2016-2017年江苏省徐州市高二上学期期末数学试卷(文科)与解析
2017-2018学年江苏省徐州市高二(上)期末数学试卷(文科)(解析版)

2017-2018学年江苏省徐州市高二(上)期末数学试卷(文科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.1.(5分)命题“∀x∈R,x2+1≥0”的否定是.2.(5分)抛物线y2=8x的焦点坐标为.3.(5分)函数的单调减区间.4.(5分)直线ax+y+1=0与直线x﹣2y﹣3=0垂直的充要条件是a=.5.(5分)椭圆的右焦点为F,右准线为l,过椭圆上顶点A作AM⊥l,垂足为M,则直线FM的斜率为.6.(5分)已知一个正四棱柱的底面边长为1,其侧面的对角线长为2,则这个正四棱柱的侧面积为.7.(5分)在平面直角坐标系xOy中,双曲线C:的一条渐近线与直线x ﹣y+1=0平行,则双曲线C的焦距为.8.(5分)已知函数f(x)=x cos x﹣sin x,若存在实数x∈[0,2π],使得f(x)<t,成立,则实数t的取值范围是.9.(5分)已知圆x2+y2=r2与圆x2+y2+6x﹣8y﹣11=0相内切,则实数r的值为.10.(5分)设f(x)=4x3+mx2+(m﹣3)x+n(m,n∈R)是R上的单调增函数,则m的值为.11.(5分)点.P(x,y)在圆x2+y2=1上运动,若a为常数,且|x+3y+a|+|x+3y﹣4|的值是与点P的位置无关的常数,则实数a的取值范围是.12.(5分)已知F1,F2是椭圆C:(a>b>0)的焦点,P是椭圆C上的一点,若PF1=2PF2,则椭圆C的离心率的取值范围是.13.(5分)已知点P(0,2)为圆C:(x﹣a)2+(y﹣a)2=2a2外一点,若圆C一上存在点Q,使得∠CPQ=30°,则正数a的取值范围是.14.(5分)已知关于x的方程(x2+x+2)e x﹣x=4在区间[t,t+1]上有解,则整数t的值为.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或计算步骤,15.(14分)已知p:x2﹣3x+2>0,q:|x﹣m|≤1.(1)当m=1时,若p与q同为真,求x的取值范围;(2)若¬p是q的充分不必要条件,求实数m的取值范围.16.(14分)在四棱锥P一ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:(1)CD⊥平面P AD;(2)EF∥平面P AD.17.(14分)已知圆C经过点A(﹣1,0),B(0,3),圆心C在第一象限,线段AB的垂直平分线交圆C于点D,E,且DE=2.(1)求直线DE的方程;(2)求圆C的方程;(3)过点(0,4)作圆C的切线,求切线的斜率.18.(16分)在一个半径为1的半球材料中截取两个高度均为h的圆柱,其轴截面如图所示.设两个圆柱体积之和为V=f(h).(1)求f(h)的表达式,并写出h的取值范围;(2)求两个圆柱体积之和V的最大值.19.(16分)已知椭圆C经过点,且与椭圆E:有相同的焦点.(1)求椭圆C的标准方程;(2)若动直线l:y=kx+m与椭圆C有且只有一个公共点P,且与直线x=4交于点Q,问:以线段PQ为直径的圆是否经过一定点M?若存在,求出定点M的坐标;若不存在,请说明理由.20.(16分)设函数f(x)=(m﹣1)x2﹣2lnx+mx,其中m是实数.(l)若f(1)=2,求函数f(x)的单调区间;(2)当f′(2)=10时,若P(s,t)为函数y=f(x)图象上一点,且直线OP与y=f (x)相切于点P,其中O为坐标原点,求S;(3)设定义在I上的函数y=g(x)在点M(x0,y0)处的切线方程为l:y=h(x),若[g(x)﹣h(x)]•(x﹣x0)<0(x≠x0)在定义域I内恒成立,则称函数y=g(x)具有某种性质T,简称“T函数”.当时,试问函数y=f(x)是否为“T函数”?若是,请求出此时切点M的横坐标;若不是,清说明理由.2017-2018学年江苏省徐州市高二(上)期末数学试卷(文科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.1.【解答】解:因为全称命题的否定是特称命题,所以命题“∀x∈R,x2+1≥0”,则¬p是.∃x∈R,x2+1<0,故答案为:∃x∈R,x2+1<02.【解答】解:抛物线y2=8x的焦点在x正半轴上,开口向右,p=4,所以抛物线的焦点坐标(2,0).故答案为:(2,0).3.【解答】解:∵函数f(x)=x3﹣x,∴f′(x)=x2﹣1,令f′(x)<0,即x2﹣1<0解得﹣1<x<1∴函数f(x)=x3﹣x的单调减区间为(﹣1,1).故答案为:(﹣1,1).4.【解答】解:若直线ax+y+1=0与直线x﹣2y﹣3=0垂直,则a×1+1×(﹣2)=0,即a=2,故答案为:25.【解答】解:椭圆的右焦点为F(1,0),右准线为l:x=5,过椭圆上顶点A作AM⊥l,垂足为M(5,2),则直线FM的斜率为:=.故答案为:.6.【解答】解:正四棱柱的底面边长为1,其侧面的对角线长为2,则侧棱长为=,∴这个正四棱柱的侧面积为:S侧面积=4×1×=4.故答案为:.7.【解答】解:在平面直角坐标系xOy中,双曲线C:的一条渐近线与直线x﹣y+1=0平行,可得a=4,b=4,则c=4,所以双曲线的焦距为:8.故答案为:8.【解答】解:∵存在实数x∈[0,2π],使得f(x)<t,即f(x)min<t,x∈[0,2π],∵f(x)=x cos x﹣sin x,x∈[0,2π],∴f′(x)=cos x﹣x sin x﹣cos x=﹣x sin x,令f′(x)=0,解得x=0或x=π或2π,当f′(x)≤0时,即0≤x<π,函数f(x)在[0,π)单调递减,当f′(x)≥0时,即π≤x≤2π,函数f(x)在[π,2π]单调递增,∴f(x)min=f(π)=﹣π,∴t>﹣π,即实数t的取值范围是(﹣π,+∞),故答案为:(﹣π,+∞)9.【解答】解:圆x2+y2+6x﹣8y﹣11=0的标准方程为(x+3)2+(y﹣4)2=36,圆心为(﹣3,4),半径为6,圆x2+y2=r2的圆心为(0,0),半径为r,则圆心距离d=|=5,若两圆内切,则|r﹣6|=5,得r﹣6=5或r﹣6=﹣5,即r=11或1,故答案为:1或1110.【解答】解:根据题意,得f′(x)=12x2+2mx+m﹣3,∵f(x)是R上的单调增函数,∴f′(x)≥0,∴△=(2m)2﹣4×12×(m﹣3)≤0即4(m﹣6)2≤0,所以m=6,故答案为:6.11.【解答】解:若|x+3y+a|+|x+3y﹣4|的值是与点P的位置无关的常数,表示P到直线x+3y+a=0和x+3y﹣4=0的距离和为定值,即圆x2+y2=1夹在直线x+3y+a=0和x+3y﹣4=0之间,将圆心坐标代入x+3y﹣4=0得:﹣4<0,故a>0且,解得:,故答案为:.12.【解答】解:根据椭圆定义|PF1|+|PF2|=2a,将设|PF1|=2|PF2|代入得|PF2|=a,根据椭圆的几何性质,|PF2|≥a﹣c,故≥a﹣c,即a≤3c,又e<1,可得故该椭圆离心率的取值范围是[,1).故答案为:[,1).13.【解答】解:由圆C:(x﹣a)2+(y﹣a)2=2a2得圆心为C(a,a),半径r=a,(a>0),∴PC=,设过P的一条切线与圆的切点是T,则TC=a,∴当Q为切点时,∠CPQ最大,∵圆C上存在点Q使得∠CPQ=30°,∴满足≥sin30°,即≥,整理可得3a2+2a﹣2≥0,解得a≥或a≤,又≤1,即≤1,解得a≤1,又点P(0,2)为圆C:(x﹣a)2+(y﹣a)2=2a2外一点,∴a2+(2﹣a)2>2a2,解得a<1,∵a>0,∴综上可得≤a<1.故答案为:.14.【解答】解:关于x的方程(x2+x+2)e x﹣x=4在区间[t,t+1]上有解,即为函数f(x)=(x2+x+2)e x﹣x﹣4在区间[t,t+1]上存在零点,由y=(x2+x+2)e x的导数为y′=(x2+3x+3)e x>0,可得y=(x2+x+2)e x递增,由f(0)=2﹣4=﹣2<0,f(1)=4e﹣5>0,且f(x)=(x2+x+2)e x﹣x﹣4的导数为f′(x)=(x2+3x+3)e x﹣1,当x≥1时,f′(x)>0,即有f(x)在[1,+∞)递增,可得f(t)在t≥1且t∈N时,f(t)>0;可得f(x)在(0,1)存在零点;由f(﹣4)=(16﹣4+2)e﹣4>0,f(﹣3)=[(9﹣1)e﹣3﹣1]<0,可得f(x)在(﹣4,﹣3)存在零点,可得f(x)在﹣3<x<0和x<﹣4均无零点,故答案为:﹣4或0.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或计算步骤,15.【解答】解:(1)由p得x>2或x<1,当m=1时,由q得0≤x≤2,∵p与q同为真,∴0≤x<1;∴x的取值范围为[0,1);(2)¬p:x∈[1,2],q:x∈[m﹣1,m+1],∵¬p是q的充分不必要条件,∴[1,2]⊊[m﹣1,m+1],∴,∴1≤m≤2∴实数m的取值范围为[1,2].16.【解答】证明:(1)因为AP⊥平面P AD,CD⊂平面P AD,所以AP⊥CD.…(3分)因为底面ABCD为矩形,所以CD⊥AD.…(5分)又因为AP∩AD=A,AP,AD⊂平面P AD,所以CD⊥平面P AD.…(7分)(2)取PD中点G,连结AG,EG.因为E为PC的中点,所以EG∥CD,…(9分)且.因为ABCD为矩形,所以AF∥CD,且,故.所以AFEG为平行四边形,所以EF∥AG.…(12分)因为EF⊄平面P AD,AG⊂平面P AD,所以EF∥平面P AD.…(14分)17.【解答】解:(1)因为k AB==3,所以;又AB的中点在直线DE上,∴直线DE的方程为,化为一般形式为x+3y﹣4=0;…(4分)(2)由题意知DE为圆C的直径,设圆心C(4﹣3b,b),则,解得b=1或b=2;∴故圆心为(1,1)或(﹣2,2)(不合题意,舍去);∴圆C的方程为(x﹣1)2+(y﹣1)2=5;…(9分)(3)由题意知切线的斜率存在,设为k,则切线方程为y﹣4=kx,即kx﹣y+4=0,由圆心到切线的距离为,解得或k=2.…(14分)18.【解答】(1)自下而上两个圆柱的底面半径分别为:,.…(4分)它们的高均为h,所以体积之和=π(2h﹣5h3).…(7分)因为0<2h<1,所以h的取值范围是.…(8分)(2)由f(h)=π(2h﹣5h3),得f'(h)=π(2﹣15h2),令f'(h)=0,因为,得.…(10分)所以当h∈时,f'(h)>0;当h∈时,f'(h)<0.所以f(h)在上为增函数,在上为减函数,…(12分)(若列表同样给分)所以当时,f(h)取得极大值也是最大值,f(h)的最大值为.…(15分)答:两个圆柱体积之和V的最大值为.…(16分)19.【解答】解:(1)椭圆E的焦点为(±1,0),设椭圆C的标准方程为,则解得所以椭圆C的标准方程为.…(6分)(2)联立消去y,得(3+4k2)x2+8kmx+4m2﹣12=0,所以△=64k2m2﹣4(3+4k2)(4m2﹣12)=0,即m2=3+4k2.…(8分)设P(x P,y P),则,,即.…(10分)假设存在定点M(s,t)满足题意,因为Q(4,4k+m),则,,所以,=恒成立,…(12分)故解得所以存在点M(1,0)符合题意.…(16分)20.【解答】解:(1)由f(1)=m﹣1+m=2m﹣1=2,得,∴(x>0),∴,…(2分)由f′(x)>0得:;由f′(x)<0得:.所以f(x)的单调增区间为,单调减区间为.…(4分)(2)由f'(2)=10,得m=3,∴f(x)=2x2﹣2lnx+3x,∴,所以切线的斜率.…(6分)又切线OM的斜率为,所以,=,即s2+lns﹣1=0,…(8分)设y=s2+lns﹣1,∴,所以,函数y=s2+lns﹣1在(0,+∞)上为递增函数,且s=1是方程的一个解,即s=1是唯一解,所以,s=1.…(10分)(3)当m=﹣时,由函数y=f(x)在其图象上一点M(x0,y0)处的切线方程为y=(﹣x0+﹣)(x﹣x0)﹣x02+x0﹣2ln x0.令h(x)=(﹣x0+﹣)(x﹣x0)﹣x02+x0﹣2ln x0,设F(x)=f(x)﹣h(x),则F(x0)=0.且F′(x)=f′(x)﹣h′(x)=﹣x+﹣﹣(﹣x0+﹣)=﹣(x﹣x0)﹣(﹣)=﹣(x﹣x0)(x﹣)…(12分)当0<x0<2时,>x0,F(x)在(x0,)上单调递增,从而有F(x)>F(x0)=0,所以,;当x0>2时,<x0,F(x)在(,x0)上单调递增,从而有F(x)<F(x0)=0,所以,F(x)(x﹣x0)>0.因此,y=f(x)在(0,2)和(2,+∞)上不是“T函数”.当x0=2时,F′(x)=﹣≤0,所以函数F(x)在(0,+∞)上单调递减.所以,x>2时,F(x)<F(2)=0,F(x)(x﹣2)<0;0<x<2时,F(x)>F(2)=0,F(x)(x﹣2)<0.因此,切点M为点(2,f(2)),其横坐标为2. (16)。
高二上学期期末考试_数学(文)有答案-精品

南师大附中2016-2017学年度高二第一学期期末考试文科数学命题人:高二文科数学备课组(内容:必修3,选修1-1,选修1-2,选修4-4)时量:120分钟满分:100 分(必考试卷Ⅰ),50分(必考试卷Ⅱ)得分:____________必考试卷Ⅰ(满分100分)一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数-i+1 i =A.-2i B.12i C.0 D.2i2.下列选项叙述错误的是A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”B.若命题p:x∈R,x2+x+1≠0,则綈p:x0∈R,x2+x+1=0C.若p∨q为真命题,则p,q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件3.若商品的年利润y(万元)与年产量x(百万件)的函数关系式:y=-x3+27x+123(x>0),则获得最大利润时的年产量为A.1百万件 B.2百万件 C.3百万件 D.4百万件4.“k>4”是“方程x2k-4+y210-k=1表示焦点在x轴上的双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能为6.在△ABC 的边AB 上随机取一点P ,记△CAP 和△CBP 的面积分别为S 1和S 2,则S 1>2S 2的概率是A.12B.13C.14D.157.执行如图所示的程序框图,会输出一列数,则这个数列的第3项是 A .870 B .30 C .6 D .38.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得的数据,则A ,B 两样本的下列数字特征对应相同的是A .众数B .平均数C .中位数D .标准差9.已知双曲线x 2a 2-y 2b 2的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为A .5x 2-4y 25=1 B.x 25-y 24=1C.y 25-x 24=1 D .5x 2-5y 24=110.设函数f(x)=13x 3-a2x 2+2x +1,若f(x)在区间(-2,-1)内存在单调递减区间,则实数a 的取值范围是A .(22,+∞) B.[22,+∞) C .(-∞,-22) D .(-∞,-22] 答题卡二、填空题:本大题共3个小题,每小题5分,共15分.请把答案填在答题卷对应题号后的横线上.11.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设________________.12.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000](元)月收入段应抽出________人.13.对于定义域为R 的函数f(x),若函数f(x)在()-∞,x 0和()x 0,+∞上均有零点,则称x 0为函数f(x)的一个“给力点”.现给出下列四个函数:①f ()x =3||x -1+12;②f ()x =2+lg ||x -1;③f ()x =x 33-x -1;④f ()x =x 2+ax -1(a∈R).则存在“给力点”的函数是________.(填序号)三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤. 14.(本小题满分11分)已知曲线C 的极坐标方程是ρ-6cos θ+2sin θ+1ρ=0,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴, 建立平面直角坐标系,在平面直角坐标系xOy 中, 直线l 经过点P(3,3),倾斜角α=π3.(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设l与曲线C相交于A,B两点,求|AB|的值.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名小学生进行了问卷调查得到如下列联表:(平均每天喝500 ml以上为常喝,体重超过50 kg为肥胖)已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为4 15 .(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;(3)现从常喝碳酸饮料且肥胖的学生中(其中有2名女生),抽取2人参加竞技运动,则正好抽到一男一女的概率是多少?附参考数据:(参考公式:2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)在直角坐标系xOy 中,直线l :y =t(t≠0)交y 轴于点M ,交抛物线C :y 2=2px(p>0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交抛物线C 于点H.(1)求|OH||ON|;(2)除H 以外,直线MH 与抛物线C 是否有其他公共点?说明理由.必考试卷Ⅱ(满分50分)一、选择题:本大题共1个小题,每小题5分,共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.17.已知函数f(x)=x 2+xsin x +cos x 的图象与直线y =b 有两个不同交点,则b 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,1)D .(1,+∞)二、填空题:本大题共2个小题,每小题5分,共10分.请把答案填在答题卷对应题号后的横线上.18.如图,已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则椭圆C 的离心率为________.19.把正整数排列成如图甲所示三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图乙所示三角形数阵,设a i j 为图乙三角形数阵中第i 行第j 个数,若a mn =2 017,则实数对(m ,n)为____________.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤. 20.(本小题满分10分)设f(x)=a(x -5)2+6ln x ,其中a∈R,曲线y =f(x)在点(1,f(1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f(x)的单调区间与极值.已知椭圆x 2a 2+y2b 2=1(a>b>0)的右焦点为F ,A 为短轴的一个端点且||OA =||OF =2(其中O为坐标原点).(1)求椭圆的方程;(2)若C 、D 分别是椭圆长轴的左、右端点,动点M 满足MD⊥CD,连接CM ,交椭圆于点P ,试问x 轴上是否存在异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,说明理由.已知函数f ()x =12x 2,g ()x =aln x. (1)设h ()x =f ()x +g ()x ,若对任意两个不等的正数x 1,x 2,都有h (x 1)-h (x 2)x 1-x 2>0恒成立,求实数a 的取值范围;(2)若在[]1,e 上存在一点x 0,使得f′()x 0+1f′()x 0<g ()x 0-g ′()x 0成立,求实数a的取值范围.湖南师大附中2016-2017学年度高二第一学期期末考试文科数学参考答案-(这是边文,请据需要手工删加)湖南师大附中2016-2017学年度高二第一学期期末考试文科数学参考答案 必考试卷Ⅰ一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.5.C 【解析】根据f′(x)的符号,f(x)图象应该是先下降后上升,最后下降,排除A 、D ;从适合f′(x)=0的点可以排除B.10.C 【解析】f′(x)=x 2-ax +2,依题意,存在x∈(-2,-1),使不等式g′(x)=x 2-ax +2<0成立,即x∈(-2,-1)时,a<⎝ ⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).二、填空题:本大题共3个小题,每小题5分,共15分.请把答案填在答题卷对应题号后的横线上.11.三角形三个内角都大于60° 12.2513.②④ 【解析】对于①, f ()x =3||x -1+12>0,不存在“给力点”;对于②,取x 0=1,f ()x 在(-1,1)上有零点x =99100,在(1,+∞)上有零点x =101100,所以f ()x 存在“给力点”为1;对于③,f ′(x)=(x +1)(x -1),易知f(x)只有一个零点.对于④,f(x)=x 2+ax -1(a∈R)定义域为R ,因为判别式a 2+4>0,则一定存在“给力点”.综上可得,②④正确.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤. 14.【解析】(1)曲线C 化为:ρ2-6ρcos θ+2ρsin θ+1=0,再化为直角坐标方程为 x 2+y 2-6x +2y +1=0,化为标准方程是(x -3)2+(y +1)2=9, 直线l 的参数方程为⎩⎪⎨⎪⎧x =3+tcos π3y =3+tsin π3.(t 为参数)(5分)(2)将l 的参数方程代入曲线C 的直角坐标方程, 整理得:t 2+43t +7=0,Δ=(43)2-4×7=20>0,则t 1+t 2=-43,t 1·t 2=7,所以|AB|=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2=48-28=2 5.(11分) 15.【解析】(1)设常喝碳酸饮料中肥胖的学生有x 人,由x +230=415,即得x =6.(2分) 补充列联表如下:(5分)(2)由已知数据可求得:2=30(6×18-2×4)210×20×8×22≈8.523>7.879,因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.(8分)(3)设常喝碳酸饮料的肥胖者中男生为A 、B 、C 、D ,女生为E 、F ,则任取两人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种基本事件.设抽中一男一女为事件A ,事件A 含有AE ,AF ,BE ,BF ,CE ,CF, DE ,DF 这8个基本事件.故抽出一男一女的概率是p =815.(12分)16.【解析】(1)由已知得M(0,t),P ⎝ ⎛⎭⎪⎫t 22p ,t .(2分)又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,(3分)所以ON 的方程为y =ptx ,(4分)代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,(5分)因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .(6分)所以N 为OH 的中点,即|OH||ON|=2.(8分) (2)直线MH 与抛物线C 除H 以外没有其他公共点.(9分) 直线MH 的方程为y -t =p2tx ,(10分) 即x =2tp (y -t).代入y 2=2px 得:y 2-4ty +4t 2=0,解得y 1=y 2=2t ,(11分)即直线MH 与抛物线C 只有一个公共点,所以除H 以外直线MH 与抛物线C 没有其他公共点.(12分)必考试卷Ⅱ一、选择题:本大题共1个小题,每小题5分,共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.17.D 【解析】f′(x)=x(2+cos x),令f′(x)=0,得x =0.∴当x>0时,f ′(x)>0,f(x)在(0,+∞)上递增.当x<0时,f ′(x)<0,f(x)在(-∞,0)上递减.∴f(x)的最小值为f(0)=1.∵函数f(x)在区间(-∞,0)和(0,+∞)上均单调,∴当b>1时,曲线y =f(x)与直线y =b 有且仅有两个不同交点.综上可知,b 的取值范围是(1,+∞).二、填空题:本大题共2个小题,每小题5分,共10分.请把答案填在答题卷对应题号后的横线上.18.53【解析】连接PF 1,QO ,显然|OF 1|=|OF 2|,由已知点Q 为线段PF 2的中点,则PF 1∥QO ,故|PF 1|=2b ,又根据椭圆的定义得:|PF 2|=2a -2b ,在直角三角形PF 2F 1中,(2c)2=(2b)2+(2a -2b)2b a =23e =53.19.(45,41) 【解析】分析乙图,可得(1)第k 行有k 个数,则前k 行共有k (k +1)2个数;(2)第k 行最后一个数为k 2;(3)每一行的第一个数字都比上一行的最后一个数字大1;(4)从第二行开始,以下每一行的数,从左到右都是公差为2的等差数列.又442=1 936,452=2 025,则442<2 017<452,则2 017出现在第45行,第45行第1个数是442+1=1 937,这行中第2 017-1 9372+1=41个数为2 017,前44行共有44×452=990个数,则2 017为第990+41=1 031个数,则实数对(m ,n)为(45,41).三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤. 20.【解析】(1)因为f(x)=a(x -5)2+6ln x ,所以f′(x)=2a(x -5)+6x .令x =1,得f(1)=16a ,f ′(1)=6-8a ,所以曲线y =f(x)在点(1,f(1))处的切线方程为y -16a =(6-8a)(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,故a =12.(4分)(2)由(1)知,f(x)=12(x -5)2+6ln x(x>0),f ′(x)=x -5+6x =(x -2)(x -3)x .令f′(x)=0,解得x =2或3.(6分)当0<x<2或x>3时,f ′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数; 当2<x<3时,f ′(x)<0,故f(x)在(2,3)上为减函数.(8分) 由此可知f(x)在x =2处取得极大值f(2)=92+6ln 2,在x =3处取得极小值f(3)=2+6ln 3.综上,f(x)的单调增区间为(0,2),(3,+∞),单调减区间为(2,3),f(x)的极大值为92+6ln 2,极小值为2+6ln 3.(10分)21.【解析】(1)由已知:b =c =2,∴a 2=4,故所求椭圆方程为x 24+y22=1.(4分)(2)由(1)知,C(-2,0),D(2,0),由题意可设CM :y =k(x +2),P(x 1,y 1),M(2,4k), 由⎩⎨⎧x 24+y 22=1y =k (x +2),整理得(1+2k 2)x 2+8k 2x +8k 2-4=0.(6分)方程显然有两个解,由韦达定理:x 1x 2=8k 2-41+2k 2,得x 1=2-4k 21+2k 2,y 1=4k1+2k 2. 所以P ⎝ ⎛⎭⎪⎫2-4k21+2k 2,4k 1+2k 2,设Q(x 0,0),(8分)若存在满足题设的Q 点,则MQ⊥DP,由MQ →·DP →=0, 整理,可得8k 2x 01+2k 2=0恒成立,所以x 0=0.(12分)故存在定点Q(0,0)满足题设要求.22.【解析】(1)h ()x =f ()x +g ()x =12x 2+aln x ,因为对任意两个不等的正数x 1,x 2,都有h (x 1)-h (x 2)x 1-x 2>0,设x 1>x 2,则h(x 1)-h(x 2)>0,问题等价于函数h ()x =f ()x +g ()x =12x 2+aln x 在()0,+∞上为增函数.(2分)所以h′(x)=x +ax ≥0在()0,+∞上恒成立,即a≥-x 2在()0,+∞上恒成立.∵-x 2<0,所以a≥0,即实数a 的取值范围是[0,+∞).(6分) (2)不等式f′()x 0+1f′()x 0<g ()x 0-g′()x 0等价于x 0+1x 0<aln x 0-ax 0,整理得x 0-aln x 0+1+a x 0<0.设m ()x =x -aln x +1+ax,由题意知,在[]1,e 上存在一点x 0,使得m ()x 0<0.(7分) 由m′()x =1-a x -1+a x 2=x 2-ax -(1+a )x 2=(x -1-a )(x +1)x 2.因为x>0,所以x +1>0,即令m′()x =0,得x =1+a. ①当1+a≤1,即a≤0时,m ()x 在[]1,e 上单调递增, 只需m ()1=2+a<0,解得a<-2.(9分)②当1<1+a<e ,即0<a<e -1时,m ()x 在x =1+a 处取最小值. 令m ()1+a =1+a -aln(1+a)+1<0,即a +1+1<aln(a +1),可得a +1+1a<ln(a +1). 考查式子t +1t -1<ln t ,因为1<t<e ,可得左端大于1,而右端小于1,所以不等式不能成立.(11分) ③ 当1+a≥e ,即a≥e -1时,m ()x 在[]1,e 上单调递减, 只需m ()e =e -a +1+a e <0,解得a>e 2+1e -1.综上所述,实数a 的取值范围是()-∞,-2∪⎝⎛⎭⎪⎫e 2+1e -1,+∞.(13分)。
徐州市2016-2017学年高二上期末数学文科

【题文】
已知A (3,1),B (﹣4,0),P 是椭圆19
y 25x 2
2=+上的一点,则PA+PB 的最大值为 . 【答案】
10+
【解析】
【考点】椭圆的简单性质.
【分析】由题意画出图形,可知B 为椭圆的左焦点,A 在椭圆内部,设椭圆右焦点为F ,借助于椭圆定义,把|PA|+|PB|的最大值转化为椭圆上的点到A 的距离与F 距离差的最大值求解.
【解答】解:由椭圆方程,得a 2=25,b 2=9,则c 2=16, ∴B (﹣4,0)是椭圆的左焦点,A (3,1)在椭圆内部,
如图:设椭圆右焦点为F ,由题意定义可得:|PB|+|PF|=2a=10,
则|PB|=10﹣|PF|,
∴|PA|+|PB|=10+(|PA|﹣|PF|).
连接AF 并延长,交椭圆与P ,则此时|PA|﹣|PF|有最大值为|AF|=
∴|PA|+|PB|的最大值为10+
.
故答案为:10+
【标题】江苏省徐州市2016-2017学年高二上学期期末数学试卷(文科)
【结束】。
江苏省徐州市数学高二上学期文数期末考试试卷

江苏省徐州市数学高二上学期文数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2015高三上·广州期末) 如图,已知椭圆C1: +y2=1,双曲线C2: =1(a>0,b >0),若以C1的长轴为直径的圆与C2的一条渐近线交于A、B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A .B . 5C .D .2. (2分) f(x)=x(2016+lnx),若f′(x0)=2017,则x0=()A . e2B . 1C . ln2D . e3. (2分) (2017高二下·菏泽开学考) 已知命题p:∀a∈R,且a>0,a+ ≥2,命题q:∃x0∈R,sinx0+cosx0=,则下列判断正确的是()A . p是假命题B . q是真命题C . (¬q)是真命题D . (¬p)∧q是真命题4. (2分)过抛物线y2=2px(p>0)的焦点作直线交抛物线于两点M(x1,y1),N(x2,y2),若x1+x2=3p,则|MN|的值为()A . 2pB . 4pC . 6pD . 8p5. (2分)(2017·茂名模拟) 过双曲线(a>0,b>0)的右焦点F2(c,0)作圆x2+y2=a2的切线,切点为M,延长F2M交抛物线y2=﹣4cx于点P,其中O为坐标原点,若,则双曲线的离心率为()A .B .C .D .6. (2分) (2017高二上·长春期末) 已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,若,则等于()A . 8B . 6C . 4D . 27. (2分) (2015高三上·巴彦期中) 设p:1<x<2,q:2x>1,则p是q成立的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件8. (2分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=()A . ﹣2B . 0C . 1D . 89. (2分) (2019高二下·大庆月考) 命题;命题,下列命题中为真命题的是()A .B .C .D .10. (2分) (2017高二下·新疆开学考) 设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比 =()A .B .C .D .11. (2分)直线与椭圆相交于A,B两点,该椭圆上点P使的面积等于6,这样的点P共有()A . 1个B . 2个C . 3个D . 4个12. (2分)双曲线的离心率为2,有一个焦点与抛物线的焦点重合,则mn的值为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高二上·友谊期中) 已知抛物线y2=2px(p>0)上一点M(1,m)到其焦点的距离为5,双曲线x2﹣ =1的左顶点为A,若双曲线一条渐近线与直线AM垂直,则实数a=________.14. (1分)(2017·天津) 设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y 轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为________.15. (1分) (2016高二下·长治期中) 直线y=a与函数f(x)=x3﹣3x的图象有相异的三个公共点,则a的取值范围是________16. (1分) (2016高二上·灌云期中) 已知集合A=[2﹣a,2+a],B=[0,5],若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是________.三、解答题 (共6题;共45分)17. (10分) (2018高二下·中山月考) 已知椭圆的方程为,其焦点在轴上,点为椭圆上一点.(1)求该椭圆的标准方程;(2)设动点满足,其中、是椭圆上的点,直线与的斜率之积为,求证:为定值.18. (10分) (2017高二下·池州期末) 设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f (1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.19. (10分) (2019高一下·南充月考) 已知向量,设• .(1)求函数的最小正周期;(2)当时,求函数的最大值及最小值.20. (5分)已知命题P:函数y=loga(1﹣2x)在定义域上单调递增;命题Q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立.若P∨Q是真命题,求实数a的取值范围.21. (5分)(2017·通化模拟) 已知函数f(x)=lnx,g(x)= +bx(a≠0)(Ⅰ)若a=﹣2时,函数h(x)=f(x)﹣g(x)在其定义域内是增函数,求b的取值范围;(Ⅱ)在(Ⅰ)的结论下,设φ(x)=e2x+bex ,x∈[0,ln2],求函数φ(x)的最小值;(Ⅲ)设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.22. (5分) (2019高二下·佛山月考) 如图,已知椭圆的离心率是,一个顶点是.(Ⅰ)求椭圆的方程;(Ⅱ)设,是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、答案:略。
高二上学期数学期末试卷

高二上学期数学期末试卷(文科数学)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,x x e x ∀∈>R ”的否定是( )A .x e R x x <∈∃0,0B .,x x e x ∀∈<RC .,x x e x ∀∈≤RD .x e R x x ≤∈∃0,0.2.设实数和满足约束条件,则的最小值为( )A .B .C .D .3.抛物线22y x =的准线方程为( )A .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的()A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a ya x 的渐近线方程为023=±y x ,则a 的值为() A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述:①点P 关于x 轴的对称点的坐标是(x ,-y ,z )②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z )③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z )其中正确的个数是( ) A .3 B .2 C .1 D .0 7.给定下列四个命题: ①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( ) A .①和② B .②和③ C .③和④ D .②和④ 8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x 9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45 10.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415 B .95 C .6 D .7 x y 1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩23z x y =+26241614二、填空题:本大题共5小题,每小题5分,共25分.11.若圆心在轴上、的圆位于轴左侧,且与直线相切,则圆的方程是 .12.某三棱锥的三视图如图所示,该三棱锥的体积是 。
江苏省徐州市2016-2017学年高二下学期期末数学试卷(文科)Word版含解析

2016-2017学年江苏省徐州市高二(下)期末数学试卷(文科)一、填空题:(本大题共14小题,每小题5分,共70分)1.已知集合A={1,a},B={1,3},若A∪B={1,2,3},则实数A的值为.2.已知复数z=i(3﹣i),其中i是虚数单位,则复数z的实部是..3.计算:sin210°的值为.4.函数y=3x﹣x3的单调递增区间为.5.已知复数z=,其中i是虚数单位,则z的模是.6.不等式4x>2的解集为.7.用反证法证明“a,b∈N*,若ab是偶数,则a,b中至少有一个是偶数”时,应假设.8.已知tabα=2,则tan(α﹣)的值为.9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f (0)的值为.10.已知函数f(x)=+sinx,求f(﹣2)+f(﹣1)+f(0)+f(1)+f(2)的值.11.已知函数f(x)=x2﹣cosx,x∈,则满足f(x0)>f()的x0的取值范围为.12.某种平面分形如图所示,以及分形图是有一点出发的三条线段,二级分形图是在一级分形图的每条线段的末端出发在生成两条线段,…,依次规律得到n级分形图,那么n级分形图中共有条线段.13.已知正实数x,y,z满足x+y+z=1, ++=10,则xyz的最大值为.14.已知函数f(x)=,若函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围为.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.已知α∈(,π),且sin+cos=(1)求sinα的值;(2)求cos(2α+)的值.16.已知函数f(x)=log a(x+1)+log a(3﹣x)(a>0且a≠1),且f(1)=2(1)求a的值及f(x)的定义域;(2)若不等式f(x)≤c的恒成立,求实数c的取值范围.17.已知函数f(x)(sinx+cosx)2+2cos2x﹣2(1)求函数f(x)的最小正周期T;(2)求f(x)的最大值,并指出取得最大值时x取值集合;(3)当x∈[,]时,求函数f(x)的值域.18.如图,在南北方向有一条公路,一半径为100m的圆形广场(圆心为O)与此公路一边所在直线l相切于点A.点P为北半圆弧(弧APB)上的一点,过P作直线l的垂线,垂足为Q.计划在△PAQ内(图中阴影部分)进行绿化.设△PAQ的面积为S(单位:m2).(1)设∠BOP=α(rad),将S表示为α的函数;(2)确定点P的位置,使绿化面积最大,并求出最大面积.19.已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间上任意两个自变量的值x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.20.已知函数f(x)=xlnx﹣x2﹣x+a,a∈R(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1,x2,且x1<x2.(ⅰ)求a的取值范围;(ⅱ)若不等式e1+λ<x1•x恒成立,求正实数λ的取值范围.2016-2017学年江苏省徐州市高二(下)期末数学试卷(文科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分)1.已知集合A={1,a},B={1,3},若A∪B={1,2,3},则实数A的值为 2 .【考点】1D:并集及其运算.【分析】利用并集的性质求解.【解答】解:∵集合A={1,a},B={1,3},若A∪B={1,2,3},∴a=2.故答案为:2.2.已知复数z=i(3﹣i),其中i是虚数单位,则复数z的实部是 1 ..【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘法运算化简得答案.【解答】解:∵z=i(3﹣i)=﹣i2+3i=1+3i,∴复数z的实部是1.故答案为:1.3.计算:sin210°的值为﹣.【考点】GN:诱导公式的作用.【分析】利用诱导公式可得sin210°=sin=﹣sin30°,由此求得结果.【解答】解:sin210°=sin=﹣sin30°=﹣,故答案为﹣.4.函数y=3x﹣x3的单调递增区间为.【考点】6B:利用导数研究函数的单调性.【分析】先求函数导数,令导数大于等于0,解得x的范围就是函数的单调增区间.【解答】解:对函数y=3x﹣x3求导,得,y′=3﹣3x2,令y′≥0,即3﹣3x2≥0,解得,﹣1≤x≤1,∴函数y=3x﹣x3的递增区间为,故答案为:.5.已知复数z=,其中i是虚数单位,则z的模是.【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解答】解:∵z==,∴|z|=.故答案为:.6.不等式4x>2的解集为{x|﹣1<x<3} .【考点】7J:指、对数不等式的解法.【分析】根据指数函数的性质得到一元二次不等式,解出即可.【解答】解:∵4x>2,∴2x>x2﹣3,即x2﹣2x﹣3<0,解得:﹣1<x<3,故答案为:{x|﹣1<x<3}.7.用反证法证明“a,b∈N*,若ab是偶数,则a,b中至少有一个是偶数”时,应假设a,b都不是偶数.【考点】R9:反证法与放缩法.【分析】找出题中的题设,然后根据反证法的定义对其进行否定.【解答】解:∵命题“a•b(a,b∈Z*)为偶数,那么a,b中至少有一个是偶数.”可得题设为,“a•b(a,b∈Z*)为偶数,∴反设的内容是:假设a,b都为奇数(a,b都不是偶数),故答案为:a,b都不是偶数8.已知tab α=2,则tan (α﹣)的值为 .【考点】GR :两角和与差的正切函数. 【分析】直接利用两角差的正确化简求值. 【解答】解:由tan α=2,得tan (α﹣)=.故答案为:.9.已知函数f (x )=Asin (ωx+φ)(A >0,ω>0,0<φ<)的部分图象如图所示,则f (0)的值为.【考点】HK :由y=Asin (ωx+φ)的部分图象确定其解析式. 【分析】由函数f (x )的部分图象,得出A 、T 、ω与φ的值, 写出f (x )的解析式,计算f (0)的值.【解答】解:由函数f (x )=Asin (ωx+φ)的部分图象知,A=2, =﹣(﹣)=,∴T=;又T==,∴ω=;当x=时,f (x )=2,由五点法画图知,ωx+φ=,即×+φ=,解得φ=;∴f (x )=2sin (x+),∴f (0)=2sin =.故答案为:.10.已知函数f (x )=+sinx ,求f (﹣2)+f (﹣1)+f (0)+f (1)+f (2)的值.【考点】3T :函数的值.【分析】根据条件求出函数f (x )+f (﹣x )=2,进行求解即可. 【解答】解:∵f(x)+f(﹣x)=,且f (0)=1,∴f (﹣2)+f (﹣1)+f (0)+f (1)+f (2)=5.11.已知函数f (x )=x 2﹣cosx ,x ∈,则满足f (x 0)>f ()的x 0的取值范围为 .【考点】6B :利用导数研究函数的单调性.【分析】先充分考虑函数f (x )=x 2﹣cosx ,x ∈的性质,为偶函数,其图象关于y 轴对称,故考虑函数区间上的情形,利用导数可得函数在单调递增,再结合f (x 0)>f ()和对称性即可得x 0的取值范围.【解答】解:注意到函数f (x )=x 2﹣cosx ,x ∈是偶函数, 故只需考虑区间上的情形. 当x ∈时,f′(x )=2x+sinx ≥0, ∴函数在单调递增,所以f (x 0)>f ()在上的解集为(,],结合函数是偶函数,图象关于y 轴对称, 得原问题中x 0取值范围是, 故答案为:.12.某种平面分形如图所示,以及分形图是有一点出发的三条线段,二级分形图是在一级分形图的每条线段的末端出发在生成两条线段,…,依次规律得到n级分形图,那么n级分形图中共有3•2n﹣3条线段.【考点】F1:归纳推理.【分析】n级分形图中的线段条数是以3为首项,2为公比的等比数列的和;【解答】解:n级分形图中的线段条数是以3为首项,2为公比的等比数列的和,即=3•2n﹣3;故答案为:3•2n﹣313.已知正实数x,y,z满足x+y+z=1, ++=10,则xyz的最大值为.【考点】RI:平均值不等式.【分析】又条件可得z=1﹣(x+y),设xy=a,x+y=b,则xyz=,设f(b)=,利用导数判断f(b)的单调性,计算极值,根据b的范围得出f(b)的最大值.【解答】解:∵x+y+z=1,∴z=1﹣(x+y),∴,即=10,设xy=a ,x+y=b ,则0<a <1,0<b <1,∴,化简得a=.∴xyz=xy=a (1﹣b )=(1﹣b )•=.令f (b )=,则f′(b )=,令f′(b )=0得﹣20b 3+47b 2﹣36b+9=0,即(4b ﹣3)(5b ﹣3)(1﹣b )=0,解得b=或b=或b=1(舍),∴当0<b <或时,f′(b )>0,当时,f′(b )<0,∴f (b )在(0,)上单调递增,在(,)上单调递减,在(,1)上单调递增,∴当b=时,f (b )取得极大值f ()=.又f (1)=0,∴f (b )的最大值为.故答案为.14.已知函数f (x )=,若函数g (x )=f (x )﹣mx ﹣m 在(﹣1,1]内有且仅有两个不同的零点,则实数m 的取值范围为 (,﹣2]∪(0,] .【考点】52:函数零点的判定定理.【分析】由g (x )=f (x )﹣mx ﹣m=0,即f (x )=m (x+1),作出两个函数的图象,利用数形结合即可得到结论.【解答】解:由g (x )=f (x )﹣mx ﹣m=0,即f (x )=m (x+1), 分别作出函数f (x )和y=h (x )=m (x+1)的图象如图:由图象可知f (1)=1,h (x )表示过定点A (﹣1,0)的直线,当h (x )过(1,1)时,m=,此时两个函数有两个交点,此时满足条件的m 的取值范围是0<m ≤,当h (x )过(0,﹣2)时,h (0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当h (x )与f (x )相切时,两个函数只有一个交点,此时x ﹣3=m (x+1)即m (x+1)2+3(x+1)﹣1=0,当m=0时,只有1解,当m ≠0,由△=9+4m=0得m=﹣,此时直线和f (x )相切,∴要使函数有两个零点,则﹣<m ≤﹣2或0<m ≤.故答案为:(,﹣2]∪(0,].二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.已知α∈(,π),且sin+cos=(1)求sin α的值;(2)求cos (2α+)的值. 【考点】GI :三角函数的化简求值.【分析】(1)由sin +cos=两边平方化简整理即可得sin α的值;(2)由α∈(,π)和sin α的值,即可求出cos α,再由二倍角公式求出sin2α和cos2α,再由两角和的余弦公式计算得答案.【解答】解:(1)∵sin +cos =,∴(sin +cos)2=,即.∴.∴sin α=;(2)∵α∈(,π),sin α=,∴.∴sin2α=2sin αcos α=,.∴cos (2α+)==.16.已知函数f (x )=log a (x+1)+log a (3﹣x )(a >0且a ≠1),且f (1)=2 (1)求a 的值及f (x )的定义域;(2)若不等式f (x )≤c 的恒成立,求实数c 的取值范围. 【考点】4H :对数的运算性质.【分析】(1)由f (1)=log a 2+log a 2=2,解得a=2.可得f (x )=log 2(x+1)+log 2(3﹣x ),由,可得函数f (x )的定义域.(2)由(1)可知:f (x )=log 2(x+1)+log 2(3﹣x )=log 2(x+1)(3﹣x )=,利用二次函数与对数函数的单调性即可得出.【解答】解:(1)∵f (1)=log a 2+log a 2=2,解得a=2. ∴f (x )=log 2(x+1)+log 2(3﹣x ),由,解得﹣1<x <3,可得函数f (x )的定义域为:(﹣1,3).(2)由(1)可知:f(x)=log2(x+1)+log2(3﹣x)=log2(x+1)(3﹣x)==,可知:当x=1时,函数f(x)取得最大值,f(1)=log24=2.由不等式f(x)≤c的恒成立,∴c≥2.∴实数c的取值范围是时,求函数f(x)的值域.【考点】GL:三角函数中的恒等变换应用.【分析】(1)利用二倍角和辅助角公式化简为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期;(2)根据三角函数的性质即可得f(x)的最大值,以及取得最大值时x取值集合;(3)当x∈[,]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值,即得到f(x)的值域.【解答】解:函数f(x)=(sinx+cosx)2+2cos2x﹣2化简可得:f(x)=1+2sinxcosx+1+cos2x﹣2=sin2x+cos2x=sin(2x+)(1)函数f(x)的最小正周期T=.(2)令2x+=,k∈Z,得:x=.∴当x=时,f(x)取得最大值为.∴取得最大值时x取值集合为{x|x=,k∈Z}.(3)当x∈[,]时,可得:2x+∈[,],∴﹣1≤sin(2x+)≤∴≤sin(2x+)≤1.故得当x∈[,]时,函数f(x)的值域为[,1].18.如图,在南北方向有一条公路,一半径为100m的圆形广场(圆心为O)与此公路一边所在直线l 相切于点A .点P 为北半圆弧(弧APB )上的一点,过P 作直线l 的垂线,垂足为Q .计划在△PAQ 内(图中阴影部分)进行绿化.设△PAQ 的面积为S (单位:m 2). (1)设∠BOP=α(rad ),将S 表示为α的函数;(2)确定点P 的位置,使绿化面积最大,并求出最大面积.【考点】HN :在实际问题中建立三角函数模型;6E :利用导数求闭区间上函数的最值. 【分析】(1)若∠BOP=α,则P 点坐标(x ,y )中,x=AQ=100sin α,y=PQ=100+100cos α,α∈(0,π),根据三角形面积公式,我们易将S 表示为α的函数.(2)由(1)中结论,我们可利用导数法,判断函数的单调性,进而求出函数的最大值,即最大绿化面积.【解答】解:(1)AQ=100sin α,PQ=100+100cos α,α∈(0,π), 则△PAQ的面积=5000(sin α+sin αcos α),(0<α<π). (2)S /=5000(cos α+cos 2α﹣sin 2α) =5000(2cos 2α+cos α﹣1) =5000(2cos α﹣1)(cos α+1),令,cos α=﹣1(舍去),此时.当关于α为增函数;当关于α为减函数.∴当时,(m2),此时PQ=150m.答:当点P距公路边界l为150m时,绿化面积最大,19.已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间上任意两个自变量的值x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.【考点】6D:利用导数研究函数的极值;36:函数解析式的求解及常用方法;6H:利用导数研究曲线上某点切线方程.【分析】(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可;(2)由题意,对于定义域内任意自变量都使得|f(x1)﹣f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解;(3)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解.【解答】解:(1)f'(x)=3ax2+2bx﹣3.根据题意,得即解得所以f(x)=x3﹣3x.(2)令f'(x)=0,即3x2﹣3=0.得x=±1.当x∈(﹣∞,﹣1)时,f′(x)>0,函数f(x)在此区间单调递增;当x∈(﹣1,1)时,f′(x)<0,函数f(x)在此区间单调递减因为f(﹣1)=2,f(1)=﹣2,所以当x∈时,f(x)max=2,f(x)min=﹣2.则对于区间上任意两个自变量的值x1,x2,都有|f(x1)﹣f(x2)|≤|f(x)max﹣f(x)min|=4,所以c≥4.所以c的最小值为4.(3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x0,y0).则y0=x03﹣3x0.因为f'(x0)=3x02﹣3,所以切线的斜率为3x02﹣3.则3x02﹣3=,即2x03﹣6x02+6+m=0.因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,所以方程2x03﹣6x02+6+m=0有三个不同的实数解.所以函数g(x)=2x3﹣6x2+6+m有三个不同的零点.则g'(x)=6x2﹣12x.令g'(x)=0,则x=0或x=2.当x∈(﹣∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减;所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足:,即,解得﹣6<m<2.20.已知函数f(x)=xlnx﹣x2﹣x+a,a∈R(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1,x2,且x1<x2.(ⅰ)求a的取值范围;(ⅱ)若不等式e1+λ<x1•x恒成立,求正实数λ的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)求出f(x)的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值即可;(2)(i)由导数与极值的关系知可转化为方程f′(x)=lnx﹣ax=0在(0,+∞)有两个不同根;再转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,或转化为函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点;或转化为g(x)=lnx ﹣ax有两个不同零点,从而讨论求解;(ii)e1+λ<x1•x2λ可化为1+λ<lnx1+λlnx2,结合方程的根知1+λ<ax1+λax2=a(x1+λx2),从而可得a>;而a=,从而可得ln<恒成立;再令t=,t∈(0,1),从而可得不等式lnt<在t∈(0,1)上恒成立,再令h(t)=lnt﹣,从而利用导数化恒成立问题为最值问题即可.【解答】解:(1)a=0时,f(x)=xlnx﹣x,函数的定义域是(0,+∞),f(x)=lnx,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,故函数在(0,1)递减,在(1,+∞)递增,故函数的极小值是f(1)=﹣1;(2)(i)由题意知,函数f(x)的定义域为(0,+∞),方程f′(x)=0在(0,+∞)有两个不同根;即方程lnx﹣ax=0在(0,+∞)有两个不同根;(解法一)转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如右图.可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),故k=y′|x=x0=,又k=,故=,解得,x0=e,故k=,故0<a<.(解法二)转化为函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点又g′(x)=,即0<x<e时,g′(x)>0,x>e时,g′(x)<0,故g(x)在(0,e)上单调增,在(e,+∞)上单调减.故g(x)极大=g(e)=;又g(x)有且只有一个零点是1,且在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→0,故g(x)的草图如右图,可见,要想函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点,只须0<a<.(解法三)令g(x)=lnx﹣ax,从而转化为函数g(x)有两个不同零点,而g′(x)=﹣ax=(x>0),若a≤0,可见g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)单调增,此时g(x)不可能有两个不同零点.若a>0,在0<x<时,g′(x)>0,在x>时,g′(x)<0,所以g(x)在(0,)上单调增,在(,+∞)上单调减,从而g(x)极大值=g()=ln﹣1,又因为在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→﹣∞,于是只须:g(x)极大>0,即ln﹣1>0,所以0<a<.综上所述,0<a<.(ii)因为e1+λ<x1•x2λ等价于1+λ<lnx1+λlnx2.由(i)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于a>,又由lnx1=ax1,lnx2=ax2作差得,ln =a(x1﹣x2),即a=,所以原式等价于>,因为0<x1<x2,原式恒成立,即ln<恒成立,令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,又h′(t)=,当λ2≥1时,可见t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1•x2λ恒成立,只须λ2≥1,又λ>0,所以λ≥1.2017年8月7日。
2016-2017学年江苏省徐州市高二(下)期末数学试卷(文科)(解析版)
2016-2017学年江苏省徐州市高二(下)期末数学试卷(文科)一、填空题:(本大题共14小题,每小题5分,共70分)1.(5分)已知集合A={1,a},B={1,3},若A∪B={1,2,3},则实数A的值为.2.(5分)已知复数z=i(3﹣i),其中i是虚数单位,则复数z的实部是..3.(5分)计算:sin210°的值为.4.(5分)函数y=3x﹣x3的单调递增区间为.5.(5分)已知复数z=,其中i是虚数单位,则z的模是.6.(5分)不等式4x>的解集为.7.(5分)用反证法证明“a,b∈N*,若ab是偶数,则a,b中至少有一个是偶数”时,应假设.8.(5分)已知tabα=2,则tan(α﹣)的值为.9.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(0)的值为.10.(5分)已知函数f(x)=+sin x,求f(﹣2)+f(﹣1)+f(0)+f(1)+f(2)的值.11.(5分)已知函数f(x)=x2﹣cos x,x∈[﹣,],则满足f(x0)>f()的x0的取值范围为.12.(5分)某种平面分形如图所示,以及分形图是有一点出发的三条线段,二级分形图是在一级分形图的每条线段的末端出发在生成两条线段,…,依次规律得到n级分形图,那么n级分形图中共有条线段.13.(5分)已知正实数x,y,z满足x+y+z=1,++=10,则xyz的最大值为.14.(5分)已知函数f(x)=,若函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围为.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.(14分)已知α∈(,π),且sin+cos=(1)求sinα的值;(2)求cos(2α+)的值.16.(14分)已知函数f(x)=log a(x+1)+log a(3﹣x)(a>0且a≠1),且f(1)=2(1)求a的值及f(x)的定义域;(2)若不等式f(x)≤c的恒成立,求实数c的取值范围.17.(14分)已知函数f(x)(sin x+cos x)2+2cos2x﹣2(1)求函数f(x)的最小正周期T;(2)求f(x)的最大值,并指出取得最大值时x取值集合;(3)当x∈[,]时,求函数f(x)的值域.18.(16分)如图,在南北方向有一条公路,一半径为100m的圆形广场(圆心为O)与此公路一边所在直线l相切于点A.点P为北半圆弧(弧APB)上的一点,过P作直线l 的垂线,垂足为Q.计划在△P AQ内(图中阴影部分)进行绿化.设△P AQ的面积为S (单位:m2).(1)设∠BOP=α(rad),将S表示为α的函数;(2)确定点P的位置,使绿化面积最大,并求出最大面积.19.(16分)已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间[﹣2,2]上任意两个自变量的值x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.20.(16分)已知函数f(x)=xlnx﹣x2﹣x+a,a∈R(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1,x2,且x1<x2.(ⅰ)求a的取值范围;(ⅱ)若不等式e1+λ<x1•恒成立,求正实数λ的取值范围.2016-2017学年江苏省徐州市高二(下)期末数学试卷(文科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分)1.【解答】解:∵集合A={1,a},B={1,3},若A∪B={1,2,3},∴a=2.故答案为:2.2.【解答】解:∵z=i(3﹣i)=﹣i2+3i=1+3i,∴复数z的实部是1.故答案为:1.3.【解答】解:sin210°=sin(180°+30°)=﹣sin30°=﹣,故答案为﹣.4.【解答】解:对函数y=3x﹣x3求导,得,y′=3﹣3x2,令y′≥0,即3﹣3x2≥0,解得,﹣1≤x≤1,∴函数y=3x﹣x3的递增区间为[﹣1,1],故答案为:[﹣1,1].5.【解答】解:∵z==,∴|z|=.故答案为:.6.【解答】解:∵4x>,∴2x>x2﹣3,即x2﹣2x﹣3<0,解得:﹣1<x<3,故答案为:{x|﹣1<x<3}.7.【解答】解:∵命题“a•b(a,b∈Z*)为偶数,那么a,b中至少有一个是偶数.”可得题设为,“a•b(a,b∈Z*)为偶数,∴反设的内容是:假设a,b都为奇数(a,b都不是偶数),故答案为:a,b都不是偶数8.【解答】解:由tanα=2,得tan(α﹣)=.故答案为:.9.【解答】解:由函数f(x)=A sin(ωx+φ)的部分图象知,A=2,=﹣(﹣)=,∴T=;又T==,∴ω=;当x=时,f(x)=2,由五点法画图知,ωx+φ=,即×+φ=,解得φ=;∴f(x)=2sin(x+),∴f(0)=2sin=.故答案为:.10.【解答】解:∵f(x)+f(﹣x)=,且f(0)=1,∴f(﹣2)+f(﹣1)+f(0)+f(1)+f(2)=5.11.【解答】解:注意到函数f(x)=x2﹣cos x,x∈[﹣,]是偶函数,故只需考虑[0,]区间上的情形.当x∈[0,]时,f′(x)=2x+sin x≥0,∴函数在[0,]单调递增,所以f(x0)>f()在[0,]上的解集为(,],结合函数是偶函数,图象关于y轴对称,得原问题中x0取值范围是[﹣,﹣)∪(,],故答案为:[﹣,﹣)∪(,].12.【解答】解:n级分形图中的线段条数是以3为首项,2为公比的等比数列的和,即=3•2n﹣3;故答案为:3•2n﹣313.【解答】解:∵x+y+z=1,∴z=1﹣(x+y),∴,即=10,设xy=a,x+y=b,则0<a<1,0<b<1,∴,化简得a=.∴xyz=xy[1﹣(x+y)]=a(1﹣b)=(1﹣b)•=.令f(b)=,则f′(b)=,令f′(b)=0得﹣20b3+47b2﹣36b+9=0,即(4b﹣3)(5b﹣3)(1﹣b)=0,解得b=或b=或b=1(舍),∴当0<b<或时,f′(b)>0,当时,f′(b)<0,∴f(b)在(0,)上单调递增,在(,)上单调递减,在(,1)上单调递增,∴当b=时,f(b)取得极大值f()=.又f(1)=0,∴f(b)的最大值为.故答案为.14.【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:由图象可知f(1)=1,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,1)时,m=,此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当h(x)与f(x)相切时,两个函数只有一个交点,此时x﹣3=m(x+1)即m(x+1)2+3(x+1)﹣1=0,当m=0时,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤.故答案为:(,﹣2]∪(0,].二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.【解答】解:(1)∵sin+cos=,∴(sin+cos)2=,即.∴.∴sinα=;(2)∵α∈(,π),sinα=,∴.∴sin2α=2sinαcosα=,.∴cos(2α+)==.16.【解答】解:(1)∵f(1)=log a2+log a2=2,解得a=2.∴f(x)=log2(x+1)+log2(3﹣x),由,解得﹣1<x<3,可得函数f(x)的定义域为:(﹣1,3).(2)由(1)可知:f(x)=log2(x+1)+log2(3﹣x)=log2(x+1)(3﹣x)==,可知:当x=1时,函数f(x)取得最大值,f(1)=log24=2.由不等式f(x)≤c的恒成立,∴c≥2.∴实数c的取值范围是[2,+∞).17.【解答】解:函数f(x)=(sin x+cos x)2+2cos2x﹣2化简可得:f(x)=1+2sin x cos x+1+cos2x﹣2=sin2x+cos2x=sin(2x+)(1)函数f(x)的最小正周期T=.(2)令2x+=,k∈Z,得:x=.∴当x=时,f(x)取得最大值为.∴取得最大值时x取值集合为{x|x=,k∈Z}.(3)当x∈[,]时,可得:2x+∈[,],∴﹣1≤sin(2x+)≤∴≤sin(2x+)≤1.故得当x∈[,]时,函数f(x)的值域为[,1].18.【解答】解:(1)AQ=100sinα,PQ=100+100cosα,α∈(0,π),则△P AQ的面积=5000(sinα+sinαcosα),(0<α<π).(2)S′=5000(cosα+cos2α﹣sin2α)=5000(2cos2α+cosα﹣1)=5000(2cosα﹣1)(cosα+1),令,cosα=﹣1(舍去),此时.当关于α为增函数;当关于α为减函数.∴当时,(m2),此时PQ=150m.答:当点P距公路边界l为150m时,绿化面积最大,.19.【解答】解:(1)f'(x)=3ax2+2bx﹣3.(2分)根据题意,得即解得所以f(x)=x3﹣3x.(2)令f'(x)=0,即3x2﹣3=0.得x=±1.当x∈(﹣∞,﹣1)时,f′(x)>0,函数f(x)在此区间单调递增;当x∈(﹣1,1)时,f′(x)<0,函数f(x)在此区间单调递减因为f(﹣1)=2,f(1)=﹣2,所以当x∈[﹣2,2]时,f(x)max=2,f(x)min=﹣2.则对于区间[﹣2,2]上任意两个自变量的值x1,x2,都有|f(x1)﹣f(x2)|≤|f(x)max﹣f(x)min|=4,所以c≥4.所以c的最小值为4.(3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x0,y0).则y0=x03﹣3x0.因为f'(x0)=3x02﹣3,所以切线的斜率为3x02﹣3.则3x02﹣3=,即2x03﹣6x02+6+m=0.因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,所以方程2x03﹣6x02+6+m=0有三个不同的实数解.所以函数g(x)=2x3﹣6x2+6+m有三个不同的零点.则g'(x)=6x2﹣12x.令g'(x)=0,则x=0或x=2.当x∈(﹣∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减;所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足:,即,解得﹣6<m<2.20.【解答】解:(1)a=0时,f(x)=xlnx﹣x,函数的定义域是(0,+∞),f(x)=lnx,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,故函数在(0,1)递减,在(1,+∞)递增,故函数的极小值是f(1)=﹣1;(2)(i)由题意知,函数f(x)的定义域为(0,+∞),方程f′(x)=0在(0,+∞)有两个不同根;即方程lnx﹣ax=0在(0,+∞)有两个不同根;(解法一)转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如右图.可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),故k=y′|x=x0=,又k=,故=,解得,x0=e,故k=,故0<a<.(解法二)转化为函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点又g′(x)=,即0<x<e时,g′(x)>0,x>e时,g′(x)<0,故g(x)在(0,e)上单调增,在(e,+∞)上单调减.故g(x)极大=g(e)=;又g(x)有且只有一个零点是1,且在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→0,故g(x)的草图如右图,可见,要想函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点,只须0<a<.(解法三)令g(x)=lnx﹣ax,从而转化为函数g(x)有两个不同零点,而g′(x)=﹣ax=(x>0),若a≤0,可见g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)单调增,此时g(x)不可能有两个不同零点.若a>0,在0<x<时,g′(x)>0,在x>时,g′(x)<0,所以g(x)在(0,)上单调增,在(,+∞)上单调减,从而g(x)极大值=g()=ln﹣1,又因为在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→﹣∞,于是只须:g(x)极大>0,即ln﹣1>0,所以0<a<.综上所述,0<a<.(ii)因为e1+λ<x1•x2λ等价于1+λ<lnx1+λlnx2.由(i)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于a>,又由lnx1=ax1,lnx2=ax2作差得,ln=a(x1﹣x2),即a=,所以原式等价于>,因为0<x1<x2,原式恒成立,即ln<恒成立,令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,又h′(t)=,当λ2≥1时,可见t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1•x2λ恒成立,只须λ2≥1,又λ>0,所以λ≥1.。
江苏省徐州市2015-2016学年高二(上)期末数学试卷(文科)(精品版) - 副本
2015-2016学年江苏省徐州市高二(上)期末数学试卷(文科)一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是.2.命题“∃x∈R,x2≤0”的否定为.3.底面边长为2,高为3的正三棱锥的体积为.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为.6.已知函数f(x)=xsinx,则f′(π)=.7.双曲线﹣=1的焦点到渐近线的距离为.8.“m<”是“方程+=1表示在y轴上的椭圆”的条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为.11.已知F为椭圆C:+=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为.13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为.14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值范围为.二、解答题:本大题共6小题,共计90分.15.已知p:4x2+12x﹣7≤0,q:a﹣3≤x≤a+3.(1)当a=0时,若p真q假,求实数x的取值范围;(2)若p是q的充分条件,求实数a的取值范围.16.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.17.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,求实数a的值;(2)若弦AB的长为4,求实数a的值;(3)求直线l的方程及实数a的取值范围.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?19.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值范围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.2015-2016学年江苏省徐州市高二(上)期末数学试卷(文科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是(3,0).【考点】抛物线的简单性质.【分析】确定抛物线的焦点位置,进而可确定抛物线的焦点坐标.【解答】解:抛物线y2=12x的焦点在x轴上,且p=6,∴=3,∴抛物线y2=12x的焦点坐标为(3,0).故答案为:(3,0).2.命题“∃x∈R,x2≤0”的否定为∀x∈R,x2>0.【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x∈R,x2≤0”的否定为:∀x∈R,x2>0.故答案为:∀x∈R,x2>0.3.底面边长为2,高为3的正三棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】求出正三棱锥的底面面积,然后求解体积.【解答】解:底面边长为2,高为3的正三棱锥的体积为:=.故答案为:.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为18.【考点】椭圆的简单性质.【分析】由题意知a=5,b=3,c=4,从而可得|PF1|+|PF2|=2a=10,|F1F2|=2c=8.【解答】解:由题意作图如右图,∵椭圆的标准方程为+=1,∴a=5,b=3,c=4,∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为10+8=18;故答案为:18.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为16π.【考点】球内接多面体;球的体积和表面积.【分析】由已知求出正方体的棱长为4,所以正方体的内切球的半径为2,由球的表面积公式得到所求.【解答】解:因为正方体的体积为64,所以棱长为4,所以正方体的内切球的半径为2,所以该正方体的内切球的表面积为4π•22=16π.故答案为:16π.6.已知函数f(x)=xsinx,则f′(π)=﹣π.【考点】导数的运算.【分析】直接求出函数的导数即可.【解答】解:函数f(x)=xsinx,则f′(x)=sinx+xcosx,f′(π)=sinπ+πcosπ=﹣π.故答案为:﹣π.7.双曲线﹣=1的焦点到渐近线的距离为2.【考点】双曲线的简单性质.【分析】求出双曲线的焦点坐标,渐近线方程,利用距离公式求解即可.【解答】解:双曲线﹣=1的一个焦点(,0),一条渐近线方程为:y=,双曲线﹣=1的焦点到渐近线的距离为:=2.故答案为:2.8.“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的定义,求出m的范围,结合集合的包含关系判断充分必要性即可.【解答】解:若“方程+=1表示在y轴上的椭圆”,则,解得:1<m<,故“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件,故答案为:必要不充分.9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为﹣1或4.【考点】圆的切线方程.【分析】把圆的方程化为标准方程后,找出圆心坐标和圆的半径,然后根据直线与圆相切得到圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y+)2=,所以圆心坐标为(1,﹣),半径r=||,由已知直线与圆相切,得到圆心到直线的距离d==r=||,解得a=﹣1或4.故答案为:﹣1或4.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为e.【考点】变化的快慢与变化率.【分析】根据导数和函数单调性的关系,再分离参数,求出最值即可.【解答】解:f′(x)=e x﹣a∵函数f(x)在区间(1,+∞)上单调递增⇔函数f′(x)=e x﹣a≥0在区间(1,+∞)上恒成立,∴a≤[e x]min在区间(1,+∞)上成立.而e x>e,∴a≤e.故答案为:e.11.已知F为椭圆C:+=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】利用线段垂直平分线的性质可得线段BF的垂直平分线的方程,进而得出.【解答】解:由已知可得:A(﹣a,0),B(0,b),F(c,0),线段BF的中点M,k BF=,可得线段BF的垂直平分线的斜率为.∴线段BF的垂直平分线的方程为:y﹣=,∵BF的垂直平分线恰好过点A,∴0﹣=,化为:2e2+2e﹣1=0,解得e=.故答案为:.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1),(﹣1,﹣1).【考点】利用导数研究曲线上某点切线方程.【分析】利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程解得即可.【解答】解:设切点P(m,m3),由y=x3的导数为y′=3x2,可得切线的斜率为k=3m2,由切线与直线y=3x+2平行,可得3m2=3,解得m=±1,可得P(1,1),(﹣1,﹣1).故答案为:(1,1),(﹣1,﹣1).13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为(﹣,﹣)∪(0,2).【考点】圆的标准方程.【分析】由已知得圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,由此能求出实数m的取值范围.【解答】解:圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,∴圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,圆C的圆心C(m+1,2m),半径r1=2,圆O的圆心O(0,0),半径r2=3,圆心距离|OC|==,∴3﹣2<<3+2,解得﹣<m<﹣或0<m<2.∴实数m的取值范围为(﹣,﹣)∪(0,2).故答案为:(﹣,﹣)∪(0,2).14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值范围为a≥.【考点】导数在最大值、最小值问题中的应用;函数与方程的综合运用.【分析】求导数,确定函数的单调性,即可求函数f(x)的值域;g(x)∈(0,e],分类讨论,研究f(x)的单调性,即可求a的取值范围.【解答】解:g′(x)=,令=0,解得x=1,∵e x>0,∴x∈(0,1)时,g′(x)>0;x∈(1,e]时,g′(x)<0,g(x)在(0,1]上单调递增,在(1,e]单调单调递减,根据极大值的定义知:g(x)极大值是g(1)=1,又g(0)=0,g(e)=,所以g(x)的值域是(0,1].函数f(x)=a(x﹣1)2﹣lnx,x>0,f′(x)=2ax﹣2a﹣=,令h(x)=2ax2﹣2ax﹣1,h(x)恒过(0,﹣1),当a=0时,f′(x)<0,f(x)是减函数,不满足题意.h(x)=0,可得2ax2﹣2ax﹣1=0,△=4a2+8a,△>0解得a<﹣2或a>0.当﹣2<a<0时,h(x)的对称轴为:x=,h(x)<0恒成立,f′(x)<0,f(x)是减函数,不满足题意.当a<﹣2时,x∈(0,),h(x)<0恒成立,f′(x)<0,f(x)是减函数,x∈,f′(x)>0,f(x)是增函数,x∈,f′(x)<0,f(x)是减函数,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).可知f (x )极大值≥1,f (x )极小值≤0.可得,,∵f (x )=a (x ﹣1)2﹣lnx ,,不等式不成立.当a >0时,x ∈(0,),h (x )<0恒成立,f ′(x )<0,f (x )是减函数,x ∈,f ′(x )>0,f (x )是增函数,因为x=1时,f (1)=0,只需f (e )≥1.可得:a (e ﹣1)2﹣1≥1, 解得a ≥.综上:实数a 的取值范围为:a ≥.二、解答题:本大题共6小题,共计90分. 15.已知p :4x 2+12x ﹣7≤0,q :a ﹣3≤x ≤a+3.(1)当a=0时,若p 真q 假,求实数x 的取值范围; (2)若p 是q 的充分条件,求实数a 的取值范围.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】(1)将a=0代入q ,求出x 的范围即可;(2)根据集合的包含关系得到关于a 的不等式组,解出即可.【解答】解:由4x 2+12x ﹣7≤0,解得:﹣≤x ≤,q :a ﹣3≤x ≤a+3. (1)当a=0时,q :﹣3≤x ≤3,若p真q假,则﹣≤x<﹣3;(2)若p是q的充分条件,则,解得:﹣≤x≤﹣,(“=”不同时取到).16.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.【考点】直线与平面平行的判定.【分析】(1)连接AC,交BD与点O,连接OM,先证明出MO∥PA,进而根据线面平行的判定定理证明出PA∥平面MDB.(2)先证明出BC⊥平面PCD,进而根据线面垂直的性质证明出BC⊥PD.【解答】证明:(1)连接AC,交BD与点O,连接OM,∵M为PC的中点,O为AC的中点,∴MO∥PA,∵MO⊂平面MDB,PA⊄平面MDB,∴PA∥平面MDB.(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PCD,∵PD⊂平面PCD,∴BC⊥PD.17.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,求实数a的值;(2)若弦AB的长为4,求实数a的值;(3)求直线l的方程及实数a的取值范围.【考点】直线与圆的位置关系.【分析】(1)利用配方法得到圆的标准方程,根据圆C的半径为,求实数a的值;(2)求出直线l的方程,求出圆心到直线的距离,根据弦AB的长为4,求实数a的值;(3)点与圆的位置关系即可求出a的取值范围.【解答】解:(1)圆的标准方程为(x+1)2+(y﹣2)2=5﹣a,则圆心C(﹣1,2),半径r=,∵圆C的半径为,∴=,∴a=2;(2)∵弦的中点为M(0,1).∴直线CM的斜率k=﹣1,则直线l的斜率k=1,则直线l的方程为y﹣1=x,即x﹣y+1=0.圆心C到直线x﹣y+1=0的距离d==,若弦AB的长为4,则2+4=5﹣a=6,解得a=﹣1;(3)由(2)可得直线l的方程为x﹣y+1=0.∵弦AB的中点为M(0,1).∴点M在圆内部,即<,∴5﹣a>2,即a<3.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?【考点】基本不等式在最值问题中的应用.【分析】(1)求出纸箱的侧面积S,利用基本不等式,求最大值;(2)求出纸箱的容积V,利用导数,求最大值.【解答】解:(1)S=2x(50﹣2x+80﹣2x)=2x≤•=,当且仅当4x=130﹣4x,即x=cm,纸箱的侧面积S(cm2)最大;(2)V=x(50﹣2x)(80﹣2x)(0<x<12.5),V′=(50﹣2x)(80﹣2x)﹣2x(80﹣2x)﹣2x(50﹣2x)=4(3x﹣100)(x﹣10),∴0<x<10,V′>0,10<x<12.5,V′<0,∴x=10cm时,V最大.19.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率公式及菱形的面积公式求得a和b的值,可求得椭圆的方程;(2)利用椭圆方程及直线AM,AN的方程求得x M、x N、x P及x Q的值根据三角形面积公式求得k的值,求得直线方程.【解答】解:(1)由题意可知:e===,且2ab=4,且a2﹣b2=c2,解得a=2,b=,∴椭圆的标准方程:,(2)由(1)可知,A(0,﹣),则直线AM的方程为y=kx﹣,将直线方程代入椭圆方程得:消去并整理得:(3+4k2)x2﹣8kx=0,解得x M=,直线AN的方程y=﹣﹣,同理可得:x N=﹣,解得x P=k,同理可得x Q=﹣,∴==丨丨==,即3k4﹣10k2+3=0,解得k2=3或k2=,所以=或﹣,故存在直线l:y=x,y=﹣x,满足题意.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值范围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.【考点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,对x分类讨论即可得出函数f(x)的单调性极值.(2)f(x)≤2x化为:a≥﹣2=g(x),利用导数研究函数g(x)的单调性极值最值即可得出.(3)h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.利用导数研究函数u(m)的单调性即可得出.【解答】(1)解:a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,∴0<x<1时,函数f(x)单调递增;1<x时,函数f(x)单调递减.因此x=1时函数f(x)取得极大值,f(1)=0.(2)解:f(x)≤2x化为:a≥﹣2=g(x),g′(x)=,可知:x∈(0,1)时,g′(x)>0,函数g(x)单调递增;x∈(1,+∞)时,g′(x)<0,函数g(x)单调递减.∴x=1时函数g(x)取得极大值即最大值,g(1)=1﹣2=﹣1.∴a≥﹣1,∴a的取值范围是[﹣1,+∞).(3)证明:h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.u′(m)=1+﹣==>0,因此函数u(m)在m∈(1,+∞)上单调递增,∴u(m)>u(1)=0,∴>恒成立.2016年7月21日。
江苏省徐州市高二数学上学期期末考试试题 文
2012--2013学年度第一学期期末抽测高二数学试题(文科)参考公式:球的表面积为24R S π=,其中R 表示球的半径. 锥体的体积Sh V 31=,其中S 为底面积,h 为高. 一、填空题:本大题共14小题。
每小题5分。
共计70分.请把答案填写在答题纸相应位置上1.命题“∈∀x R ,32+-x x ≥0”的否定是 . 2.直线03=+-y x 的倾斜角为 . 3.抛物线x y 42=的焦点坐标是 .4.双曲线19422=-y x 的渐近线方程是 . 5.已知球O 的半径为3,则球O 的表面积为 .6.若一个正三棱锥的高为5,底面边长为6,则这个正三棱锥的体积为 . 7.函数2)(x x f =在点(1,)1(f )处的切线方程为 .8.若直线022=+-y ax 与直线01)3(=+-+y a x 平行,则实数a 的值等于 .9.已知圆m y x =+22与圆0118622=--++y x y x 相内切,则实数m 的值为 .10.已知直线013=++y x 和圆03222=--+x y x 相交于A ,B 两点,则线段AB 的垂直平分线的方程是 。
11.已知两条直线0411=++y b x a 和0422=++y b x a 都过点A (2,3),则过两点),(111b a P ,),(222b a P 的直线的方程为 .12.已知1F 是椭圆192522=+y x 的左焦点,P 是椭圆上的动点,)1,1(A 是一定点,则1PF PA +的最大值为 .13.如图,已知c AB 2=(常数0>c ),以AB 为直径的圆有一内接梯形ABCD ,且CD AB //,若椭圆以A ,B 为焦点,且过C ,D 两点,则当梯形ABCD 的周长最大时,椭圆的离心率为 . 14.设函数xx f 1)(=, bx ax x g +=2)(,若)(x f y =的图象与)(x g y =的图象有且仅有两个不同的公共点,则当)1,0(∈b 时,实数a 的取值范围为 . 二、解答题:本大题共6小题,共计90分.请在答题纸制定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在正方体1111D C B A ABCD -中,E ,F 分别为棱AD ,AB 的中点. (1)求证:EF ∥平面11D CB ; (2)求证:平面11C CAA ⊥平面11D CB .16.(本小题满分l4分)已知圆C 经过三点)0,0(O ,)3,1(A ,)0,4(B . (1)求圆C 的方程;(2)求过点)6,3(P 且被圆C 截得弦长为4的直线的方程. 17.(本小题满分14分)已知0>m ,命题)3)(2(-+x x p :≤0,命题 m q -1:≤x ≤m +1. (1)若q ⌝ 是p ⌝的必要条件,求实数m 的取值范围;(2)若7=m ,“p 或q ”为真命题,“p 且q ”为假命题,求实数m 的取值范围.18.(本小题满分l6分)现有一张长80厘米、宽60厘米的长方形ABCD 铁皮,准备用它做成一只无盖长方体铁皮盒, 要求材料利用率为l00%,不考虑焊接处损失.方案一:如图(1),从右侧两个角上剪下两个小正方形,焊接到左侧中闻,沿虚线折起,求此时铁皮盒的体积;方案二:如图(2),若从长方形ABCD 的一个角上剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,求该铁皮盒体积的最大值,并说明如何剪拼? 。
高二数学上学期期末试卷(文科含解析)
高二数学上学期期末试卷(文科含解析)单元练习题是所有考生最大的需求点,只有这样才能保证答题的准确率和效率,以下是店铺为您整理的关于高二数学上学期期末试卷(文科含解析)的相关资料,供您阅读。
高二数学上学期期末试卷(文科含解析)数学试卷(文科)一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.f(x)=x3﹣3x2+2在区间上的最大值是.15.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= .16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥A B.20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 (a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:(0, ).故选D.8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵f(x)=e x﹣mx,∴f′(x)=ex﹣m∵函数f(x)=ex﹣mx在(0,+∞)上是增函数∴ex﹣m≥0在(0,+∞)上恒成立∴m≤ex在(0,+∞)上恒成立∴m≤1∴命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题∵m≤1时,f′(x)=ex﹣m≥0在(0,+∞)上不恒成立,即函数f(x)=ex﹣mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过P(x0,f(x0))的切线的倾斜角的取值范围是,∴f′(x0)=2ax0+b∈,∴P到曲线y=f(x)对称轴x=﹣的距离d=x0﹣(﹣ )=x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1∴ , .而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取00.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x 的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.f(x)=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣10;当0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为215.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= ﹣1 .【考点】导数的运算.【分析】先求出f′(1)的值,代入解析式计算即可.【解答】解:∵f(x)=lnx﹣f′(1)x2+5x﹣4,∴f′(x)= ﹣2f′(1)x+5,∴f′(1)=6﹣2f′(1),解得f′(1)=2.∴f(x)=lnx﹣2x2+5x﹣4,∴f(1)=﹣1.故答案为:﹣1.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B 两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,A(x1,y1),B(x2,y2),由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.【考点】复数求模;复数的基本概念.【分析】(Ⅰ)设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;(Ⅱ)把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:(Ⅰ)设z=a+bi,∴z+2i=a+(b+2)i,由a+(b+2)i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;(Ⅱ) ,∴ 的模为 .18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:(1)a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅(2)a=0时,A=R,符合题意;┅┅┅┅┅┅┅(3)a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】(1)通过题意,利用 =2 ,可得点M坐标,利用直线OM 的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用×( )=﹣1,即得结论.【解答】(Ⅰ)解:设M(x,y),已知A(a,0),B(0,b),由|BM|=2|MA|,所以 =2 ,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅(Ⅱ)证明:因为C(0,﹣b),所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以×( )=﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可;(2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:(1)f′(x)=ax2﹣3x+(a+1)由于函数f(x)在x=1时取得极值,所以f′(1)=0即a﹣3+a+1=0,∴a=1(2)由题设知:ax2﹣3x+(a+1)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立即a(x2+2)﹣x2﹣2x>0对任意a∈(0,+∞)都成立于是对任意a∈(0,+∞)都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:(1)由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;(2)直线l的斜率显然存在,可设直线l:y=kx+m,由,可得(1+2k2)x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,即为m2=1+2k2,①由,可得k2x2+(2km﹣4)x+m2=0,由直线和抛物线相切,可得△=(2km﹣4)2﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)根据(Ⅰ)通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:(Ⅰ)f(x)=lnx﹣a(x﹣1)2﹣(x﹣1),(x>0),f′(x)=﹣,①a<﹣时,0<﹣ <1,令f′(x)<0,解得:x>1或00,解得:﹣∴f(x)在递减,在递增;②﹣﹣或00,解得:1∴f(x)在递减,在递增;③ ,f′(x)=﹣≤0,f(x)在(0,1),(1+∞)递减;④a≥0时,2ax+1>0,令f′(x)>0,解得:01,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)函数恒过(1,0),由(Ⅰ)得:a≥﹣时,符合题意,a<﹣时,f(x)在(0,﹣ )递减,在递增,不合题意,故a≥﹣ .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省徐州市高二(上)期末数学试卷(文科)一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)命题p“∀x∈R,sinx≤1”的否定是.2.(5分)准线方程x=﹣1的抛物线的标准方程为.3.(5分)底面半径为1高为3的圆锥的体积为.4.(5分)双曲线的一条渐近线方程为y=x,则实数m的值为.5.(5分)若直线l1:x+4y﹣1=0与l2:kx+y+2=0互相垂直,则k的值为.6.(5分)函数f(x)=x3﹣3x的单调减区间为.7.(5分)在正方体ABCD﹣A1B1C1D1中,与AB异面且垂直的棱共有条.8.(5分)已知函数f(x)=cosx+sinx,则的值为.9.(5分)“a=b”是“a2=b2”成立的条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)10.(5分)若圆x2+y2=4与圆(x﹣t)2+y2=1外切,则实数t的值为.11.(5分)如图,直线l是曲线y=f(x)在点(4,f(4))处的切线,则f(4)+f'(4)的值等于.12.(5分)椭圆(a>b>0)的左、右焦点分别为F1、F2,若椭圆上存在点P,满足∠F1PF2=120°,则该椭圆的离心率的取值范围是.13.(5分)已知A(3,1),B(﹣4,0),P是椭圆上的一点,则PA+PB 的最大值为.14.(5分)已知函数f(x)=lnx,g(x)=﹣2x,当x>2时k(x﹣2)<xf (x)+2g'(x)+3恒成立,则整数k最大值为.二、解答题:本大题共6小题,共计90分.15.(14分)已知命题p:方程x2﹣2x+m=0有两个不相等的实数根;命题q:2m+1<4.(1)若p为真命题,求实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.16.(14分)在三棱锥P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分别为PB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:DE⊥AD.17.(14分)已知圆C的内接矩形的一条对角线上的两个顶点坐标分别为P(1,﹣2),Q(3,4).(1)求圆C的方程;(2)若直线y=2x+b被圆C截得的弦长为,求b的值.18.(16分)某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为3π.设圆柱体的底面半径为x,圆柱体的高为h,瓶体的表面积为S.(1)写出S关于x的函数关系式,并写出定义域;(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.19.(16分)已知二次函数h(x)=ax2+bx+c(c<4),其导函数y=h'(x)的图象如图所示,函数f(x)=8lnx+h(x).(1)求a,b的值;(2)若函数f(x)在区间(m,m+)上是单调增函数,求实数m的取值范围;(3)若对任意k∈[﹣1,1],x∈(0,8],不等式(k+1)x≥f(x)恒成立,求实数c的取值范围.20.(16分)把半椭圆=1(x≥0)与圆弧(x﹣c)2+y2=a2(x<0)合成的曲线称作“曲圆”,其中F(c,0)为半椭圆的右焦点.如图,A1,A2,B1,B2分别是“曲圆”与x轴、y轴的交点,已知∠B1FB2=,扇形FB1A1B2的面积为.(1)求a,c的值;(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L 表示为θ的函数;(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.2016-2017学年江苏省徐州市高二(上)期末数学试卷(文科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)命题p“∀x∈R,sinx≤1”的否定是∃x∈R,sinx>1.【分析】直接把语句进行否定即可,注意否定时∀对应∃,≤对应>.【解答】解:根据题意我们直接对语句进行否定命题p“∀x∈R,sinx≤1”的否定是:∃x∈R,sinx>1.故答案为:∃x∈R,sinx>1.2.(5分)准线方程x=﹣1的抛物线的标准方程为y2=4x.【分析】直接由抛物线的准线方程设出抛物线方程,再由准线方程求得p,则抛物线标准方程可求.【解答】解:∵抛物线的准线方程为x=﹣1,∴可设抛物线方程为y2=2px(p>0),由准线方程x=﹣,得p=2.∴抛物线的标准方程为y2=4x.故答案为:y2=4x.3.(5分)底面半径为1高为3的圆锥的体积为π.【分析】利用圆锥的体积公式,能求出结果.【解答】解:底面半径为1高为3的圆锥的体积为:V==π.故答案为:π.4.(5分)双曲线的一条渐近线方程为y=x,则实数m的值为6.【分析】根据题意,由双曲线的标准方程可得该双曲线的焦点在x轴上,且a=,b=,可得其渐近线方程为y=±x,进而结合题意可得=1,解可得m 的值,即可得答案.【解答】解:根据题意,双曲线的标准方程为:,则其焦点在x轴上,且a=,b=,故其渐近线方程为y=±x,又由该双曲线的一条渐近线方程为y=x,则有=1,解可得m=6;故答案为:6.5.(5分)若直线l1:x+4y﹣1=0与l2:kx+y+2=0互相垂直,则k的值为﹣4.【分析】利用直线与直线垂直的性质求解.【解答】解:∵直线l1:x+4y﹣1=0与l2:kx+y+2=0互相垂直互相垂直,∴﹣•(﹣k)=﹣1,解得k=﹣4故答案为:﹣46.(5分)函数f(x)=x3﹣3x的单调减区间为(﹣1,1).【分析】求函数的导函数,令导函数小于零,解此不等式即可求得函数y=x3﹣3x 的单调递减区间.【解答】解:令y′=3x2﹣3<0解得﹣1<x<1,∴函数y=x3﹣3x的单调递减区间是(﹣1,1).故答案为:(﹣1,1).7.(5分)在正方体ABCD﹣A1B1C1D1中,与AB异面且垂直的棱共有4条.【分析】画出正方体,利用数形结合思想能求出结果.【解答】解:如图,在正方体ABCD﹣A1B1C1D1中,与AB异面且垂直的棱有:DD1,CC1,A1D1,B1C1,共4条.故答案为:4.8.(5分)已知函数f(x)=cosx+sinx,则的值为0.【分析】求函数的导数,利用代入法进行求解即可.【解答】解:函数的导数为f′(x)=﹣sinx+cosx,则f′()=﹣sin+cos=﹣+=0,故答案为:09.(5分)“a=b”是“a2=b2”成立的充分不必要条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)【分析】结合充分条件和必要条件的定义进行判断.【解答】解:若a2=b2,则a=b或a=﹣b,即a=b”是“a2=b2”成立的充分不必要条件,故答案为:充分不必要.10.(5分)若圆x2+y2=4与圆(x﹣t)2+y2=1外切,则实数t的值为±3.【分析】利用圆x2+y2=4与圆(x﹣t)2+y2=1外切,圆心距等于半径的和,即可求出实数t的值.【解答】解:由题意,圆心距=|t|=2+1,∴t=±3,故答案为±3.11.(5分)如图,直线l是曲线y=f(x)在点(4,f(4))处的切线,则f(4)+f'(4)的值等于.【分析】根据题意,结合函数的图象可得f(4)=5,以及直线l过点(0,3)和(4,5),由直线的斜率公式可得直线l的斜率k,进而由导数的几何意义可得f′(4)的值,将求得的f(4)与f′(4)的值相加即可得答案.【解答】解:根据题意,由函数的图象可得f(4)=5,直线l过点(0,3)和(4,5),则直线l的斜率k==又由直线l是曲线y=f(x)在点(4,f(4))处的切线,则f′(4)=,则有f(4)+f'(4)=5+=;故答案为:.12.(5分)椭圆(a>b>0)的左、右焦点分别为F1、F2,若椭圆上存在点P,满足∠F1PF2=120°,则该椭圆的离心率的取值范围是[,1).【分析】如图根据椭圆的性质可知,∠F1PF2当点P在短轴顶点(不妨设上顶点A)时最大,要椭圆上存在点P,满足∠F1PF2=120°,∠F1AF2≥120°,∠F1AO≥60°,即可,【解答】解:如图根据椭圆的性质可知,∠F1PF2当点P在短轴顶点(不妨设上顶点A)时最大,要椭圆上存在点P,满足∠F1PF2=120°,∠F1AF2≥120°,∠F1AO≥60°,sin∠F1AO=,故椭圆离心率的取范围是[,1)故答案为[,1)13.(5分)已知A(3,1),B(﹣4,0),P是椭圆上的一点,则PA+PB的最大值为.【分析】由题意画出图形,可知B为椭圆的左焦点,A在椭圆内部,设椭圆右焦点为F,借助于椭圆定义,把|PA|+|PB|的最大值转化为椭圆上的点到A的距离与F距离差的最大值求解.【解答】解:由椭圆方程,得a2=25,b2=9,则c2=16,∴B(﹣4,0)是椭圆的左焦点,A(3,1)在椭圆内部,如图:设椭圆右焦点为F,由题意定义可得:|PB|+|PF|=2a=10,则|PB|=10﹣|PF|,∴|PA|+|PB|=10+(|PA|﹣|PF|).连接AF并延长,交椭圆与P,则此时|PA|﹣|PF|有最大值为|AF|=∴|PA|+|PB|的最大值为10+.故答案为:10+14.(5分)已知函数f(x)=lnx,g(x)=﹣2x,当x>2时k(x﹣2)<xf (x)+2g'(x)+3恒成立,则整数k最大值为5.【分析】k(x﹣2)<xf(x)+2g′(x)+3恒成立,等价于k(x﹣2)<xlnx+2(x ﹣2)+3对一切x∈(2,+∞)恒成立,分离参数,从而可转化为求函数的最小值问题,利用导数即可求得,即可求实数a的取值范围.【解答】解:因为当x>2时,不等式k(x﹣2)<xf(x)+2g′(x)+3恒成立,即k(x﹣2)<xlnx+2(x﹣2)+3对一切x∈(2,+∞)恒成立,亦即k<=+2对一切x∈(2,+∞)恒成立,所以不等式转化为k<+2对任意x>2恒成立.设p(x)=+2,则p′(x)=,令r(x)=x﹣2lnx﹣5(x>2),则r′(x)=1﹣=>0,所以r(x)在(2,+∞)上单调递增.因为r(9)=4(1﹣ln3)<0,r(10)=5﹣2ln10>0,所以r(x)=0在(2,+∞)上存在唯一实根x0,且满足x0∈(9,10),当2<x<x0时,r(x)<0,即p′(x)<0;当x>x0时,r(x)>0,即p′(x)>0.所以函数p(x)在(2,x0)上单调递减,在(x0,+∞)上单调递增,又r(x0)=x0﹣2lnx0﹣5=0,所以2lnx0=x0﹣5.所以[p(x)]min=p(x0)=+2=+2∈(5,6),所以k<[p(x)]min∈(5,6),故整数k的最大值是5.故答案为:5.二、解答题:本大题共6小题,共计90分.15.(14分)已知命题p:方程x2﹣2x+m=0有两个不相等的实数根;命题q:2m+1<4.(1)若p为真命题,求实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.【分析】(1)若p为真命题,则应有△=8﹣4m>0,解得实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,则p,q应一真一假,进而实数m的取值范围.【解答】解:(1)若p为真命题,则应有△=8﹣4m>0,…(3分)解得m<2.…(4分)(2)若q为真命题,则有m+1<2,即m<1,…(6分)因为p∨q为真命题,p∧q为假命题,则p,q应一真一假.…(7分)①当p真q假时,有,得1≤m<2;…(10分)②当p假q真时,有,无解.…(13分)综上,m的取值范围是[1,2).…(14分)(注:若借助数轴观察且得出正确答案,则给满分,否则不得分)16.(14分)在三棱锥P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分别为PB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:DE⊥AD.【分析】(1)推导出DE∥PC,由此能证明DE∥平面PAC.(2)推导出AD⊥PB,BC⊥AB,从而AD⊥BC,进而AD⊥平面PBC,由此能证明DE⊥AD.【解答】证明:(1)因为D,E分别为PB,BC的中点,所以DE∥PC,…(2分)又DE⊄平面PAC,PC⊂平面PAC,故DE∥平面PAC.…(5分)(2)因为AP=AB,PD=DB,所以AD⊥PB,…(7分)因为平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,又BC⊥AB,BC⊂平面ABC,所以BC⊥平面PAB,…(10分)因为AD⊂平面PAB,所以AD⊥BC,…(11分)又PB∩BC=B,PB,BC⊂平面ABC,故AD⊥平面PBC,…(13分)因为DE⊂平面PBC,所以DE⊥AD.…(14分)17.(14分)已知圆C的内接矩形的一条对角线上的两个顶点坐标分别为P(1,﹣2),Q(3,4).(1)求圆C的方程;(2)若直线y=2x+b被圆C截得的弦长为,求b的值.【分析】(1)由已知可知PQ为圆C的直径,故可得圆心C的坐标,求出半径,即可求圆C的方程;(2)求出圆心C到直线y=2x+b的距离,利用直线y=2x+b被圆C截得的弦长为,建立方程,即可求b的值.【解答】解:(1)由已知可知PQ为圆C的直径,故圆心C的坐标为(2,1),…(2分)圆C的半径,…(4分)所以圆C的方程是:(x﹣2)2+(y﹣1)2=10.…(6分)(2)设圆心C到直线y=2x+b的距离是,…(9分)据题意得:,…(12分)即,解之得,b=2或b=﹣8.…(14分)18.(16分)某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为3π.设圆柱体的底面半径为x,圆柱体的高为h,瓶体的表面积为S.(1)写出S关于x的函数关系式,并写出定义域;(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.【分析】(1)根据体积公式求出h,再根据表面积公式计算即可得到S与x的关系式,(2)根据导数和函数的最值得关系即可求出.【解答】解:(1)据题意,可知πx2h=3π,得,(2),令S′=0,得x=±1,舍负,当S′(x)>0时,解得x>1,函数S(x)单调递增,当S′(x)<0时,解得0<x<1,函数S(x)单调递减,故当x=1时,函数有极小值,且是最小值,S(1)=9π答:当圆柱的底面半径为1时,可使表面积S取得最小值9π.19.(16分)已知二次函数h(x)=ax2+bx+c(c<4),其导函数y=h'(x)的图象如图所示,函数f(x)=8lnx+h(x).(1)求a,b的值;(2)若函数f(x)在区间(m,m+)上是单调增函数,求实数m的取值范围;(3)若对任意k∈[﹣1,1],x∈(0,8],不等式(k+1)x≥f(x)恒成立,求实数c的取值范围.【分析】(1)利用导函数y=h′(x)的图象确定a,b的值即可;(2)要使求函数f(x)在区间(m,m+)上是单调增函数,则f'(x)的符号没有变化,可以求得实数m的取值范围;(3)函数y=kx的图象总在函数y=f(x)图象的上方得到kx大于等于f(x),列出不等式,构造函数,求出函数的最小值即可得到c的范围.【解答】解:(1)二次函数h(x)=ax2+bx+c的导数为:y=h′(x)=2ax+b,由导函数y=h′(x)的图象可知,导函数y=h′(x)过点(5,0)和(0,﹣10),代入h′(x)=2ax+b得:b=﹣10,a=1;(2)由(1)得:h(x)=x2﹣10x+c,h′(x)=2x﹣10,f(x)=8lnx+h(x)=8lnx+x2﹣10x+c,f′(x)=+2x﹣10=,当x变化时所以函数f(x)的单调递增区间为(0,1)和(4,+∞).单调递减区间为(1,4),若函数在(m,m+)上是单调递增函数,则有或者m≥4,解得0≤m≤或m≥4;故m的范围是:[0,]∪[4,+∞).(3)若对任意k∈[﹣1,1],x∈(0,8],不等式(k+1)x≥f(x)恒成立,即对k=﹣1时,x∈(0,8],不等式c≤﹣x2﹣8lnx+10x恒成立,设g(x)=﹣x2﹣8lnx+10x,x∈(0,8],则g′(x)=,x∈(0,8],令g′(x)>0,解得:1<x<4,令g′(x)<0,解得:4<x≤8或0<x<1,故g(x)在(0,1)递减,在(1,4)递增,在(4,8]递减,故g(x)的最小值是g(1)或g(8),而g(1)=9,g(8)=16﹣24ln3<4<9,c<4,故c≤g(x)min=g(8)=16﹣24ln3,即c的取值范围是(﹣∞,16﹣24ln3].20.(16分)把半椭圆=1(x≥0)与圆弧(x﹣c)2+y2=a2(x<0)合成的曲线称作“曲圆”,其中F(c,0)为半椭圆的右焦点.如图,A1,A2,B1,B2分别是“曲圆”与x轴、y轴的交点,已知∠B1FB2=,扇形FB1A1B2的面积为.(1)求a,c的值;(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L 表示为θ的函数;(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.【分析】(1)由扇形FB1A1B2的面积为可得a,在△OFB2中,tan∠OFB2=tan60°=,又因为c2+b2=a2,可得c.(2)分①当θ∈(0,);②当θ∈();③当θ∈(,)求出△A1PQ的周长;(3)在(2)的条件下,当△A1PQ的周长L取得最大值时P、Q在半椭圆:(x≥0)上,利用弦长公式、点到直线的距离公式,表示面积,再利用单调性求出范围.【解答】解:(1)∵扇形FB1A1B2的面积为=,∴a=2,圆弧(x ﹣c)2+y2=a2(x<0)与y轴交点B2(0,b),在△OFB2中,tan∠OFB2=tan60°=,又因为c2+b2=a2,∴c=1.(2)显然直线PQ的斜率不能为0(θ∈(0,π)),故设PQ方程为:x=my+1由(1)得半椭圆方程为:(x≥0)与圆弧方程为:(x﹣1)2+y2=4(x <0),且A1(﹣1,0)恰为椭圆的左焦点.①当θ∈(0,)时,P、Q分别在圆弧:(x﹣1)2+y2=4(x<0)、半椭圆:(x≥0)上,△A1PQ为腰为2的等腰三角形|A1P|=4sin,△A1PQ的周长L=|QA1|+|QF|+|PF|+|A1P|=2a+a+|A1P|=6+4sin,②当θ∈()时,P、Q分别在圆弧:(x﹣1)2+y2=4(x<0)、半椭圆:(x≥0)上,△A1PQ为腰为2的等腰三角形|A1P|=4cos,△A1PQ的周长L=|QA1|+|QF|+|PF|+|A1P|=2a+a+|A1P|=6+4cos,③当θ∈(,)时,P、Q在半椭圆:(x≥0)上,△A1PO为腰为2的等腰三角形|A1P|=4sin,△A1PQ的周长L=|QA1|+|QF|+|PF|+|A1P|=4a=8(3)在(2)的条件下,当△A1PQ的周长L取得最大值时P、Q在半椭圆:(x≥0)上,联立得(3m2+4)y2+6my﹣9=0y1+y2=,y1y2=.|PQ|=,点A1到PQ的距离d=.△A1PQ的面积s=|PQ|•d=12.令m2+1=t,t∈[1,],s=12=12;∵g(t)=9t +在[1,+]上递增,∴g(1)≤g(t)≤g (),;10≤g(t )≤,≤s≤3∴△A1PQ的面积不为定值,面积的取值范围为:[]赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法yxo②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。