CANBUS协议-物理层及链路层详细分析资料

合集下载

CAN Bus简介

CAN Bus简介
包括车辆状态监测、故障诊断、自动驾驶、安全控制等。
CAN总线在智能网联汽车中的技术挑战
需要解决高实时性、高可靠性、高安全性等方面的技术问题。
THANKS
感谢观看
CAN Bus技术演进
高速CAN总线技术
目前CAN总线已达到1Mbps,未来将进一步提高至4Mbps或更高,以满足日益增长的数 据传输需求。
低压CAN总线技术
低压CAN总线以其灵活性和低成本性在汽车电子领域得到广泛应用,未来将进一步优化 其性能和可靠性。
CAN总线与互联网技术的融合
随着物联网技术的发展,CAN总线将与互联网技术融合,实现远程监控和管理,提高汽 车智能化水平。
CAN Bus被用于工业自动化控制 系统中的数据传输和控制,例如工 厂自动化生产线、机器人控制系统 等。
其他领域
除了汽车和工业自动化领域,CAN Bus还被应用于医疗设备、航空航 天、智能家居等领域中。
02
CAN Bus通信协议
CAN协议概述
01
CAN是控制器局域网(Controller Area Network)的缩写, 它是一种用于汽车和其他工业应用场合的通信协议。
应用
与CAN控制器一起广泛应用于汽 车、工业自动化、楼宇自动化等
领域。
CAN总线电阻
作用
CAN总线电阻用于匹配总 线上的阻抗,以确保数据 传输的稳定性和可靠性。
类型
分为终端电阻和线电阻两 种类型。
应用
在CAN总线系统中,终端 电阻通常用于连接CAN控 制器和CAN收发器,而线 电阻用于连接其他设备。
灵活性
CAN Bus支持多种数据传输速 率,同时可以适应不同的网络 环境,具有较强的灵活性。
成本效益

CAN协议规范解析

CAN协议规范解析

CAN协议规范解析CAN(Controller Area Network,控制器局域网)是一种高性能、实时性强、可靠性高的现场总线通信协议。

它最初是由德国Bosch公司为汽车电子系统开发的,现已广泛应用于汽车、工业自动化、电力系统等领域。

CAN协议规范完整,包括物理层、数据链路层、网络层和应用层。

1.物理层CAN协议的物理层使用两根信号线CAN_H和CAN_L构成差分传输线路。

CAN_H线接收高电平信号,CAN_L线接收低电平信号,通过这种方式实现数据的传递和接收。

这种差分传输方式具有抗干扰能力强、传输距离远等优点。

物理层还包括传输速率的定义,CAN协议支持多种传输速率,常用的有1 Mbps、500 kbps、250 kbps、125 kbps等。

选择不同的传输速率可以根据实际需求进行配置。

2.数据链路层数据链路层主要负责将上层应用发送的数据封装成CAN帧,并在总线上进行传输。

CAN帧由以下四个部分组成:起始位(SOF)、标识符(ID)、数据域(Data)和CRC校验码。

起始位用于同步接收方的时钟,标识符用于区分不同的数据帧,数据域用于传输应用数据,CRC校验码用于检测数据的传输错误。

CAN协议支持标准帧和扩展帧两种类型的数据帧,标识符的长度不同,标准帧为11位,扩展帧为29位。

扩展帧可以提供更多的ID范围,适用于大规模网络通信。

数据链路层还包括数据帧的发送和接收机制。

CAN协议采用一种优先级机制,不同的数据帧有不同的优先级,优先级高的数据帧可以打断正在传输的低优先级数据帧。

这种机制能够保证高优先级数据的实时性和可靠性。

3.网络层网络层主要负责CAN网络中节点之间的通信,包括数据的路由和过滤。

CAN网络支持多个节点的连接,节点之间可以通过总线进行双向通信。

每个节点可以发送和接收数据帧,通过标识符来区分不同节点的数据帧。

网络层还包括数据的过滤和控制,可以根据接收节点的ID进行过滤,只接收符合条件的数据帧。

标准CANBUS协议链路描述

标准CANBUS协议链路描述

标准CANBUS协议链路描述1.物理层描述1.1诊断座定义诊断座使用标准OBD II接口,诊断接头采用CAN诊断接头,诊断座形状见图1所示。

1 2 3 4 5 6 7 89 10 11 12 13 14 15 16图1 诊断座形状其中16pin表1 引脚定义2.链路层描述2.1 电气特性(1) 工作电平TOOLS工作电平:12V(2) 通讯电平总线电平0 = 显性(dominant)总线电平1 = 隐性(recessive)总线闲置= 隐性(recessive)CAN_HIGH: 隐性为2.5V,显性为3.5VCAN_LOW:隐性为2.5V,显性为1.5V2.2位格式2.3通讯方式CAN通讯方式。

2.4波特率使用的波特率为500Kbps。

2.5帧格式帧格式:Extended CAN ,请参考ISO CAN 协议CAN 标准帧信息为11个字节包括两部分信息和数据部分,前3个字节为信息部分字节1 为帧信息第7位FF 表示帧格式(在标准帧中FF=0,在扩展帧中FF=1)第6位RTR 表示帧的类型(RTR=0表示为数据帧RTR=1表示为远程帧)DLC 表示在数据帧时实际的数据长度字节2-3 为报文识别码11位有效字节4-11 为数据帧的实际数据,远程帧时无效CAN诊断器数据帧格式:本数据帧采用不定长格式,其各部份含义如下:0x55,0xAA,LEN,Data1,,Data2,…,Datan,CS说明:1、长度(LEN)含义规定为LEN之后的字节个数(不包含LEN及CS);2、CS为0xAA之后所有字节(不包含CS)的异或校验。

CAN总线的分层结构

CAN总线的分层结构

CAN总线的分层结构
CAN技术协议规范的目的是为了在任何两个CAN器件之间建立兼容性,为了达到设计的透明度和实施的灵活性,根据1SO/OSI参考模型,CAN被细分为物理层(Physical Layer)和数据链路层(Data Link Layer)。

图1为CAN的IS0/OSI 的参考模型的层结构:
图 1 CAN的IS0/OSI参考模型的分层结构
(1)物理层定义信号传输的方法,因而涉及驱动器/接收器的特性、位定时、位编码、解码、同步等内容,但对总线媒体装置,诸如驱动器/接收器特性未作规定,以便允许根据它们的应用,对发送媒体和信号电平进行优化。

(2)数据链路层包括逻辑链路控制子层(LLC,Logical Link Control)、介质访问控制子层(MAC,Medium Access Control)。

逻辑链路控制子层(LLC)主要负责为远程数据请求以及数据传输提供服务,涉及报文滤波、过载通知、以及恢复管理等。

介质访问控制子层(MAC)的作用主要是定义传送的规则,也就是控制帧的结构、执行总线仲裁、错误检测、错误标定(Error signaling)、故障界定(Fault confinement)以及总线的开启与关闭、报文的接收和发送等。

MAC子层是CAN协议的核心,其特性不存在修改的灵活性。

CANBUS协议-物理层及链路层详细分析

CANBUS协议-物理层及链路层详细分析

CAN如何工作(二)
CAN 能够使用多种物理介质,例如双绞线、光纤等,最常用的就 是双绞线。信号使用差分电压传送,两条信号线被称为“CAN_H” 和 “CAN_L”, 静态时均是2.5V 左右,此时状态表示为逻辑1 ,也可 以叫做“隐性” 。用CAN_H 比CAN_L 高表示的逻辑0, 称为“显 性”,此时通常电压值为CAN_H =3.5V 和CAN_L = 1.5V 。
CAN,全称为“Controller Area Network”, 即控制器局域 网,是国际上应用最广泛的现场总线之一。最初,CAN 被设计作为汽 车环境中的微控制器通讯,在车载各电子控制装置ECU 之间交换信 息,形成汽车电子控制网络。比如:发动机管理系统、变速箱控制器、 仪表装备、电子主干系统中,均嵌入CAN 控制装置。
流控帧在不同的车上可能会不一样。
命令交互方式(四)
发多帧回一帧:
Tools : 08H FCH00H 10H 16H 01H 02H 03H 04H 05H 06H ECU : 08H FDH00H 30H 00H 00H 00H 00H 00H 00H 00H Tools : 08H FCH00H 21H 07H 08H 09H 0AH0BH 0CH 0DH Tools : 08H FCH00H 22H 07H 0EH 0FH 10H 11H 12H 13H Tools : 08H FCH00H 23H 14H 15H 16H 00H 00H 00H 00H ECU : 08H FDH00H 04H 41H 02H FFH 01H 00H 00H 00H
CANBUS协议物理层 及链路层详细分析
2012-2-20
目的
本文档的目的是指导我们熟悉CANBUS通讯协议的物理层及链路层,便于我 们更好的开展有关CANBUS的相关工作。

CAN-Bus的一些知识点解析

CAN-Bus的一些知识点解析
CAN应用层协议

CAN基本协议的应用 CANopen
CANopen概述
CAN和CANopen标准在OSI网络模型中的原理图
CAN基本协议的应用


CAN三层协议:物理层、数据链路层、 应用层 应用层:明确CAN消息帧的11位标识符 和8字节数据如何使用

CAN协议只对物理层和数据链路层作了描述 和规定,而对于应用层则没有说明。如果每 个都可以为自己的产品设计一个应用层协议。 不同厂商的设备之间不能互相操作

CMS提供基于变量、事件、域类型的对象, 以设计和规定一个设备(节点)的功能如何 被访问(例如,如何上载下载超过8字节的 一组数据(域),并且有终止传输的功能)。
CAL(CAN Application Layer)

NMT (Network ManagemenT)

提供网络管理(如初始化、启动和停止节点, 侦测失效节点)服务。这种服务是采用主从 通讯模式(所以只有一个NMT主节点)来实 现的。
NMT消息

由NMT主节点发 送,迫使从节点 状态转换。使用 2B数据单帧, 第一个数据字节 是命令,第二个 字节是目标节点 的ID
NMT消息

只有NMT-Master节点能够传送NMT Module Control报 文。NMT Module Control消息不需要应答。NMT消息
CANopen协议介绍


通信接 口和协议软件用于提供在总线上收发通信对象的服务,不 同CANopen设备间的通信是通过交换通信对象来完成的。 对象字典描述了设备使用的所有数据类型、通信对象和应用对象, 对象字典位于通信程序和应用程序之间,用于向应用程序提供接 口, 应用程序对对象字典进行操 作,即可实现CANopen通信。它包括 功能部分和通信部分,通信部分通过对对象字典进行操作实现 CANopen通信,而功能部分则根据应用要求来实现。

canbus标准

canbus标准

CAN总线(CAN-bus)是一种串行通信总线系统,被广泛应用于汽车和工业自动化领域,CAN总线的物理层定义了总线的位速率、位定时、电气特性、传输介质等。

CAN总线的位速率可以根据实际需要进行设置,常见的有500Kbps和250Kbps等。

CAN总线的位定时决定了通信的可靠性和稳定性,需要满足一定的时序要求。

数据链路层是CAN总线的重要组成部分,包括逻辑链路控制、媒体访问控制和差错控制等子层。

逻辑链路控制子层负责建立和维护通信节点之间的逻辑连接;媒体访问控制子层采用CSMA/CD协议,实现总线访问控制和数据传输;差错控制子层用于检测和处理总线上的错误。

在实际应用中,CAN总线可以采用单线或双线模式,根据实际情况选择合适的线数和线型。

同时,为了提高总线的可靠性和稳定性,可以采用一些措施,如波特率自适应、节点故障检测和自动重发等。

总之,CAN总线是一种广泛应用于汽车和工业自动化领域的串行通信总线系统,具有高可靠性和稳定性。

CAN总线标准定义了总线的物理层和数据链路层,为实际应用提供了重要的支持和保障。

can总线报告资料

can总线报告资料

can总线报告资料一、概述CAN(Controller Area Network)总线是一种广泛应用于汽车和工业领域的串行通信协议。

它具有高可靠性、高实时性和高带宽的特点,被广泛应用于车辆电子控制系统、工业自动化控制系统等领域。

本报告旨在介绍CAN总线的基本原理、应用领域和技术特点。

二、CAN总线的基本原理1. 物理层CAN总线采用双绞线进行数据传输,通信速率可达到1Mbps。

它采用差分信号传输,具有抗干扰能力强的特点。

CAN总线的物理层标准有CAN 2.0A和CAN 2.0B两种,分别适用于不同的应用场景。

2. 数据链路层CAN总线采用CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的数据链路层协议。

它通过监听总线上的数据活动来实现多节点之间的数据传输。

当多个节点同时发送数据时,会发生冲突,此时通过冲突检测和重新发送机制来解决冲突问题。

3. 帧格式CAN总线的数据传输以帧为单位进行。

CAN帧由起始位、标识符、控制位、数据域和校验位组成。

其中,标识符用于区分不同的数据帧,数据域用于传输实际数据,校验位用于检测数据的正确性。

三、CAN总线的应用领域1. 汽车电子控制系统CAN总线被广泛应用于汽车电子控制系统,如发动机控制单元(ECU)、制动系统、空调系统等。

它可以实现多个控制单元之间的高速数据传输和实时协同工作,提高整车的性能和安全性。

2. 工业自动化控制系统CAN总线在工业自动化领域的应用也非常广泛。

它可以连接各种传感器、执行器和控制器,实现工业设备之间的数据交换和控制。

通过CAN总线,工业自动化系统可以实现高效、可靠的数据传输和实时控制。

3. 其他领域除了汽车和工业领域,CAN总线还被应用于其他领域,如航空航天、医疗设备、军事装备等。

它的高可靠性和实时性使得CAN总线成为这些领域中的首选通信协议。

四、CAN总线的技术特点1. 高可靠性CAN总线采用差分信号传输和冲突检测机制,具有抗干扰能力强的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

字节7
数据4
字节8
数据5
字节9
数据6
字节10
数据7
字节11
数据8
CAN2.0A标准帧为11个字节,包括信息和数据两部分,前3个字节为信息部分。 字节1 :第7位FF表示帧格式(在标准帧中FF=0,在扩展帧中FF=1);第6位RTR 表示帧的 类型(RTR=0表示为数据帧 RTR=1表示为远程帧);DLC 表示在数据帧时实际的数据长度,上图
CAN的主要特性
低成本 极高的总线利用率 很远的数据传输距离(长达10Km) 高速的数据传输速率(高达1Mbit/s) 可根据报文的ID决定接收或屏蔽该报文 可靠的错误处理和检错机制 发送的信息遭到破坏后,可自动重发 节点在错误严重的情况下具有自动退出总线的功能 报文不包含源地址或目标地址,仅用标志符来指示功能、优先级信息
CAN如何工作(二)
CAN 能够使用多种物理介质,例如双绞线、光纤等,最常用的就 是双绞线。信号使用差分电压传送,两条信号线被称为“CAN_H” 和 “CAN_L”, 静态时均是2.5V 左右,此时状态表示为逻辑1 ,也可 以叫做“隐性” 。用CAN_H 比CAN_L 高表示的逻辑0, 称为“显 性”,此时通常电压值为CAN_H =3.5V 和CAN_L = 1.5V 。
命令交互方式(一)
发一帧回一帧 发一帧回多帧 发多帧回一帧 发多帧回多帧 流控制帧说明
命令交互方式(二)
发一帧回一帧:
Tools : 08H FCH 00H 03H 19H 02H FFH 00H 00H 00H 00H ECU : 08H FDH 00H 04H 59H 02H FFH 01H 80H 01H 00H
CAN的链路层描述
CAN2.0A标准帧格式 CAN2.0B扩展帧格式 ISO 15765协议数据格式 命令交互方式
CAN2.0A标准帧格式
7
6
5
4
3
2
10字节1FFRTRx
x
DLC 数据长度
字节2
报文识别码 ID.10-ID.3
字节3
ID.2-ID.0
x
x
x
x
x
字节4
数据1
字节5
数据2
字节6
数据3
中是指从字节4-字节11. 字节2-3 :为报文识别码(过滤ID的高11位) 字节4-11:为数据帧的实际数据,远程帧时无效。
CAN2.0B扩展帧格式
7
6
5
4
3
2
1
0
字节1
FF
RTR
x
x
DLC 数据长度
字节2
报文识别码
ID.28-ID.21
字节3
ID.20-ID.13
字节4
ID.12-ID.5
字节5
CANBUS协议物理层 及链路层详细分析
2012-2-20
目的
本文档的目的是指导我们熟悉CANBUS通讯协议的物理层及链路层,便于我 们更好的开展有关CANBUS的相关工作。
培训内容
什么是CAN CAN的发展历程 CAN的主要特性 CAN如何工作 CAN的物理层描述 CAN的链路层描述
什么是CAN
ID.4-ID.0
x
x
x
字节6
数据1
字节7
数据2
字节8
数据3
字节9
数据4
字节10
数据5
字节11
数据6
字节12
数据7
字节13
数据8
字节1:为帧信息 第7位FF 表示帧格式(在标准帧中FF=0,在扩展帧中FF=1);第6位RTR 表示
帧的类型(RTR=0表示为数据帧 RTR=1表示为远程帧); DLC表示在数据帧时实际的数据长度, 上图中是 指字节6-字节13
一个由CAN 总线构成的单一网络中,理论上可以挂接无数个节点。 实际应用中,节点数目受网络硬件的电气特性所限制。例如当使用 Philips P82C250 作为CAN 收发器时,同一网络中允许挂接110 个节 点。
一个典型的CAN应用于汽车控制的例子如下所示:
CAN的发展历程
CAN 最初出现在80 年代末的汽车工业中,由德国Bosch 公司最 先提出。当时由于消费者对于汽车功能的要求越来越多,而这些功能 的实现大多是基于电子操作的,这就使得电子装置之间的通讯越来越 复杂,同时意味着需要更多的连接信号线。提出CAN 总线的最初动机 就是为了解决现代汽车中庞大的电子控制装置之间的通讯,减少不断 增加的信号线。于是他们设计了一个单一的网络总线,所有的外围器 件可以被挂接在该总线上。1993 年,CAN 已成为国际标准 ISO11898(高速应用)和ISO11519 低速应用。由于CAN总线具有很高的 实时性能,因此,CAN已经在汽车工业、航空工业、工业控制、安全 防护等领域中得到了广泛应用。
CAN的物理层描述
可分为单线CAN协议和双线CAN协议。单线CAN协议目前主要出现 在GM和OPEL车系里面,1号脚通讯,波特率为33.3K。双线CAN协议常 见的波特率有500K(6/14)、 500K(3/8)、 250K(6/14)、125K(3/11)、 50K(1/9),括号内为通讯脚位。单、双线CAN协议的命令交互格式基 本一致。
CAN如何工作(一)
CAN 通讯协议主要描述设备之间的信息传递方式。CAN 层的定义 与开放系统互连模型OSI 一致。每一层与另一设备上相同的那一层通 讯,实际的通讯发生在每一设备上相邻的两层,而设备只通过模型物 理层的物理介质互连,CAN 的规范定义了模型的最下面两层:数据链 路层和物理层。物理层:规定通讯介质的物理特性(如电气特性和信 号交换的解释);数据链路层:规定了在介质上传输的数据位的排列 和组织(如数据校验和帧结构)。
字节2-5 为报文识别码(过滤ID的高29位) 字节6-13 为数据帧的实际数据,远程帧时无效
ISO 15765协议数据格式(一)
N_AI:地址信息部分 N_PCI:协议控制信息部分 N_Data:数据区
ISO 15765协议数据格式(二)
SF_DL:单帧数据域的字节长度,N_PCI的长度不包括在内 FF_DL:多包数据的数据域字节总长度 SN:多包数据的数据包编号 FS:流控制状态信息 BS:数据块大小(Block Size) STmin:多包数据传输的最小时间间隔
CAN,全称为“Controller Area Network”, 即控制器局域 网,是国际上应用最广泛的现场总线之一。最初,CAN 被设计作为汽 车环境中的微控制器通讯,在车载各电子控制装置ECU 之间交换信 息,形成汽车电子控制网络。比如:发动机管理系统、变速箱控制器、 仪表装备、电子主干系统中,均嵌入CAN 控制装置。
相关文档
最新文档