数字电路同步二进制计数器

合集下载

3位2进制同步计数器(约束项:000,010)

3位2进制同步计数器(约束项:000,010)
占空比D= =0.217
图a
图2.2.3电位器左端时刻仿真图1
图b:
图2.2.4电位器左端时刻仿真图2
(3)估算当电位器滑动端调至最右端时,由图(a)可得
Uom=4.877V Ucm=2.809V T=7.836ms
由图(b)可得:
T2=1.586ms ,所以T1= T—T2=7.836ms—1.586ms=6.25ms
1.3ms
5.2ms
0.2
仿真结果
1.68ms
6.063ms
0.217
(3)当电位器的滑动端调至最右端时
T1
T2
D
估算结果
5.2ms
1.3ms
0.8
仿真结果
6.25ms
1.586ms
0.798
对比表中的估算结果和仿真结果,数值有较大的误差,其误差原因是在仿真中二极管影响输入波的周期,以及读数的误差。总的来看,估算的结果和仿真的结果是一致的。
(4)状态方程:
电路次态卡诺图:
图1.3.2电路次态卡诺图
Q1N+1的次态卡诺图为:
图1.3.3Q1N+1的次态卡诺图
Q0N+1的次态卡诺图为:
图1.3.4Q0N+1的次态卡诺图
状态方程:
Y= Q1nQ0n
= +
= +X =
(5) 驱动方程为 :
= =
= =1
(6) 检查能否自启动(无无效状态)
(7) 最后结果
1数字电子设计部分
1.1
(1)了解同步加法计数器工作原理和逻辑功能。
(2)掌握计数器电路的分析,设计方法及应用。
(3) 学会正确使用JK触发器。

数字电子技术计数器

数字电子技术计数器

1 00 01 01 1 01 1
d3 d2 d1 d0 1 1
Q3n+1 Q2n+1 Q1n+1 Q0n+1
000 0
d3 d2 d1
d0
加法计数
减法计数
保持

异步清零 异步置数
BO =CO=1
4. 集成十进制同步计数器 (1) 集成十进制同步加法计数器74160、74162 VCC CO Q0 Q1 Q2 Q3 CTT LD 同步计数功能:
若用T 触发器:
T0 = 1 T1=Q0n T2= Q1n Q0n
&
FF0
Q0
1J
FF1
1J
Q1
C1
C1
FF1
1J C1
&
B
Q2
1K
1K
Q0
Q1
1K
Q2
3. 3 位二进制同步可逆计数器 (1) 单时钟输入二进制同步可逆计数器
加/减 控制端
&1
&1
C/B &1
U/D 1
1
1J C1
Q0
1K
CP
FF0 Q0
按计数的增 减分:
加法计数器 减法计数器 可逆计数 (Up-Down Counter)
按计数值的 二进制编码计数器 编码方式分: 二—十进制计数器
按数制分:
二进制计数器 十进制计数器
N 进制(任意进制)计数器
同步二进制加法计数器结构组成及原理
计数器计数容量、长度或模的概念
计数器能够记忆输入脉冲的数目,即电路的有效状态
CP2=Q1
二-八-十六进制计数器的实现
FF0 Q0

4位同步二进制加法计数器计数最大值

4位同步二进制加法计数器计数最大值

4位同步二进制加法计数器是一种常见的数字电路,用于实现二进制计数。

它可以将二进制数字表示为电信号,并且在每次输入脉冲时进行递增。

下面将详细介绍4位同步二进制加法计数器及其计数的最大值。

一、4位同步二进制加法计数器的原理1. 4位同步二进制加法计数器由4个触发器组成,每个触发器对应一个二进制位。

当输入一个脉冲时,每个触发器根据前一位的状态以及输入脉冲的信号进行状态转换。

这样就实现了二进制数的递增。

2. 触发器之间通过门电路连接,用于控制触发器状态的变化。

这些门电路可以根据具体的设计选择不同的逻辑门,常见的有AND门、OR 门、NOT门等。

3. 4位同步二进制加法计数器是同步计数器,即所有触发器同时接收输入脉冲,确保计数的同步性。

二、4位同步二进制加法计数器的计数最大值1. 4位二进制数的表示范围是0~15,因此4位同步二进制加法计数器的计数最大值为15。

2. 在计数到15后,再输入一个脉冲,计数器将重新从0开始计数,即实现了循环计数。

三、4位同步二进制加法计数器的应用1. 4位同步二进制加法计数器常用于数字电子钟、信号发生器等数字电路中,用于实现计数和定时功能。

2. 它还可以作为其他数字电路的组成部分,用于构建更复杂的逻辑功能。

3. 在数字系统中,计数器是十分重要的组件,它能够实现数字信号的计数和控制,广泛应用于各种数字系统中。

4位同步二进制加法计数器是一种重要的数字电路,通过它可以实现对二进制数的递增计数。

其计数的最大值为15,应用领域广泛。

希望本文内容能够对读者有所启发。

四、4位同步二进制加法计数器的工作原理4位同步二进制加法计数器是一种晶体管数字集成电路,它利用触发器和逻辑门等基本元件构成,能够实现二进制数字的加法计数。

在4位同步二进制加法计数器中,每个触发器代表一个二进制位,通过输入脉冲的控制,能够实现对二进制数的递增计数。

具体来说,当输入一个脉冲信号时,4位同步二进制加法计数器会根据触发器之间的连线和逻辑门的作用,根据之前的状态和输入脉冲的信号进行状态转换,从而实现二进制数的递增。

数字电路实验报告-用D触发器设计三位二进制加法计数器

数字电路实验报告-用D触发器设计三位二进制加法计数器

电学实验报告模板实验原理1.触发器的触发方式(1)电平触发方式电平触发方式的特点是:CP = 1时,输出与输入之间通道“透明”,输入信号的任何变化都能引起输出状态的变化。

当CP = 0时,输入信号被封锁,输出不受输入影响,保持不变。

(2)边沿触发方式边沿触发方式的特点是:仅在时钟CP信号的上升沿或下降沿才对输入信号响应。

触发器的次态仅取决于时钟CP信号的上升沿或下降沿到达时输入端的逻辑状态,而在这以前或以后,输入信号的变化对触发器输出端状态没有影响。

2. 边沿触发器(1)边沿D触发器图1 上升沿触发D触发器图1所示为上升沿触发D触发器的逻辑符号。

上升沿触发D触发器的特性表如表1所示。

表1 上升沿D触发器特性表D触发器的特性方程为:Q^(n+1) = D1.同步触发器的异步置位复位端电平触发器和边沿触发器都在CP时钟信号的控制下工作,这种工作方式称之为“同步”。

也把这类触发器称为同步触发器,以区别于基本RS触发器。

在小规模集成电路芯片中,触发器既能同步工作,又兼有基本RS触发器的功能。

例如。

图2所示的触发器。

这是上升沿触发D触发器,其中,SD(-)和RD(-)是异步置位复位端。

只图2 带有异步置位复位端的D触发器要在SD(-)或RD(-)加入低电平,立即将触发器置“1”或置“0”,而不受时钟信号CP和输入信号D的控制。

只有当SD(-)或RD(-)均处于高电平时,触发器才正常执行上升沿触发D触发器的同步工作功能。

实验仪器实验内容及步骤1.测试双D触发器74LS74的逻辑功能(1)74LS74引脚图图3 74LS74引脚图图3所示为集成电路芯片74LS74的引脚图。

芯片包含两个带有异步置位复位端的上升沿D触发器。

(1)测试74LS74的逻辑功能图4 测试74LS74的逻辑功能实验电路按照图4连接电路。

D触发器的Q和Q(-)(芯片5和6号引脚)各接一个发光二极管用以观察触发器的输出逻辑电平。

按照上面测试74LS112的逻辑功能同样的方法和步骤,测试74LS74的逻辑功能,将实验数据记录在表2。

数电-时序逻辑电路 计数器

数电-时序逻辑电路 计数器
?用触发器构成
——依照一般同步时序电路的设计步骤
例题
用D触发器设计同步十进制加法计数器 用JK触发器设计同步六进制减法计数器
(1)异步二-十进制计数器 74HC/HCT390
FF0 二进制计数器 CP0输入,Q0输出
FF1——FF3
异步五进制计 数器(P277)
CP1输入,Q3、Q2、Q1输出
CP1 1
1000~1111 8进制
异步计数器
方法二 整体反馈清0法实现72进制加法计数器
1 CP
××××
CR D0 D1 D2 D3
CET
CEP 74161(0) TC CP Q0 Q1 Q2 Q3 PE 1
××××
CR D0 D1 D2 D3
CET
CEP 74161(1) TC
CP Q0 Q1 Q2 Q3 PE 1
TC
CEP
74161
PE
>CP Q0 Q1 Q2 Q3
CR: 异步清零端
CP:
有效
PE: 同步并行置数使能端
D0 - D3 :预置数据输入端 CET、CEP: 计数使能端
TC:进位输出端,用于级连(TC = CET·Q3·Q2·Q1·Q0)
74161逻辑功能表
输入
输出
清预 零置
使能
时 钟
预置数据输入
连接方式1 Q2 Q1 Q0 000 001 010 011 100 101 110 111 000 001
(5421码)
连接方式2 Q0 Q3 Q2 Q1 0 000 0 001 0 010 0 011 0 100 1 000 1 001 1 010 1 011 1 100
二-五-十进制加法计数器

《数字电路制作与测试》习题册(三)

《数字电路制作与测试》习题册(三)

《数字电路制作与测试》习题册(三)项⽬三计数器的设计与调试主要知识点:⼀、填空题1. 时序逻辑电路的输出不仅与有关,⽽且与有关。

2. 时序逻辑电路中的存储电路通常有两种形式:和。

3. 是构成时序逻辑电路中存储电路的主要元件。

4. 锁存器和触发器是构成时序逻辑电路中的主要元件。

5. 按逻辑功能分,触发器有、、、触发器等⼏种。

6. 触发器按照逻辑功能来分⼤致可分为种。

7. 触发器是构成逻辑电路的重要部分。

8. 触发器有两个互补的输出端Q 、Q ,定义触发器的0状态为,1状态为,可见触发器的状态指的是端的状态。

9. 触发器的两个输出端Q 、Q ,当0,1Q Q ==时,我们称触发器处于。

10. 触发器的状态指的是的状态,当1,0Q Q ==时,触发器处于。

11. 触发器有2个稳态,存储4位⼆进制信息要个触发器。

12. 因为触发器有个稳态,6个触发器最多能存储⼆进制信息。

13. ⼀个有与⾮门构成的基本RS 触发器,其约束条件是。

14. ⼀个基本R S 触发器在正常⼯作时,它的约束条件是R +S =1,则它不允许输⼊S = 且R = 的信号。

15. 与⾮门构成的基本RS 锁存器输⼊状态不允许同时出现R = S = 。

16. 与⾮门构成的基本RS 锁存器的特征⽅程是,约束条件是。

17. 由与⾮门构成的基本RS 锁存器其逻辑功能有种。

18. 由与⾮门构成的基本RS 锁存器正常⼯作时有三种状态,分别是01R S =输出为,10R S = 输出为,11R S =输出为。

(0状态/1状态/保持状态)。

19. 与⾮门构成的基本RS 锁存器当Q=1时,R = ,S = 。

20. 与⾮门构成的基本RS 锁存器当Q=0时,R = ,S = 。

21. 锁存器和触发器的区别在于其输出状态的变化是否取决于。

22. 触发器的输出状态变化除了由输⼊信号决定外还取决于。

23. 和共同决定了触发器输出状态的变化。

24. 钟控RS 触发器的约束条件是。

计数器的原理

计数器的原理

计数器的原理计数器是数字电路中广泛使用的逻辑部件,是时序逻辑电路中最重要的逻辑部件之一。

计数器除用于对输入脉冲的个数进行计数外,还可以用于分频、定时、产生节拍脉冲等。

计数器按计数脉冲的作用方式分类,有同步计数器和异步计数器;按功能分类,有加法计数器、减法计数器和既具有加法又有减法的可逆计数器;按计数进制的不同,又可分为二进制计数器、十进制计数器和任意进制计数器。

一、计数器的工作原理1、二进制计数器(1)异步二进制加法计数器图1所示为用JK触发器组成的4位异步二进制加法计数器逻辑图。

图中4个触发器F0~F3均处于计数工作状态。

计数脉冲从最低位触发器F0的CP端输入,每输入一个计数脉冲,F0的状态改变一次。

低位触发器的Q端与高位触发器的CP端相连。

每当低位触发器的状态由1变0时,即输出一负跳变脉冲时,高位触发器翻转。

各触发器置0端R D并联,作为清0端,清0后,使触发器初态为0000。

当第一个计数脉冲输入后,脉冲后沿使F0的Q0由0变1,F1、F2、F3均保持0态,计数器的状态为0001;当图1 4位异步二进制加法计数器第二个计数脉冲输入后,Q0由1变为0,但Q0的这个负跳变加至F1的CP端,使Q1由0变为1,而此时F3、F2仍保持0状态,计数器的状态为0010。

依此类推,对于F0来说,每来一个计数脉冲后沿,Q0的状态就改变,而对于F1、F2、F3来说,则要看前一位输出端Q是否从1跳到0,即后沿到来时,其输出端的状态才改变,否则Q1、Q2、Q3端的状态同前一个状态一样。

这样在第15个计数脉冲输入后,计数器的状态为1111,第16个计数脉冲输入,计数器恢复为0000。

由上述分析可知,一个4位二进制加法计数器有24=16种状态,每经过十六个计数脉冲,计数器的状态就循环一次。

通常把计数器的状态数称之为计数器的进制数(或称计数器的模),因此,4位二进制计数器也可称之为1位十六进制(模16)计数器。

表1所示为4位二进制加法计数器的状态表。

数字电路复习提纲

数字电路复习提纲

数字电路复习提纲数字电路复习提纲⼀.填空1. (238)10=(11101110)2 =( EE )16。

2.德·摩根定理表⽰为B A += B A ?,B A ? = B A + 。

3.门电路的负载分为灌电流负载和拉电流负载.4.异或门电路的表达式是 B A B A +;同或门的表达式是B A AB +.5.RAM 与ROM ⽐较:优点:读写⽅便,使⽤灵活缺点:掉电丢失信息 .6.三态门的三种可能的输出状态是⾼电平、低电平和⾼阻抗。

7. ⼋输⼊端的编码器按⼆进制数编码时,输出端的个数是3个,四输⼊端的译码器的输出端的个数最多为 16个。

8.在多路传输过程中,能够根据需要将其中任意⼀路挑选出来的电路,叫做数据选择器,也称为多路选择器或多路开关。

9.能够将⼀输⼊数据,根据需要传送到 m 个输出端的任意⼀个输出端的电路,叫做数据分配器。

10.组合逻辑电路的逻辑功能的特点是任何时刻电路的稳定输出,仅仅只决定于该时刻各个输⼊变量的取值。

11.组成逻辑函数的基本单元是最⼩项 .12.基本逻辑门有与门、或门和⾮门三种。

复合门有与⾮们、或⾮们和与或⾮门三种13.卡诺图中⼏何相邻的三种情况是相接、相对和相重 . 14.逻辑函数的公式化简的四种⽅法是并项法、消去法、吸收法和配项消去法 .15.逻辑函数的最简与或式的定义是同⼀逻辑结果的与或表达式中乘积项的个数最少,每个乘积项中相乘的变量个数也最少的与或表达式 .16.除了与、或、⾮三种基本逻辑运算外,还有由这三种基本逻辑运算构成的四种复合逻辑运算,它们是与⾮、或⾮、与或⾮和异或运算。

17.时序逻辑电路的逻辑功能的特点是任何时刻电路的稳定状态输出,不仅和该时刻的输⼊信号有关,⽽且还取决于电路原来状态。

18.⼀个⼗进制加法计数器需要由四个 JK 触发器组成。

19.555定时器由基本RS 触发器、⽐较器、分压器、晶体管开关和输出缓冲器五部分组成。

20.由与⾮门构成的基本触发器的特性⽅程是n n Q R S Q +=+1;其约束条件是0=RS .21.由或⾮门构成的基本触发器的特性⽅程是n n Q R S Q +=+1;其约束条件是0=RS .22.JK 触发器的特性⽅程是n n n Q K Q J Q +=+1;D 触发器的特性⽅程是D Q n =+1;T 触发器的特性⽅程是n n n Q 1'触发器的特性⽅程是Q Q =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“1”
P QA QB QC QD T Oc CP Cr LD A B C D 1 1
P QA QB QC QD T Oc CP Cr LD A B C D 1
P QA QB QC QD T Oc CP Cr LD A B C D 1
CP
作业:
P316 17,19,
第四版:P246 8, 9, 10
Q0n 1 Q
__ n 0 __ n 1 __ n 0
Q1n 1 Q0n Q Q Q1n
n n Q2 1 Q0n Q1n Q Q Q Q2 __ n 2 _____ n n 0 1
Q0 1 时反转 Q0 Q1 1 时反转
(3)状态转换真值表:
CP Q2 0 1 2 3 4 5 6 7 8 0 0 0 1 1 1 1 0 Q1 0 0 1 1 0 0 1 1 0 Q0 0 1 0 1 0 1 0 1 0
(4)状态转换图:
Q2Q1Q0
000 001 010 011 111 110 101 100
(5)时序图:维阻式
CP Q0 Q1 Q2
二分频器 f/2 四分频器 f/4 八分频器 f/8
(5B)时序图:边沿式
CP Q0 Q1 Q2
二分频器 f/2 四分频器 f/4
八分频器 f/8
P192 9(1),12,13
6.同步二进制可逆计数器
Q0 1
J K Q F0 K J Q F1 K
Q1
J Q F2
Q2
CP
X 当X=1时,是加法计数器 当X=0时,是减法计数器
三、中规模集成计数器
同步集成计数器TTL74161(16进制)
Cr 0 LD 0 保持 计数 进位
__ __
异步清零 同步置位 LD C r 1, PT 0 LD C r P T 1 LD C r P T Q A QB QC QD 1
__ __ __ __ __ __
P QA QB QC QD T Oc
CP Cr LD A B C D
例:利用反馈复(置)位法将74161构成十进 制计数器
1.复位法 “1” CP C
P QA QB QC QD T Oc
CP Cr LD A B C D QB QA
特点: 1.最低位来一个脉冲反转一次 (T’触发器) 2.其它位均在其所有的低位全为1时,来 一个时钟脉冲后反转。 (T触发器)
5.同步二进制减法计数器
Q0 1
J K Q F0 K J Q F1 K
Q1
J Q F2
Q2
CP
特点: 1.最低位来一个脉冲反转一次 (T’触发器) 2.其它位均在其所有的低位全为0时,来 一个时钟脉冲后反转。 (T触发器)
0000 0001 0010 0011 0100 1010 /1 /0 暂态 10011000 0111 0110 0101
/0 /0 /0 /0
/0
/0
/0
/0
2.置位法
C “1” CP
P QA QB QC QD T Oc
CP Cr LD A B C D 1
同步置位 等下一个(第十 个)脉冲到来后 才置位。 /0 /0
4.同步二进制加法计数器
Q0
1 CP
J K Q F0 K J Q F1 K
Q1
J Q F2
Q2
Q0
1 CP
J K Q F0 K J Q F1
Q1
J K Q F2
Q2
(1)驱动方程:
J 0 K0 1 J 1 K1 Q0 J 2 K 2 Q0 Q1 T触发器
(2)状态方程:
QD QC QB QA
0000 0001 0010 0011 0100 /1 /0 10011000 0111 0110 0101
/0 /0 /0 /0
/0
/0
212 进制计数器 例:用三块74161构成
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
相关文档
最新文档