•低输入偏置电流:20pA(典型值@ 25°C)GS8552采用MSOP-8和SOP-8封装•低失调电压:30µV(最大@ 25°C)GS8554采用SOP-14和TSSOP-14封装•静态电流:每个放大器180µA(典型值)•工作温度:-45°C〜+ 125°C•零漂移:0.03µV / oC(典型值)应用:换能器应用•手持测试设备•温度测量•电池供电的仪器•电子秤Features•Single-Supply Operation from +1.8V ~ +5.5V •Embedded RF Anti-EMI Filter•Rail-to-Rail Input / Output •Small Package:•Gain-Bandwidth Product: 1.8MHz (Typ. @25°C) GS8551 Available in SOT23-5 and SOP-8 Packages•Low Input Bias Current: 20pA (Typ. @25°C) GS8552 Available in MSOP-8 and SOP-8 Packages•Low Offset Voltage: 30µV (Max. @25°C) GS8554 Available in SOP-14 and TSSOP-14 Packages•Quiescent Current: 180µA per Amplifier (Typ)•Operating Temperature: -45°C ~ +125°C•Zero Drift: 0.03µV/o C (Typ)General DescriptionGS8551 / GS8552 / GS8554放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供1.8MHz的带宽,轨至轨输入和输出以及1.8以上的单电源供电V至5.5V。

运算放大器的分类

运算放大器的分类

运算放大器的分类为满足实际使用中对集成运放性能的特殊要求,除性能指标比较适中的通用型运放外,发展了适应不同需要的专用型集成运放。

它们在某些技术指标上比较突出。

根据运算放大器的技术指标可以对其进行分类,主要有通用、高速、宽带、高精度、高输入电阻和低功耗等几种。

1. 通用型通用型运算放大器的技术指标比较适中,价格低廉。

通用型运放也经过了几代的演变,早期的通用Ⅰ型运放已很少使用了。

以典型的通用型运放CF741(mA741)为例,输入失调电压1~2mV、输入失调电流20nA、差模输入电阻2MW,开环增益100dB、共模抑制比90dB、输出电阻75W、共模输入电压范围±13 V、转换速率0.5V/ms。

2. 高速型和宽带型用于宽频带放大器、高速A/D和D/A,高速数据采集测试系统。

这种运放的单位增益带宽和压摆率的指标均较高,用于小信号放大时,可注重fH或fc,用于高速大信号放大时,同时还应注重SR。

例如:CF2520/2525SR=120V/ms BW·G = 20MHzAD9620SR=2200V/msfH = 600MHzAD9618SR=1800V/ms BW·G = 8000MHzOP37SR=17V/ms BW·G = 63MHzCF357SR=50V/msBW·G = 20 MHz3. 高精度(低漂移型)用于精密仪表放大器,精密测试系统,精密传感器信号变送器等。

例如:OP177CF7144. 高输入阻抗型用于测量设备及采样保持电路中。

例如:AD549CF155/255/3555. 低功耗型用于空间技术和生物科学研究中,工作于较低电压下,工作电流微弱。

例如: OP22 正常工作时,静态功耗可低至36μW。

OP290 在±0.8V电压下工作,功耗为24μW。

CF7612 在±5V电压下工作,功耗为50μW。

6. 功率型这种运放的输出功率可达1W以上,输出电流可达几个安培以上。

运算放大器的低功耗设计,这是我见过最详尽的攻略,请收藏!

运算放大器的低功耗设计,这是我见过最详尽的攻略,请收藏!

运算放大器的低功耗设计,这是我见过最详尽的攻略,请收藏!引言近年来,电池供电电子产品的普及使功耗成为模拟电路设计人员越来越重视的问题。

本文中将介绍如何使用低功耗运算放大器进行系统设计,同时也会涉及具有低电源电压能力的低功耗运算放大器及其应用,并讨论如何正确理解运算放大器规格书中的规格参数,综合考虑电路设计上的节能技术,实现更高效的器件选型。

了解运算放大器电路中的功耗首先,我们会讨论具有低静态电流(IQ)的放大器,以及增加反馈网络电阻值与功耗的关系。

让我们首先考虑一个可能需要关注功率的示例电路:电池供电的传感器在1kHz时,生成50mV幅度和50mV偏移的模拟正弦信号。

信号需要放大到0V至3V的范围,以进行信号调节(图1);同时要尽可能节省电池电量,这将需要增益为30V/V的同相放大器配置,如图2所示。

那么,我们应该如何来优化该电路的功耗呢?图1:示例电路中的输入及输出信号(图片来源:Texas Instruments)图2:传感器放大电路(图片来源:Texas Instruments)运算放大器电路的功耗由多种因素组成,分别是静态功率、运算放大器输出功率和负载功率。

静态功率(或简称PQuiescent)是保持放大器开启所需的功率,数据表中一般以IQ(静态电流)表示,例如下图中Texas Instruments OPA391规格书中的显示。

图3:TI OPA391运放的静态电流(图片来源:Texas Instruments)输出功率(POutput)是运算放大器输出级驱动负载时消耗的功率。

最后,负载功率(PLoad)是负载本身消耗的功率。

在本例中,我们有一个单电源运算放大器,其正弦输出信号具有直流电压偏移。

因此,我们将使用以下等式来计算总平均功率(Ptotal,avg)。

电源电压由V+表示, Voff是输出信号的直流偏移,Vamp是输出信号的幅度,RLoad是运算放大器的总负载电阻。

需要留意的,平均总功率与IQ直接相关成正比,而与RLoad成反比。

聚洵低功耗运算放大器GS8591 8592 8594

聚洵低功耗运算放大器GS8591 8592 8594

GS8591/GS8592/GS8594放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供4.5MHz的带宽,轨至轨输入和输出以及1.8V至5.5V的单电源供电。

GS859X使用斩波稳定技术来提供非常低的失调电压(最大值小于50µV),并且在整个温度范围内漂移接近零。

每个放大器550µA的低静态电源电流和20pA的极低输入偏置电流使这些器件成为低失调,低功耗和高阻抗应用的理想选择。

GS859X提供了出色的CMRR,而没有与传统的互补输入级相关的分频器。

这种设计在驱动模数转换器(ADC)方面具有卓越的性能,而不会降低差分线性度。

GS8591提供SOT23-5和SOP-8封装。

GS8592提供MSOP-8和SOP-8封装。

GS8594 Quad具有绿色SOP-14和TSSOP-14封装。

在所有电源电压下,-45oC 至+ 125oC的扩展温度范围提供了额外的设计灵活性。

特性:+ 1.8V〜+ 5.5V单电源供电•嵌入式RF抗EMI滤波器•轨到轨输入/输出•小型封装:•增益带宽乘积:4.5MHz(典型@ 25°C)GS8591采用SOT23-5和SOP-8封装•低输入偏置电流:20pA(典型值@ 25°C)GS8592采用MSOP-8和SOP-8封装•低失调电压:30µV(最大@ 25°C)GS8594采用SOP-14和TSSOP-14封装•静态电流:每个放大器550µA(典型值)•工作温度:-45°C〜+ 125°C•零漂移:0.03µV / oC(典型值)Features•Single-Supply Operation from +1.8V ~ +5.5V •Embedded RF Anti-EMI Filter•Rail-to-Rail Input / Output •Small Package:•Gain-Bandwidth Product: 4.5MHz (Typ. @25°C) GS8591 Available in SOT23-5 and SOP-8 Packages•Low Input Bias Current: 20pA (Typ. @25°C) GS8592 Available in MSOP-8 and SOP-8 Packages•Low Offset Voltage: 30µV (Max. @25°C) GS8594 Available in SOP-14 and TSSOP-14 Packages •Quiescent Current: 550µA per Amplifier (Typ.)•Operating Temperature: -45°C ~ +125°C•Zero Drift: 0.03µV/o C (Typ.)General DescriptionThe GS859X amplifier is single/dual/quad supply, micro-power, zero-drift CMOS operational amplifiers, the amplifiers offer bandwidth of 4.5MHz, rail-to-rail inputs and outputs, and single-supply operation from 1.8V to 5.5V. GS859X uses chopper stabilized technique to provide very low offset voltage (less than 50µV maximum) and near zero drift over temperature. Low quiescent supply current of 550µA per amplifier and very low input bias current of 20pA make the devices an ideal choice for low offset, low power consumption and high impedance applications. The GS859X offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.The GS8591 is available in SOT23-5 and SOP-8 packages. And the GS8592 is available in MSOP-8 and SOP-8 packages. TheGS8594 Quad is available in Green SOP-14 and TSSOP-14 packages. The extended temperature range of -45o C to +125o C over all supply voltages offers additional design flexibility.Applications•Transducer Application •Handheld Test Equipment•Temperature Measurements •Battery-Powered Instrumentation•Electronics ScalesPin ConfigurationFigure 1. Pin Assignment DiagramAbsolute Maximum RatingsCondition Min Max Power Supply Voltage (V DD to Vss) -0.5V +7.5V Analog Input Voltage (IN+ or IN-) Vss-0.5V V DD+0.5V PDB Input Voltage Vss-0.5V +7V Operating Temperature Range -45°C +125°C Junction Temperature +160°CStorage Temperature Range -55°C +150°C Lead Temperature (soldering, 10sec) +260°CPackage Thermal Resistance (T A=+25 )SOP-8, θJA 125°C/WMSOP-8, θJA 216°C/WSOT23-5, θJA 190°C/WESD SusceptibilityHBM 6KVMM 400VNote: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.Package/Ordering InformationMODEL CHANNEL ORDER NUMBERPACKAGEDESCRIPTIONPACKAGEOPTIONMARKINGINFORMATIONGS8591 SingleGS8591-TR SOT23-5 Tape and Reel,3000 8591 GS8591Y-SR SOP-8 Tape and Reel,4000 GS8591YGS8592 Dual G S8592-SR SOP-8 Tape and Reel,4000 GS8592 GS8592-MR MSOP-8 Tape and Reel,3000 GS8592GS8594 Quad GS8594-TR TSSOP-14 Tape and Reel,3000 GS8594 GS8594-SR SOP-14 Tape and Reel,2500 GS8594Electrical Characteristics(V S = +5V, V CM = +2.5V, V O = +2.5V, T A = +25 , unless otherwise noted.)PARAMETER CONDITIONS MIN TYP MAX UNITS INPUT CHARACTERISTICSInput Offset Voltage (V OS) 1 5 µV Input Bias Current (I B) 20 pA Input Offset Current (I OS) 10 pA Common-Mode Rejection Ratio(CMRR)V CM = 0V to 5V 110 dB Large Signal Voltage Gain ( A VO) R L = 10kΩ, V O = 0.3V to 4.7V 145 dB Input Offset Voltage Drift (∆V OS/∆T) 30 nV/ OUTPUT CHARACTERISTICSOutput Voltage High (V OH) R L = 100kΩ to - V S 4.998 V R L = 10kΩ to - V S 4.994 VOutput Voltage Low (V OL) R L = 100kΩ to + V S 2 mV R L = 10kΩ to + V S 5 mVShort Circuit Limit (I SC) R L =10Ω to - V S 43 mA Output Current (I O) 30 mA POWER SUPPLYPower Supply Rejection Ratio (PSRR) V S = 2.5V to 5.5V 115 dB Quiescent Current (I Q) V O = 0V, R L = 0Ω 180 µA DYNAMIC PERFORMANCEGain-Bandwidth Product (GBP) G = +100 4.5 MHz Slew Rate (SR) R L = 10kΩ 2.5 V/µs Overload Recovery Time 0.10 ms NOISE PERFORMANCEVoltage Noise (e n p-p) 0Hz to 10Hz 0.2 µV P-PnV Voltage Noise Density (e n) f = 1kHz 30 HzTypical Performance characteristicsLarge Signal Transient Response at +5V Large Signal Transient Response at +2.5VC L=300pF R L=2kΩA V=+1C L=300pFR L=2kΩA V=+1Time(4µs/div) Time(2µs/div)Small Signal Transient Response at +5V Small Signal Transient Response at +2.5VC L=50pF R L=∞A V=+1C L=50pFR L=∞A V=+1Time(4µs/div) Time(4µs/div)Closed Loop Gain vs. Frequency at +5V Closed Loop Gain vs. Frequency at +2.5V G=-100 G=-100 G=-10 G=-10G=+1 G=+1Frequency (kHz) Frequency (kHz)Typical Performance characteristicsOpen Loop Gain, Phase Shift vs. Frequency at +5V Open Loop Gain, Phase Shift vs. Frequency at +2.5VPhase ShiftV L=0pFR L=∞V L=0pFR L=∞Phase ShiftOpen Loop GainOpen Loop Gain Frequency (Hz) Frequency (Hz) Positive Overvoltage Recovery Negative Overvoltage RecoveryV SY= 2.5VV IN=-200mVp-p(RET to GND)C L=0pFR L=10kΩA V=-100 V SY= 2.5VV IN=-200mVp-p(RET to GND) C L=0pFR L=10kΩA V=-100Time (40µs/div) Time (40µs/div) 0.1Hz to 10Hz Noise at +5V 0.1Hz to 10Hz Noise at +2.5VG=10000G=10000 Time (10s/div) Time (10s/div)Application NoteSizeGS859X系列运算放大器具有单位增益稳定的特性,适用于各种通用应用。

运算放大器的分类

运算放大器的分类

运算放大器的分类
运算放大器可以根据其内部电路结构和应用领域来分类,主要分为以下几种:
1. 基本型运算放大器:传统的运算放大器,内部由一个差分放大器和一个级联缓冲器组成,用于放大、滤波、积分、微分等基本电路。

2. 差分型运算放大器:内部电路结构和基本型类似,但增益更高,具有更高的共模抑制比和更低的失调电压。

3. 仪器放大器:专用于测量和检测的放大器,具有高共模抑制比、高精度、低噪音等特点。

4. 高速运算放大器:适用于高速信号处理,具有更高的带宽和更快的响应速度。

5. 低功耗运算放大器:适用于低功率应用,具有低静态电流、低供电电压等特点。

6. 压限放大器:用于对信号进行压限,可保护信号处理电路免受过大电压的损害。

7. 电流型运算放大器:通过输入电流控制输出电压,适用于电流驱动应用。

8. 隔离型运算放大器:可实现输入端和输出端的电气隔离,适用于对输入信号进行隔离和放大的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低功耗型运算放大器是什么意思
作者:佚名来源: 发布时间:2010-3-9 15:53:17 [收藏] [评论]
低功耗型运算放大器是什么意思
低功耗型运算放大器的定义
由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。

而随着技术的发展和人类资源的的有限,对各种应用电器的节能要求越来越高,这就是低功耗运算放大器产生的原因。

集成运算放大器的选择
集成运算放大器是模拟集成电路中应用最广泛的一种器件。

在由运算放大器组成的各种系统中,由于应用
要求不一样,对运算放大器的性能要求也不一样。

在没有特殊要求的场合,尽量选用通用型集成运放,这样即可降低成本,又容易保证货源。

当一个系统中使用多个运放时,尽可能选用多运放集成电路,例如LM324、LF347等都是将四个运放封装在一起的集
成电路。

评价集成运放性能的优劣,应看其综合性能。

一般用优值系数K来衡量集成运放的优良程度,其定义为:
式中,SR为转换率,单位为V/ms,其值越大,表明运放的交流特性越好;Iib为运放的输入偏置电流,单位是nA;VOS为输入失调电压,单位是mV。

Iib和VOS值越小,表明运放的直流特性越好。

所以,对于放大音频、视频等交流信号的电路,选SR(转换速率)大的运放比较合适;对于处理微弱的直流信号的电路,选用精度比较的高的运放比较合适(既失调电流、失调电压及温飘均比较小)。

实际选择集成运放时,除优值系数要考虑之外,还应考虑其他因素。

例如信号源的性质,是电压源还是电流源;负载的性质,集成运放输出电压和电流的是否满足要求;环境条件,集成运放允许工作范围、工作
电压范围、功耗与体积等因素是否满足要求。

低功耗型运算放大器的特点
低功耗型运算放大器的特点是通过在IC外部连接上电阻或恒流源就能适当的调整电源电流,同时也就得到各种不同的参数.在正负3到正负18V都可以工作其还可以作为能用运算放大器来使用。

低功耗型运算放大器的应用
适合于干电池供电条件下的设备使用. 可在低电源电压供电、低功率消耗的运算放大器中应用适用。

相关文档
最新文档