光波分复用技术4

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

光波分复用(WDM)技术复习过程

光波分复用(WDM)技术 一、波分复用技术的概念 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在 发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。 二、波分复用技术的优点 WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点: (1) 传输容量大,可节约宝贵的光纤资源。对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。 (2) 对各类业务信号“透明”,可以传输不同类型的信号,如数字信号、模拟信号等,并能对其进行合成和分解。 (3) 网络扩容时不需要敷设更多的光纤,也不需要使用高速的网络部件,只需要换端机和增加一个附加光波长就可以引入任意新业务或扩充容量,因此WDM技术是理想的扩容手段。 (4) 组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。 三、波分复用技术目前存在的问题 以WDM技术为基础的具有分插复用功能和交叉连接功能的光传输网具有易于重构、良好的扩展性等巨大优势,已成为未来高速传输网的发展方向,但在真正实现之前,还必须解决下列问题。 1.网络管理 目前,WDM系统的网络管理,特别是具有复杂的上/下通路需求的WDM网络管理仍处于不成熟期。如果WDM系统不能进行有效的网络管理,将很难在网络

波分复用技术(WDM)

波分复用技术(WDM)介绍 --------密集波分复用(DWDM)和稀疏波分复用(CWDM) 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 WDM本质上是光域上的频分复用FDM技术。每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 1 DWDM技术简介 WDM和DWDM是在不同发展时期对WDM系统的称呼。在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。密集波分复用技术其实是波分复用的一种具体表现形式。如果不特指1310nm、1550nm的两波分WDM系统外,人们谈论的WDM系统

光纤通信波分复用系统的研究与设计要点

武汉工程大学邮电与信息工程学院 毕业设计(论文) 光纤通信波分复用系统的研究与设计 Research And Design Of Optical Fiber Communication Wavelength Division Multiplexing System 学生姓名谭辉 学号1030210221 专业班级通信技术1002(光纤通信方向) 指导教师陈义华 2013年5月

作者声明 本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注的地方外,没有任何剽窃、抄袭、造假等违反学术道德、学术规范的行为,也没有侵犯任何其他人或组织的科研成果及专利。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。如本毕业设计(论文)引起的法律结果完全由本人承担。 毕业设计(论文)成果归武汉工程大学邮电与信息工程学院所有。 特此声明。 作者专业: 作者学号: 作者签名: ____年___月___日

摘要 20世纪90年代以来光纤通信得到了迅速的发展,光纤通信中的新技术也在不断涌现,其中波分复用技术就是光纤通信中重要的技术之一。波分复用(WDM)是在同一根光纤中同时传输两个或众多不同波长光信号的技术。 本文首先介绍了光纤通信的发展、特点、基本组成和波分复用技术(WDM)的基础知识、应用状况及目前存在的问题和发展状况,其中重点介绍了稀疏波分复用(CWDM)技术和密集波分复用(DWDM)技术的特点及其应用。其次深入分析了波分复用技术的基本原理与基本结构,同时深入分析了WDM系统的基本形式和主要特点及存在的问题,最后对现在的WDM的发展方向和前景做了进一步的探讨。 关键词:光纤通信;波分复用;技术研究

WDM 技术和要求

第1章WDM概述 1.1 WDM技术的产生背景 1.1.1 光网络复用技术的发展 随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长 距离发展,而且,要求其交互便捷。因此,在光传输系统中引入了复用技术。所 谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多 路信号。在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要 作用。 光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用 (WDM)三个阶段的发展。 SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数, 投资效益较差;TDM技术的应用很广泛,缺点是线路利用率较低;WDM技术在 1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。 光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的 SDH系统(经历了准同步数字体系(PDH)、同步数字体系(SDH),和波分复用 (WDM)三个阶段),以及近来风起云涌的DWDM系统,乃至将来的智能光网 络技术,光纤通信系统自身正在快速地更新换代。 波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔 实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM (1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。 但是到90年代中期,WDM系统发展速度并不快. 从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手段。 WDM WDM又叫波分复用技术,是新一代的超高速的光缆技术,所谓波分复用技术, 就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍 增,它充分利用单模光纤的低损耗区的巨大带宽资源,采用合波器,在发送端将 不同规定波长的光载波进行合并,然后传入单模光纤。在接收部分将再由分波器 将不同波长的光载分开的复用方式,由于不同波长的载波是相互独立的,所以双

波分复用光纤传输系统的设计

创新实验(论文) 题目波分复用光纤传输系统(WDM) 电子与信息工程学院(系)通信工程专业 学生姓名 开题日期:2010年12月 1 日 波分复用光纤传输系统 摘要:本文主要介绍波分复用器的工作原理操作规则及实际应用。WDM(波分复用)是利用多

个激光器在单条光纤上同时发送多束不同波长激光的技术。每个信号经过数据(文本、语音、视频等)调制后都在它独有的色带内传输。WDM能使电话公司和其他运营商的现有光纤基础设施容量大增。制造商已推出了WDM系统,也叫DWDM(密集波分复用)系统。DWDM可以支持150多束不同波长的光波同时传输,每束光波最高达到10Gb/s的数据传输率。这种系统能在一条比头发丝还细的光缆上提供超过1Tb/s的数据传输率。WDM 技术的特点决定了它可以几倍几十倍的提升带宽。通过本次实验与动手操作,能更好的理解与感受到WDM获得广泛应用的原因和实际应用的便捷。进一步了解WDM技术的特点。 关键词:波分复用器,原理,操作,应用。 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。WDM光波系统是高速全光传输中传输容量潜力最大的一种多信道复用方案,本实验采用1310nm 和1550nm的光波进行波分复用。 1.波分复用光纤传输系统(WDM)原理及结构 1.1 波分复用(WDM)技术原理 波分复用技术是在一根光纤中同时传输多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此技术称为光波长分割复用,简称波分复用技术。根据信道间隔的大小,光波分复用技术可分为三种,即稀疏的WDM、密集的WDM和致密的WDM,后者也叫做光频分复用(PFDM)。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器的WDM对现代信息网络更具有强大的吸引力。 为了充分利用光纤的频带资源,提高光波系统的通信容量,除了WDM技术外,还有如下几种复用技术:一,时分复用;二,光码分复用;三,空分复用;四,方向分割复用。 1.2波分复用系统的基本构成

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

北交大通信专业综合实验2_2光波分复用器特性测试

通信工程综合实验报告 姓名:学号:班级: 上课时间:星期(三)(16:20)——(18:10) 一、实验名称:光波分复用器特性测试 二、实验目的 (1) 了解光波分复用器的工作原理及其结构。 (2) 掌握光波分复用器的特性参数测试和正确使用方法。 三、实验仪器 JH5002A+光纤通信原理实验箱 光功率计 1310/1550光波分复用器两只 FC/PC光纤跳线四根 四、基本原理 波分复用器的主要技术指标如下: (1) 工作波长λ1、λ2:本实验中工作波长分别为1310nm和1550nm。 (2) 插入损耗Li 插入损耗的定义为: 即波长为λ1的输入光功率P1与输出光功率P2之比(化成分贝数)或波长为λ2的输入光功率P1与输出光功率P2之比(化成分贝数)。优良的波分复用器的插入损耗可小于0.5dB。 (3) 波长隔离度Lλ 指一个波长的光功率串扰另一波长输出臂程度的度量(化成分贝数)。Lλ值一般应达到20 dB以上。 波长隔离度的数学定义为: (4) 光谱响应范围△λ

通常指插入损耗小于某一容许值的波长范围。要根据应用要求而定。除此以外还有机械性能和温度性能指标。一个典型的1310nm/1550nm熔锥型单模光纤波分复用器的谱损曲线如下图所示: 图1 熔锥型单模光纤波分复用器的谱损曲线 (5) 波分复用器的光串扰: 测量1310nm的光串扰的方框图如图16-4(a)所示: 测量1550nm的光串扰的方框图如图16-4(b)所示: 图2 波分复用器光串扰的测量框图 上式中L12,L21即是光波分复用器相应的光串扰。 五、实验内容 1、波长隔离度测量 (1) 按下图将光发送机模块的光输出端、Y型分路器、光功率计连接好。

光波分复用技术论文

光纤通信课程考察报告光波分复用技术 学院: 专业班级: 姓名: 学号: 指导老师:

摘要:波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。还介绍些波分复用传输系统的基本结构及其基本原理。 关键词:波分复用技术(WDM),光纤,光传输网,交叉连接,传输系统 正文: 引言: WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。光在传输系统中进行传输。 光波分复用技术: 1、概念: 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。下图是波光交换原理图:

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

实验1.9WDM光波分复用器

1.9 WDM光波分复用器 实验者:张钦(12342080) 合作者:王唯一(12342057) (中山大学物理科学与工程技术学院,光信息科学与技术12级2班 B13) 2015年3月26日,19,70% c 一、实验目的和内容 1、了解WDM光波分复用器的工作原理和制作工艺,即熔融拉锥技术。 2、认识WDM光波分复用器的基本技术参量的实际意义,学会测量插入损耗、附加损耗、隔离度、偏振相关损耗等。 3、分析测量误差的来源。 二、实验基本原理 在熔融拉锥技术中,具体制作方法一般是将两根(或者两根以上)除去涂覆层的裸光纤以一定方式靠近,在高温加热下熔融,同时向两侧拉伸,利用计算机监控其光功率耦合曲线,并根据耦合比与拉伸长度控制停火时间,最后形成双锥结构。采用熔融拉锥法实现光纤间传输光功率耦合的耦合系数与波长有关,光传输波长发生变化时,耦合系数也会变化,即耦合器的分光比发生变化。考虑到熔融拉锥的耦合是周期性的,耦合周期愈多,耦合系数与传输波长的关系越大,所以尽量减少熔融拉锥中耦合的次数,最好在一个周期内完成耦合。合理改变熔融拉锥条件,能够获得不同功能的全光纤耦合器件。熔融拉锥机的控制原理模块图如图1所示。熔融拉锥型光纤耦合器工作原理示意图如图2所示。 图1 熔融拉锥机系统控制示意图 图2 熔融拉锥型光纤耦合器工作原理示意图 1、单模耦合器 HE信号。图3是单模光纤耦合器的迅衰场耦合示意图。但在单模光纤中传导模是两个正交的基模 11 传导模进入熔锥区时,随着纤芯的不断变细,归一化频率V逐渐减小,有越来越多的光功率掺入光纤包层中。实际上光功率是在由包层作为芯,纤外介质(一般是空气)作为包层的复合波导中传播的;在输出端,随着纤芯的逐渐变粗,V值重新增大,光功率被两根纤芯以特定比例“捕获”。在熔锥区,两光纤包层合并在一起,纤芯足够逼近,形成弱耦合。将一根光纤看做是另一光纤的扰动,在弱导近似下,并假设光纤是无吸收的,则有

波分复用的概念

光通信系统可以按照不同的方式进行分类。如果按照信号的复用方式来进行分类,可分为频分复用系统(FDM-Frequency Division Multiplexing )、时分复用系统(TDM-Time Division Multiplexing)、波分复用系统(WDM- Wavelength Division Multiplexing)和空分复用系统(SDM-Space Division Multiplexing)。所谓频分、时分、波分和空分复用,是指按频率、时间、波长和空间来进行分割的光通信系统。应当说,频率和波长是紧密相关的,频分也即波分,但在光通信系统中,由于波分复用系统分离波长是采用光学分光元件,它不同于一般电通信中采用的滤波器,所以我们仍将两者分成两个不同的系统。 波分复用是光纤通信中的一种传输技术,它利用了一根光纤可以同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分成若干个波段,每个波段作一个独立的通道传输一种预定波长的光信号。光波分复用的实质是在光纤上进行光频分复用(OFDM),只是因为光波通常采用波长而不用频率来描述、监测与控制。随着电-光技术的向前发展,在同一光纤中波长的密度会变得很高。因而,使用术语密集波分复用(DWDM-Dense Wavelength Division Multiplexing),与此对照,还有波长密度较低的WDM系统,较低密度的就称为稀疏波分复用(CWDM-Coarse Wave Division Multiplexing)。 这里可以将一根光纤看作是一个“多车道”的公用道路,传统的TDM系统只不过利用了这条道路的一条车道,提高比特率相当于在该车道上加快行驶速度来增加单位时间内的运输量。而使用DWDM技术,类似利用公用道路上尚未使用的车道,以获取光纤中未开发的巨大传输能力。 2.1.2 WDM技术的发展背景 随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。信息时代要求越来越大容量的传输网络。近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。 l 空分复用SDM(Space Division Multiplexer) 空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。 在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。因此,空分复用的扩容方式是十分受限。 l 时分复用TDM(Time Division Multiplexer) 时分复用也是一项比较常用的扩容方式,从传统PDH的一次群至四次群的复用,到如今SDH

波分复用器在光纤通信中的应用

物理与工程 Vol.17 No.5 2007 波分复用器在光纤通信中的应用 李叶芳 王晓旭 柳 华 (大连理工大学物理与光电工程学院,辽宁大连 116024) (收稿日期:2006 12 01) 摘 要 在光纤通信领域中使用波分复用技术,可以极大地提高网络的传输容量及速率,是解决现代通信技术带宽危机的有效方法.本文介绍了波分复用(WDM)器件的特性,并以 双路双向光纤通信为例说明应用WDM技术的优势. 关键词 波分复用器;光纤通信;双路双向光纤通信 THE APPLICATION OF WAVELENGTH DIVISION MULTIPLEXER IN FIBER C OMMUNICATION Li Yefang W ang Xiaoxu Liu Hua (School of Ph ysics and Optoelectr on ic Technology,Dalian University of Technology,Dalian,L iaoning, 116024) Abstract T he transmissio n capacity and r ate in fiber com munication could be significantly im pro ved by using w aveleng th div ision multiplexer(WDM),w hich is one of the most effectiv e w ays to settle the bandw idth crisis.T he characteristics of WDM are intr oduced,and the advantages of WDM ar e illustrated w ith tw o w ay bi directio nal fiber communicatio n. Key Words w avelength division multiplexer;fiber comm unication;tw o w ay bi directio nal fiber com munication 1 引言 自1880年贝尔设计的 光电话装置被证实光波可以传送信息开始,真正使光通信到来的时代是20世纪80年代以后.一个完整的光通信系统应具备3个条件:!光源;?光纤;#光电检测器.1966年,美藉华人高锟博士发表论文,指出 用石英玻璃纤维传送光信号来进行通信.1970年,美国康宁公司首次研制成功了光纤,为光通信提供了理想的传输介质.在这一时期,半导体激光器也被研制成功,波长适用于光纤低损耗传输的光源在光纤通信中起到了决定性的作用.这一切使光纤通信的发展极为迅速.但是随着信息传送量与日俱增,通信网的传输容量成为阻碍其发展的瓶颈.20世经纪80年代初,波分复用技术就已经出现了,但波分复用器还没有成熟.1995年以后,波分复用技术获得了突破,这为解决通信技术危机提出了有效方法.波分复用技术是指使用多束激光在同一条光纤上同时传输多个不同波长光波的技术,其关键器件是波分复用器(WDM).本文介绍波分复用器的特性,将其用于光纤通信实验有通俗易懂、步骤简单及技术先进的特点. 2 波分复用器的特性 光波分复用器是对光波波长进行分离与合成的器件,将不同光源波长的信号结合在一起经一根传输光纤输出的器件称为复用器;将同一根光纤送来的多波长信号分解为个别波长输出的器件称为光解复用器.在图1中,M是光波分复用器; D是光解复用器. 在早期,波分复用器有粗波分复用及密集波分复用器之分.波长在1310nm及1550nm两个窗口各传输一路光波信号的被称为粗波分复用器(WDM).粗波分复用器的特点是插入损耗小, 26

波分复用光纤传输系统(WDM)

湖南农业大学东方科学技术学院学生实验报告 姓名:学号年级专业班级08级信工()班成绩 课程名称光纤通信实验名称波分复用光纤传输系统 (WDM) 实验目的、要求 掌握波分复用技术及实现方法。 实验原理 光波具有很高的频率,利用光载波作为信息载体进行通信,具有巨大的可用带宽。对石英光纤,其低损耗窗口总宽度约200nm,带宽25000GHz(25THz)。但实际光波系统中由于光纤色散和电路速率的限制,其通信速率限制在10Gb/s或者更小。为了充分利用光纤的频带资源,提高光波系统的通信容量。 主要设备器材 光纤通信实验系统1台波分复用器2个示波器1台光纤活动连接器1个 实验步骤及原始数据记录 1.关闭系统电源。 2.有三种连线方式分别代表了模拟信号和模拟信号一起传输、模拟信号和数字信号混传、数字信号和数字信号一起传输,选择其中一种: 方式一 模拟信号源模块(正弦波输出)P410—P104 ————→ 1310nm光发模块 (模拟光发输入) 模拟信号源模块(三角波输出)P401—P204 ————→ 1550nm光发模块 (模拟光发输入) 方式二 模拟信号源模块(正弦波输出)P410—P104 ————→ 1310nm光发模块 (模拟光发输入) 光端FPGA (PN序列一)P720—P200 ————→ 1550nm光发模块 (数字光发输入) 方式三 光端FPGA (PN序列一)P720—P100 ————→ 1310nm光发模块 (数字光发输入) 光端FPGA (PN序列二)P718—P200 ————→ 1550nm光发模块 (数字光发输入) 3.在上表中的三种连线方式任选其一。按图21-1连接好波分复用器。 4.如果传输的使模拟信号,则按实验十四来进行实验。如果传输的是数字信号则按实验十七来进行实验。 5.如果按图21-2方式做实验,应该如何连接光纤耦合器,做实验验证一下。(选做)

光波分复用通信技术的特点

光波分复用通信技术的特点 光波分复用技术之所以得到世界各国的普遍重视和迅速发展,是与其出色的技术特点密不可分的. 1.光波分复用器结构简单、体积小、可靠性高 在波分复用技术中,技术的关键在于光波分复用器,它应具有将几种不同波长的光信号按一定顺序组合起来传输的功能,又具有将组合起来传输的光信号分开,并分别送入相应终端设备的功能.目前实用的光波分复用器,都为一个无源纤维光学器件,由于不含电源,因而器件具有结构简单、体积小、可靠、易于和光纤耦合等特点.另外由于波分复用器具有双向可逆性,即一个器件可以起到将不同波长的光信号进行组合和分开的作用,因此便于在一根光纤上实现双向传输的功能. 2.不同容量的光纤系统以及不同性质的信号均可兼容传输 由于光波分复用器是对不同波长的光载波信号以一定的次序进行排列以达到提高光纤频带利用率的目的,而与各系统的传输速率以及电调制方式无关,即各不同波长的光信号中所携带的信息以及数据,在光波分复用系统中将呈现透明传输.这样无论新加入的另一个系统的调制方式和传输速

率如何,均不受原系统的制约,使不同容量的光纤系统以及多种信息(声音、视频、图像、数据、文字、图形等)均可兼客传输. 3.提高光纤的频带利用率 在目前实用的光纤通信系统中,多数情况是仅传输一个光波长的光信号,其只占据了光纤频谱带宽中极窄的一部分,远远没能充分利用光纤的传输带宽.因而复用技术的使用大大地提高了频带利用率. 一般来说,两光波之间的波长间隔为l0~100nm时称为波分复用(稀疏波分复用);波长间隔为l~10 nm时称为紧密波分复用;当波长间隔小于l nm( lO GHz)情况时,则称之为光频分复用(FDM).如果采用后面将要介绍的相干光通信技术,则频率间隔能够进一步缩小到0.1 nm,那么一根光纤内可以安排2 000个光载波,若每一光载波信号的传输速率达到2.4 Gbit/s,则一根光纤就能同时传送10万路广播电视信号. 4.可更灵活地进行光纤通信组网 由于使用光波分复用技术,可以在不改变光缆设施的条件下,调整光通信系统的网络结构,因而在光纤通信组网设计中极具灵活性和自由度,便于对系统功能和应用范围的扩展. 5.存在插入损耗和串光问题

波分复用系统的基本原理

一、波分复用系统的基本原理 所谓波分复用(WDM),就是采用波分复用器(合波器)在发送端将规定波长的信号光载波合并起来,并送入一根光纤中传输;在接收侧,在由另一个波分复用器(分波器)将这些不同信号的光载波分开。由于不同波长的光载波信号可以看作相互独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。不同类型的光波分复用器,可以复用的波长数也不同,目前商用化的一般是8个波长、16个波长和32个波长的系统。波分复用系统的原理如图1-1所示。 图1-1 波分复用系统原理 在80年代初光纤通信兴起时,首先被采用的是1310nm/1550nm的两个波长复用系统(即在光纤的两个低损耗窗口1310nm和1550nm各传送一路光波长信号),也叫粗波分复用系统。这种系统比较简单,一般采用熔融的波分复用器,插入损耗小,在每个中继站,两个波长都进行解复用和光/电/光再生中继。随着1550nm窗口EDFA的商用化,光传输工程可以利用EDFA对传送的光信号进行放大,实现超长距离无电再生中继传输,在1550nm窗口传送多个波长信号,这些信号相邻波长间隔较窄,且工作在一个共享的EDFA工作带宽内,这种波长间隔紧密的WDM系统称为密集型波分复用系统(DWDM)。其频谱分布如图1-2所示。ITU-T G.692建议,DWDM系统的绝对参考频率为193.1THz(对应波长1552.52nm),不同波长的频率间隔为100GHz的整数倍(对应波长间隔约为0.8.nm的整数倍)。由于密集波分复用系统的波长间隔较小,必须采用高分辨率的波分复用器件,熔融的波分复用器一达不到要求。不加特别说明,波分复用系统通常指DWDM系统。 λ1λ2λ3λ 4 λ5λ6λ7λ8 波长 图1-2 DWDM系统的频谱分布 (一)DWDM的工作方式 双纤单向传输:一根光纤只完成一个方向信号的传输,反向光信号的传输由另一根光纤来完成,统一波长在两个方向上可以重复利用(如图1-3所示)。这种DWDM系统可以

三光波分复用器的参数测试

实验三 光波分复用器的参数测试 一. 实验目的和任务 1. 了解光波分复用器的原理。 2. 了解光波分复用器各参数的测试方法。 3. 测量光波分复用器的中心波长、半最大值全宽、信道隔离度。 二. 实验原理 当两根光纤非常靠近时,一根光纤中的光波电场可能耦合到另一根光纤中去。耦合系数K 与纤芯之间的距离,纤芯形状及折射率分布有关。光纤方向耦合器结构如图3.1所示。 图3.1 利用合光纤耦合器的光纤型WDM 器件 它既可以作为光功率耦合器(此时K 值在一定的波长范围内基本为常数),也可以作为波分复用器(此时K 值在一定的波长范围内是变化的)。耦合器型波分复用器输出端光功率为 ))((cos )(2 01L K P P λλ= (3-1) ))((sin )(2 02L K P P λλ= (3-2) 式中L 是耦合区长度。在适当的波导结构(纤芯距离、折射率分布、纤芯形状)下,使)(λK 的取值为2/2)(1ππλ+=n L K ,当波长为2λ时,2/2)(1ππλ+=m L K , (n ,m 为整数)。此时1λλ=时,0)(11=λP ,012)(P P =λ,2λλ=时,021)(P P =λ,0)(22=λP ,图3.2是耦合器型波分复用器的输出曲线。适当的耦合系数下,光纤耦合器可作为1310/1550nm 双波长波分复用器。

图3.2 基于耦合器的WDM 器件的典型投射率曲线 如图3.1所示,当1310和1550nm 两个波长的光从耦合器的A 端输入时,波长为1310nm 的光从B 端输出,波长为1550nm 的光由D 端输出。反之,B 端输入波长为1310nm 的光,C 端输入波长1550nm 的光,A 端将同时输出1310nm 与1550nm 波长的光。因此,耦合器型波分复用同时可作波分复用与解复用器使用。 测试1310/1550nm 双波长波分复用器中心波长和半最大值宽度的实验原理图如图3.3所示。 图3.3 光波分复用器中心波长和半最大值宽度测试原理图 波分复用器的一个主要指标是通道隔离度,其定义是,当A 端输入波长为1λ的光功率时,B 端的输出与D 端输出功率的比率(以分贝为单位)。 ) () (lg 10)(11121λλλP P Isolation = (3-3) 类似地,当A 端输入波长为2λ的光功率时,通道隔离度为 ) () (lg 10)(22212λλλP P Isolation = (3-4) 测试1310/1550nm 双波长波分复用器信道隔离度的实验原理图如图3.4所示。

波分复用技术

波分复用技术研究 1.产生背景 1.1全球形势 随着全球互联网(Internet)的迅猛发展,以因特网技术为主导的数据通信在通信业务总量中的比列迅速上升,因特网业务已成为多媒体通信业中发展最为迅速、竞争最为激烈的领域。同时,无论是从数据传输的用户数量还是从单个用户需要的带宽来讲,都比过去大很多。特别是后者,它的增长将直接需要系统的带宽以数量级形式增长。因此如何提高通信系统的性能,增加系统带宽,以满足不断增长的业务需求成为大家关心的焦点。 面对市场需求的增长,现有通信网络的传输能力的不足的问题,需要从多种可供选择的方案中找出低成本的解决方法。缓和光纤数量的不足的一种途径是敷设更多的光纤,这对那些光纤安装耗资少的网络来说,不失为一种解决方案。但这不仅受到许多物理条件的限制,也不能有效利用光纤带宽。另一种方案是采用时分复用(TDM)方法提高比特率,但单根光纤的传输容量仍然是有限的,何况传输比特率的提高受到电子电路物理极限限制。第三种方案是波分复用(WDM)技术, WDM系统利用已经敷设好的光纤,使单根光纤的传输容量在高速率TDM 的基础上成N倍地增加。WDM能充分利用光纤的带宽,解决通信网络传输能力不足的问题,具有广阔的发展前景。 WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM的迅速发展,从155Mbit/s到622Mbit/s,再到2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。人们在一种技术进行迅速的时候很少去关注另外的技术。1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。 1.2 发展过程 1.2.1 发展阶段 光纤通信飞速发展,光通信网络成为现代通信网的基础平台。光纤通信系统经历

相关文档
最新文档