生化名词解释及问答题

合集下载

生化名词解释、简答

生化名词解释、简答

试卷一五、写出下列物质的中文名称并阐明该物质在生化中的应用(共8分)DNS-C1 DNFB DEAE —纤维素 BOC 基1、DNS-Cl : 5一二甲氨基萘-1-磺酰氯,用作氨基酸的微量测定,或鉴定肽链的N —端氨基酸。

2、DNFB :2,4一二硝基氟苯,鉴定肽链的N —端氨基酸。

3、DEAE 一纤维素: 二乙氨基乙基纤维素,阴离子交换剂,用于分离蛋白质。

4、BOC 基: 叔丁氧羰酰基,人工合肽时用来保护氨基酸的氨基。

六、解释下列名词(共12分)1、肽聚糖:肽聚糖是以NAG 与NAM 组成的多糖链为骨干与四肽连接所成的杂多糖。

2、蛋白质的别构效应:含亚基的蛋白质由于一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用称别构效应。

3、肽平面:由于肽键不能自由旋转,形成肽键的4个原子和与之相连的2个α-碳原子共处在1个平面上,形成酰胺平面,也称肽平面。

4、两面角:由于肽链中的C α-N 键和Cα—C 键是单键,可以自由旋转,其中绕C α-N 键旋转的角度称φ角,绕C α-C 键旋转的角度称ψ角,这两个旋转的角度称二面角。

5、波耳效应:pH 的降低或二氧化碳分压的增加,使血红蛋白对氧的亲和力下降的现象称波耳效应。

6、碘价:100克脂肪所吸收的碘的克数称碘价,碘价表示脂肪的不饱和度。

七、问答与计算(共30分)1、今从一种罕见的真菌中分离到1个八肽,它具有防止秃发的作用。

经分析,它的氨基酸组成是:Lys 2,Asp 1,Tyr 1,Phe 1,Gly 1,Ser 1和Ala 1。

此八肽与FDNB 反应并酸水解后。

释放出FDNB-Ala 。

将它用胰蛋白酶酶切后,则得到氨基酸组成为:Lys 1,Ala 1,Ser 1和Gly ,Phe 1,Lys 1的肽,还有一个二肽。

将它与胰凝乳蛋白酶反应后,释放出游离的Asp 以及1个四肽和1个三肽,四肽的氨基酸组成是:Lys 1,Ser 1,Phe 1和Ala 1,三肽与FDNB 反应后,再用酸水解,释放出DNP-Gly 。

生化名词解释简答

生化名词解释简答

生化重点名词解释1、★肽键(peptide bond):指由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合形成的酰胺键。

2、GSH:谷胱甘肽,是人体内重要的抗氧化剂,能保护蛋白质中的巯基3、★蛋白质变性:在某些理化因素(高温、高压、超声波、紫外线、强酸、强碱、尿素等)的作用下,蛋白质的空间结构发生改变,导致生物活性的丧失,以及理化因素发生改变。

4、α—螺旋:蛋白质分子中多个肽单位通过氨基酸α—碳原子的旋转,使多肽链的主链围绕中心轴呈有规律的上升。

5、β—转角:伸展的肽链形成180°回折,即U形转角结构6、肽链:多个氨基酸通过肽键连接而成7、基序(模体):在有些蛋白质分子中,可见一个或多个具有二级结构的肽段,在空间上相互接近,形成一个二级结构的聚集体称为基序。

8、结构域:分子质量大的蛋白质三级结构,常常由两个或多个球状或纤维状的区域组成,每个区域的结构和功能相对独立,称为结构域。

9、氨基酸残基:肽链中的氨基酸分子通过脱水缩合而集团不全,称为氨基酸残基10、变构效应(别构效应):配体与蛋白质结合后,蛋白质的空间结构发生改变,使其适合于功能需要,这个变化称变构效应,也叫别构调节。

11、亚基:在含有两条或多条肽链的蛋白质分子中,每一条多肽链都有其完整的三级结构,称为亚基。

12、蛋白质等电点:当蛋白质溶液在某一pH时,蛋白质解离称阴阳离子的趋势相等,称为兼性离子,静电荷为零,此时溶液的pH称为蛋白质等电点。

13、★蛋白质一级结构(Primary structure):指蛋白质肽链中氨基酸残基的排列顺序,即氨基酸序列。

14、★蛋白质二级结构(Secondary structure):指蛋白质多肽链的主链中某一段肽链的局部空间构象,即指该段肽链主链骨架原子的相对空间排列顺序,不涉及侧链基团。

15、★蛋白质三级结构(Tertiary structure):指整条肽链所有原子在空间中的整体排布位置。

生化名词解释与简答题

生化名词解释与简答题

第一章蛋白质的结构与功能(一)名词解释1. 肽键2. 结构域 3. 蛋白质的等电点4. 蛋白质的沉淀5. 蛋白质的凝固(三)问答题1. 何谓蛋白质变性?影响变性的因素有哪些?2. 蛋白质变性后,为什么水溶性会降低?3. 举例说明一级结构决定构象。

答案(一)1.肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合所形成的结合键,称为肽键。

2.构域:蛋白质在形成三级结构时,肽链中某些局部的二级结构汇集在一起,形成发挥生物学功能的特定区域称为结构域。

3.蛋白质的等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。

4.蛋白质的沉淀:蛋白质分子从溶液中析出的现象称为蛋白质的沉淀。

5.蛋白质的凝固:蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱中,若将pH调至等电点,则蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸或强碱中。

如再加热则絮状物可变成比较坚固的凝块,此凝块不再溶于强酸或强(三)问答题1. 蛋白质在某些物理因素或化学因素的作用下,蛋白质分子内部的非共价键断裂,天然构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。

蛋白质变性的实质是维系蛋白质分子空间结构的次级键断开,使其空间结构松解,但肽键并未断开。

引起蛋白质变性的因素有两方面:一是物理因素,如紫外线照射等,一是化学因素如强酸、强碱、重金属盐、有机溶剂等。

2. 三级结构以上的蛋白质的空间结构稳定主要靠疏水键和其它副键,当蛋白质在某些理化因素作用下变性后,维持蛋白质空间结构稳定的疏水键、二硫键以及其它次级键断裂,空间结构松解,蛋白质分子变为伸展的长肽链,大量的疏水基团外露,导致蛋白质水溶性降低。

3. 牛胰核糖核酸酶溶液加入尿素和巯基乙醇后变性失活,其一级结构没有改变。

当用透析法去除尿素和巯基乙醇后,牛胰核糖核酸酶自发恢复原有的空间结构与功能,此例充分说明一级结构决定构象。

碱中,这种现象称为蛋白质的凝固作用。

生化简答题与名词解释

生化简答题与名词解释

生物化学(仅供参考)简答题:一、蛋白质的二级结构,主要有哪几种?答:二级结构既肽链主链的局部构象,尤其是那些有规律的周期性的结构,其中有一些非常的稳定,而且在蛋白质中广泛存在,常见的二级结构包括α-螺旋、β–折叠、β–转折,另外把那些没有规律性的局部构象称为无规则卷曲。

二:何为蛋白质的两性电离?答:蛋白质是两性电解质,在蛋白质分子中可解离的基团除再每条肽链上的氨基末端和羧基的末端外,还有肽链侧链上那些可电离的基团。

蛋白质分子在溶液中是解离成正离子还是解离成负离子,既取决于其分子上酸性基团还是碱性基团的多少以及俩者的相对比例,同时还受该溶液PH值影响。

在酸性较强的溶液中,碱性基团被抑制,则蛋白质分子解离成正离子,带正电荷,在碱性较强的溶液中,碱性基团解离被抑制,则蛋白质分子解离成负电荷,带负电。

这种现象被称为蛋白质的俩性电离。

三、简述DNA双螺旋结构的特点?答:1、两个链平行,核苷酸绕同轴但方向相反。

2、磷酸脱氧核糖主链位于螺旋的外侧,碱基位于螺旋内侧。

3、每10个核苷酸螺旋上升一圈,螺距3.4nm直径2nm。

4、两条链之间形成氢键有碱基互补配对规律5、双螺旋稳定性氢键与碱基堆积力。

四、蛋白质的α-螺旋结构?答:是单股右手螺旋,主链由-C-Cα、-N-重复构成,在螺旋的内侧,侧链在氨基酸侧链,在螺旋外侧,每个螺距5.4nm ,含3.6个氨基酸残基。

五、生物体内RNA种类以及功能?答:RNA有rRNA、tRNA 和mRNA三种。

rRNA与蛋白质构成核蛋白体,是蛋白质合成的场所;tRNA携带、运输活化的氨基酸;mRNA是蛋白质合成的模板,三种RNA均参与蛋白质的生物合成。

六、比较DNA与RNA在分子组成和结构的异同点?答:相同点:分子组成都含有碱基、戊糖和磷酸,碱基A、G、C。

分子结构上单核苷酸是基本结构单位,并以3′5′-磷酸二脂键相连成一级结构。

不同点:比较项目DNA RNA化学组成戊糖脱氧核糖核糖碱基AGCT AGCU分子结构二级结构的双螺旋,真核生物三级结构为核小体RNA为单链发夹形结构tRNA的二级结构为三叶草型结构,三级结构为倒L型细胞内分布细胞核其次为线粒体细胞浆其次为细胞仁生理功能遗传信息的储存与传递遗传信息传递参与蛋白质合成七、底物浓度对酶促反应的影响?答:在底物浓度较低时,反应速度随着底物浓度的提高而加快,两者成正比例关系;此后,随着底物浓度继续提高,反应速度还在加快,但是变化幅度越来越小,不再成正比例关系;最后,即使底物浓度在提高,反应速度也已经基本不变。

生化名词解释简答

生化名词解释简答

生化名词解释简答生化名词解释、简答名词解释:1.蛋白质的一级、二级结构p87、89蛋白质一级结构是指蛋白质多肽链中氨基酸残基的排列顺序,也称化学结构;蛋白质二级结构是指多肽主链骨架有规则的盘曲折叠形成的构象,不涉及侧链基团的空间排布。

2.蛋白质的变(别)二重效应别构效应又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。

别构效应(allostericeffect)某种不直接涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其他部位(别构部位),引起蛋白质分子的构象变化,而导致蛋白质活性改变的现象。

(底物或效应物和酶分子上的适当部位融合后,可以引发酶分子构象发生改变从而影响酶的催化活性的效应。

)3.等电点p102对某一蛋白质来说,在某一ph溶液中,它所带的正电荷与负电荷数恰好成正比,即为净电荷为0时,在电场中它既不向阳极也不向阴极移动,这时溶液的ph就称作蛋白质的等电点(pi)4.酶的活性中心p153通过肽链的卷曲、螺旋或织成构成了多种活性空间――酶的活性部位(或表示活性中心)5.酶的比活力p163比活力就是所指每毫克酶蛋白含有的酶活力单位数,即为比活力=活力单位数/每毫克酶蛋白6.核酸的增色效应核酸的光吸收值为各核苷酸光吸收值的和太少30-40%,当核酸变性或水解时光稀释值明显减少。

(将dna的叶唇柱盐溶液冷却至80~100℃时,双螺旋结构解体,两条链分离构成单链,由于双螺旋分子内部的碱基曝露,260nm紫外稀释值增高的现象。

)7.核酸的变复性p133-134核酸的变性指dna分子中的双螺旋结构解链为无规则线性结构的现象。

变性dna在适度条件下,又可以并使两条彼此分离的链再次键合称作双螺旋结构,此过程表示复性。

8.生物氧化p175有机物质在生物体内的氧化作用(充斥着还原作用)泛称为生物水解。

9.呼吸链p177一系列具备水解还原成特性的酶与辅酶做为氢和电子的传达体。

寄氢体和寄电子体按一定顺序排列在线粒体内膜上所形成的连锁氧化还原体系称为电子传递链。

生化问答题和名词解释重点

生化问答题和名词解释重点

1.核酸杂交: 在DNA变性后的复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件(温度及离子强度)下,就可以在不同的分子间形成杂化双链。

这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成。

这种现象称为核酸分子杂交。

(2分)2.P/O比值:每消耗1mol氧原子时 ADP磷酸化成ATP所需消耗的无机磷的mol数。

3.一碳单位:某些氨基酸在分解代谢过程中产生含有一个碳原子的基因,称为一碳单位。

体内的一碳单位有甲基(—CH3)、甲烯基(—CH2—)、甲炔基(—CH==)、甲酰基(—CHO)、亚氨甲基(—CH==NH)等。

(2分)4.外显子:在断裂基因及其初级转录产物上出现,并表达为成熟RNA的核酸序列。

(2分)5.遗传密码:mRNA分子上从5,至3,方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码。

6.DNA变性: 在某些理化因素作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为DNA变性。

(2分)7. 糖异生: 由非糖化合物 (乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程称为糖异生。

(2分)8. 底物水平磷酸化:ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应过程称为底物水平磷酸化。

(2分)9.氨基酸代谢库:食物蛋白质经消化而被吸收的氨基酸(外源性氨基酸)与体内组织蛋白质降解产生的氨基酸(内源性氨基酸)混在一起,分布于体内各处,参与代谢,称为氨基酸代谢库。

(2分)10. 不对称转录: 转录模板DNA双链中,只有一股链可作为模板指引转录,另一股链不能作为模板;模板链并非永远在同一条单链上,不同基因的模板链可交叉分布在两股链上,这种选择性转录方式称为不对称转录。

生化名词解释(0001)

生化名词解释(0001)

生化名词解释一、名词解释1.等电点: 对于某种氨基酸而言,当溶液在某一特定pH时,氨基酸以两性离子的形式存在,正电荷与负电荷数相等,净电荷,在直流电=电场中,既不向正极移动,也不向负极移动。

这时溶液的pH就是该氨基酸的等电点。

2.肽单位:蛋白质中肽键的C、N及其相连的4个原子共同组成肽单位。

3.结构域:球蛋白分子的一条多肽链中常常存在一些紧密的、相对独立的区域,称为结构域,它是在超二级结构的基础上形成的具有一定功能的结构单位。

4.酶活力:又称酶活性,是指酶催化化学反应的能力。

(用某一化学反应的速度表示)5.比活力:也称比活性,是指每毫克酶蛋白做具有的活力单位数。

比活力越高,纯度越高。

6.酶的活性中心:是酶分子上由催化基团和结合基团构成的一个微区。

7.酶原:酶的无活性前体。

8.同工酶:是指催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫性质不同的一组酶。

9.核酶:又称核酸类酶,是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。

10.核酸的变性:指碱基对之间的氢键断裂,双螺旋结构松开,称为两股单链的DNA分子。

11.核酸的复性:在适当的条件下,变性的DNA分开的两股单链又重新恢复成双螺旋结构,这个过程称为复性。

12.Tm:将50%的DNA分子发生变性时的温度称为中点解链温度或熔点温度(Tm)。

13.生物氧化:糖、脂肪和蛋白质等营养物质在细胞内氧化分解生成二氧化碳和水并释放能量的过程。

14.呼吸链:是氧化呼吸链的简称,又称电子传递链或电子传递系统,是指排列在线粒体内膜上的由多种脱氢酶以及氢和电子传递体组成的氧化还原体系。

15.底物水平磷酸化:营养物质在代谢过程中经过脱氢、脱氧、分子重排和烯醇化等反应,分子内的能力重新排布,形成了高能磷酸基团或高能键随后直接将高能磷酰基转移给ADP生成ATP;或将水解高能磷酸键释放的自由能用于ADP与无机磷酸反应(ATP+Pi)生成ATP,以这样的方式生成ATP 的过程称为底物水平磷酸化。

生化名词解释及问答题答案

生化名词解释及问答题答案

名词解释1、血糖:血液中的单糖,主要是葡萄糖2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成;糖原分解成葡萄糖的过程称糖原分解。

3、糖异生:由非糖物质合成葡萄糖的过程4、有氧氧化:在供氧充足时,葡萄糖在胞液中分解生成的丙酮酸进入线粒体,彻底氧化生成CO2和H2O,并释放大量能量5、三羧酸循环:在线粒体内,乙酰CoA和草酰乙酸缩合成生成柠檬酸, 柠檬酸经一系列酶促反应之后又生成成草酰乙酸,形成一个循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环6、糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸,称为糖酵解途径。

7、血脂:血浆中脂类的总称。

主要包括甘油三酯、磷脂、胆固醇和游离脂肪酸。

8、血浆脂蛋白:是脂类在血浆中的存在形式和转运形式。

包括脂类和载脂蛋白。

9、脂肪动员:脂肪细胞内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全身各组织氧化利用的过程。

10、酮体:包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。

11、必需脂肪酸:人体生命活动所必不可少的几种多不饱和脂肪酸,在人体内不能合成,必需由食物来供给。

有亚油酸、亚麻酸及花生四烯酸三种。

12、必需氨基酸:体内需要而自身又不能合成、必需由食物供给的氨基酸。

包括异亮氨酸、苯丙氨酸、色氨酸、苏氨酸、亮氨酸、甲硫氨酸、赖氨酸和缬氨酸。

13、蛋白质互补作用:将不同种类营养价值较低的蛋白质混合食用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值,称为蛋白质的互补作用。

14、转氨基作用:是指由氨基转移酶催化,将氨基酸的α- 氨基转移到一个α- 酮酸的羰基位置上,生成相应的α-酮酸和一个新的α-氨基酸。

该过程只发生氨基转移,不产生游离的NH3。

15、一碳单位:有些氨基酸在分解代谢过程中可以产生含有一个碳原子的活性基团,称为一碳单位。

16、遗传密码子:从mRNA编码区5’端向3’端按每3个相邻碱基为一组连续分组,每组碱基构成一个遗传密码,称为密码子或三联体密码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.两性离子:指在同一个氨基酸分子上带有能放出质子的-NH3+正离子和能接受质子的-COO-负离子2.等电点:氨基酸所带正电荷为零,主要以两性离子存在时,在电场中不向任何一极移动,此时溶液的PH叫做氨基酸的等电点。

3.构型:不对称碳原子周围的取代基在空间上的排列方式。

存在L- 、D-两种构型4.蛋白质的一级结构:指多肽链中的氨基酸序列5.蛋白质的二级结构:指多肽主链有一定周期性的,由氢键维持的局部空间结构。

6.蛋白质的三级结构:球状蛋白的多肽链在二级结构、超二级结构和结构域等结构层次的基础上,组装而成的完整的结构单元称为三级结构。

7.蛋白质的四级结构:分子中亚基的种类、数量以及相互关系。

8.蛋白质的变性:天然蛋白质因受物理或化学因素的影响,其分子内部原有的高度规律性结构发生变化,致使蛋白质的理化性质和生物学性质都有所改变,但蛋白质的一级结构不被破坏,这种现象成变性。

9.蛋白质的复性:蛋白质的变性作用,如不过于剧烈,在一定条件下可以恢复活性,称蛋白质的复性。

10.糖苷: 单糖通过半缩醛羟基与另一个化合物或基团共价结合后形成的化合物。

11.还原糖: 可被氧化充当还原剂的糖13.旋光性: 当光通过含有某物质的溶液时,使经过此物质的偏振光平面发生旋转的现象。

14.必需脂肪酸: 动物体必需但不能合成的脂肪酸如亚油酸、亚麻酸15.必需油脂:动物体必需但不能合成的油脂16.米氏常数(Km值):在酶促反应中,某一给定底物的动力学常数,是由反应中每一步反应的速度常数所合成的。

根据米氏方程,其值是当酶促反应速度达到最大反应速度一半时的底物浓度。

Km=(k2+k3)/k117.底物专一性: 一种酶只能催化一种或一类底物18.活化能:处于过渡态的分子比处于基态的分子多出来的Gibbs自由能称为活化能。

19.激活剂:酶的活力可以被某些物质提高,这些物质称为激活剂。

20.抑制剂:通过改变酶必需基团的化学性质从而引起酶活力降低或丧失的作用称为抑制作用,具有抑制作用的物质称为抑制剂。

21.别构酶:当某些化合物与酶分子中的别构部位可逆地结合后,酶分子的构象发生改变,使酶活性部位对底物的结合与催化作用受到影响,从而调节酶促反应速度及代谢过程,这种效应称为别构效应。

具有别构效应的酶称为别构酶。

22.同工酶:催化统一化学反应,来自同一个生物,组成和性质不同的一组酶。

23.酶原: 无活性状态的酶的前身物称为酶原24.酶的比活力:单位质量酶产品中酶活力称比活力1.NAD+:烟酰胺腺嘌呤二核苷酸;辅酶Ⅰ。

2.FAD:黄素腺嘌呤二核苷酸。

3.PLP:磷酸吡哆醛。

4.NADP+:烟酰胺腺嘌呤二核苷酸磷酸;辅酶Ⅱ5.FMN:黄素单核苷酸。

6.CoA:辅酶A。

7.ACP:酰基载体蛋白。

8.BCCP:生物素羧基载体蛋白。

25.单核苷酸:核苷酸是核苷的磷酸酯26.碱基互补规律:A只能与T配对形成两个氢键,G只能与C配对形成3个氢键27.反密码子:转移核糖核酸中能与信使核糖核酸的密码子互补配对的三核苷酸残基。

位于转移核糖核酸的反密码子环的中部。

28.核酸的变性与复性:变性:核酸双螺旋区氢键断裂,空间结构破坏,形成单链无规则团状态的过程。

复性:变性核酸的互补链在适当条件下重新缔合成双螺旋的过程称复性。

29.增色效应:核酸变性后,260nm的紫外吸收值明显增加,即产生增色效应。

30.发夹结构:多核苷酸链中由茎区(双链区、螺旋区)和环区(单链区)组成的类似于“发夹”状的结构31.DNA的熔解温度(熔点):把DNA加热变性一半时的温度或者说将紫外线吸收的增加量达最大增量一半时的温度。

32.分子杂交:退火条件下,不同来源的DNA互补区形成双链,或DNA单链和RNA单链的互补区形成DNA-RNA杂合双链的过程称为分子杂交。

33.生物氧化:有机物在生物体内氧的作用下,生成CO2和水并释放能量的过程?34.呼吸链:代谢物上的氢原子被脱氢酶激活脱落后,经过一系列的传递体,最后传递给被激活的氧分子,并与之结合生成水的全部体系称呼吸链。

??35.氧化磷酸化:生物体内通过生物氧化所产生的能量,除一部分用以维持体温外,大部分可以通过磷酸化作用转移至高能磷酸化合物ATP中,此种伴随放能的氧化作用而进行的磷酸化作用称为氧化磷酸化作用。

?36.磷氧比(P/O):每消耗1摩尔氧所消耗无机磷酸的摩尔数?37.底物水平磷酸化:在被氧化的底物上发生磷酸化作用就是底物水平磷酸化。

38.糖酵解:1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程为糖酵解。

39.磷酸戊糖途径:是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。

40.糖异生作用:由非糖物质转化成葡萄糖或糖原的过程叫做糖的异生作用。

41.柠檬酸循环:通过生成的乙酰辅酶A与草酰乙酸缩合生成柠檬酸(三羧酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环的过程42.乙醛酸循环:在异柠檬酸裂解酶的催化下,异柠檬酸被直接分解为乙醛酸,乙醛酸又在乙酰辅酶A参与下,由苹果酸合成酶催化生成苹果酸,苹果酸再氧化脱氢生成草酰乙酸的过程。

43.柠檬酸穿梭: 是指线粒体内的乙酰CoA与草酰乙酸缩合生成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶的催化下,需消耗ATP将柠檬酸裂解回草酰乙酸和乙酰CoA44.脂肪酸的α-氧化: 脂肪酸在线粒体中由单加氧酶和脱羧酶催化生成α-羟脂肪酸或少一个碳原子的脂肪酸的过程45.脂肪酸的β-氧化: 脱氢-水化-再脱氢-硫解氧化46.脂肪酸的ω-氧化:脂肪酸的末端甲基(w-端)可经氧化作用后转变成为w-羟脂酸,然后再氧化成α,w-二羧酸再进行β-氧化,此途径称为w-氧化。

47.酮体:乙酰乙酸、β-羟丁酸和丙酮统称为酮体。

48.转氨作用:一种α-氨基酸的氨基可以转移到α-酮酸上,从而生成相应的一分子α-酮酸和一分子α-氨基酸,这种作用就叫做转氨作用。

49.尿素循环:可以分为3个步骤1.从鸟氨酸合成瓜氨酸2.从瓜氨酸合成精氨酸3.从精氨酸水解成尿素。

2NH3+CO2+3ATP+3H2O——》CO(NH2)2+2ADP+AMP+2Pi+PPi50.生糖氨基酸:在体内可以转变为糖的氨基酸称为生糖氨基酸。

51.生酮氨基酸:能转变成酮体的氨基酸称为生酮氨基酸。

问答题什么是蛋白质的一级结构?为什么说蛋白质的一级结构决定其空间结构?答:蛋白质一级结构指蛋白质多肽链中氨基酸残基的排列顺序。

因为蛋白质分子肽链的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构。

什么是蛋白质的空间结构?蛋白质的空间结构与其生物功能有何关系?蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。

蛋白质的空间结构决定蛋白质的功能。

空间结构与蛋白质各自的功能是相适应的。

3.蛋白质的α—螺旋结构有何特点?(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有3.6个氨基酸残基,螺距为0.54nm,氨基酸之间的轴心距为0.15nm(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O 形成氢键。

(3)天然蛋白质的α-螺旋结构大都为右手螺旋。

4.蛋白质的β—折叠结构有何特点?β-折叠结构又称为β-片层结构,它是肽链主链或某一肽段的一种相当伸展的结构,多肽链呈扇面状折叠。

(1)两条或多条几乎完全伸展的多肽链(或肽段)侧向聚集在一起,通过相邻肽链主链上的氨基和羰基之间形成的氢键连接成片层结构并维持结构的稳定。

(2)氨基酸之间的轴心距为0.35nm(反平行式)和0.325nm(平行式)。

(3)β-折叠结构有平行排列和反平行排列两种。

6.什么是蛋白质的变性作用和复性作用?蛋白质变性后哪些性质会发生改变?蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并导致其性质和生物活性改变的现象。

蛋白质变性后会发生以下几方面的变化:(1)生物活性丧失;(2)理化性质的改变,包括:溶解度降低,因为疏水侧链基团暴露;结晶能力丧失;分子形状改变,由球状分子变成松散结构,分子不对称性加大;粘度增加;光学性质发生改变,如旋光性、紫外吸收光谱等均有所改变。

(3)生物化学性质的改变,分子结构伸展松散,易被蛋白酶分解。

7.简述蛋白质变性作用的机制。

维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。

当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。

8.蛋白质有哪些重要功能蛋白质的重要作用主要有以下几方面:(1)生物催化作用酶是蛋白质,具有催化能力,新陈代谢的所有化学反应几乎都是在酶的催化下进行的。

(2)结构蛋白有些蛋白质的功能是参与细胞和组织的建成。

(3)运输功能如血红蛋白具有运输氧的功能。

(4)收缩运动收缩蛋白(如肌动蛋白和肌球蛋白)与肌肉收缩和细胞运动密切相关。

(5)激素功能动物体内的激素许多是蛋白质或多肽,是调节新陈代谢的生理活性物质。

(6)免疫保护功能抗体是蛋白质,能与特异抗原结合以清除抗原的作用,具有免疫功能。

(7)贮藏蛋白有些蛋白质具有贮藏功能,如植物种子的谷蛋白可供种子萌发时利用。

(8)接受和传递信息生物体中的受体蛋白能专一地接受和传递外界的信息。

(9)控制生长与分化有些蛋白参与细胞生长与分化的调控。

(10)毒蛋白能引起机体中毒症状和死亡的异体蛋白,如细菌毒素、蛇毒、蝎毒、蓖麻毒素等。

11. 什么是蛋白质的变性?影响蛋白质变性的因素有哪些?举例说明蛋白质变性在实践中的应用。

(1)蛋白质的变性是指在某些物理和化学因素作用下,其特定的空间构象被破坏,即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性丧失的现象。

(2)影响蛋白质变性的因素:物理因素:紫外线照射、超声波、高温、高压。

化学因素:强酸、强碱、重金属盐、乙醇等有机溶剂、及变性剂等。

(3)蛋白质变性在实践中的应用:医学上用酒精消毒,紫外线杀菌,生鸡蛋加热煮熟。

1.简述酶作为生物催化剂与一般化学催化剂的共性及其个性?(1)共性:用量少而催化效率高;仅改变化学反应速度,不改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的活化能。

(2)个性:酶作为生物催化剂的特点是催化效率更高,具有高度的专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。

酶促反应动力学方程式 v=Vmax【S】/{【S】+Km} 竞争性抑制作用对应的动力学方程v=Vmax【S】/{[S]+αKm} 非竞争性抑制剂动力学方程v=Vmax[S]/{α【S】+αKm} 反竞争性 v=Vmax【S】/{α【S】+Km}(1)B1 ;硫胺素; TPP(2)B2 ; 核黄素;FMN;FAD(3)B3 ;泛酸; CoA(4)B5 ;烟酸 NAD+ NADP+(5)B6 ;吡哆素; PLP PMP(6)B7 ;生物素(7)B11;叶酸 FH2,FH(8)B12。

相关文档
最新文档