洛伦兹力到底做不做功
人教版选修3第三章磁场专题:洛伦兹力不做功的应用

洛伦兹力不做功的应用1、洛伦兹力时刻与速度垂直,不对电荷做功。
2、洛伦兹力在某方向的分力可以做功,在定性分析某方向运动时,需要分析洛伦兹力在这个方向的分力造成的加速度变化。
3、小球在绳子牵引下在竖直面内摆动,加上匀强磁场后,先后经过最低点速度等大,但绳子拉力不等大。
一、单选题1.如图所示,单摆摆球为带正电的玻璃球,摆长为L且不导电,悬挂于O点.已知摆球平衡位置C处于磁场边界内并十分接近磁场边界,此磁场的方向与单摆摆动平面垂直。
在摆角小于5度的情况下,摆球沿着AB弧来回摆动,下列说法不正确的是()A.图中A点和B点处于同一水平面上B.小球摆动过程中机械能守恒C.单摆向左或向右摆过C点时摆线的张力一样大D.在A点和B点,摆线的张力一样大【来源】吉林省长春外国语学校2018-2019学年高二下学期期中考试物理试题【答案】C【解析】【详解】A、B、带电小球在磁场中运动过程中洛伦兹力不做功,整个过程中小球的机械能都守恒,所以A、B处于同一水平线上;故A,B均正确.C、根据小球的机械能守恒可知,小球向左和向右经过C点时速率相等,则向心力相同,但由于洛伦兹力方向相反,所以单摆向左或向右运动经过C点时线的拉力大小不等;故C错误.D、球在A、B点时速度均为零,向心力均为零,细线的拉力大小都等于重力沿细线方向的分力,所以拉力大小相等;故D正确.本题选不正确的故选C.2.如图所示,在磁感应强度为B的匀强磁场中,有一长为L的悬线,拉一质量为m、带有+q的电荷量的小球,将摆球与悬线拉至右侧与磁感线垂直的水平位置由静止释放,则摆球通过最低位置时绳上的拉力为:A .B .C .3mg -D .3mg -【来源】黑龙江省牡丹江市第一高级中学2017-2018学年高二上学期期末考试物理试题【答案】B【解析】令小球摆到最低点时的速度为v ,根据动能定理: 212mgL mv =,小球带正电,在最低点受向下的洛伦兹力f =qBv ,由牛顿第二定律得: 2v F mg f m L--=,联立以上解得: 3F mg =+B 正确,ACD 错误。
洛伦兹力做功问题辨析

Җ㊀山东㊀刘㊀兵㊀㊀张㊀红㊀㊀在学习洛伦兹力时,我们可以根据左手定则得到洛伦兹力方向与速度方向时刻垂直,从而得到洛伦兹力对运动电荷不做功.那么,洛伦兹力真的不做功吗?我们先来看一道例题.例㊀如图1所示,下端封闭㊁上端开口㊁高h =5m 内壁光滑的细玻璃管竖直放置,管底有质量m =10g ㊁电荷量的绝对值|q|=0 2C 的小球,整个装置以v =5m s-1的速度沿垂直于磁场方向进入磁感应强度B =0 2T ,方向垂直纸面向内的匀强磁场,由于外力的作用,玻璃管在磁场中的速度保持不变,最终小球从上端管口飞出.下列说法正确的是(㊀㊀).(g取10ms-2)图1A.小球带负电B .小球在竖直方向做匀加速直线运动C .小球在玻璃管中的运动时间小于1s D.小球机械能的增加量为1J 分析㊀这道题的答案是B ㊁D.题目解完后,反思这道题发现这样一个问题,小球在竖直方向受到竖直向下的重力,若洛伦兹力不做功,小球在竖直方向的速度为什么变大了呢?解决这个问题需要从洛伦兹力入手.洛伦兹力是运动电荷受到磁场的作用力,当电荷的运动速度垂直于磁场时其公式可以写成F =qv B ,从这个公式可以看出洛伦兹力大小与电荷的运动速度有关.玻璃管刚进入磁场时,小球速度水平向右,此时小球所受洛伦兹力竖直向上.小球在磁场中运动过程中,同时参与了水平方向的匀速直线运动和竖直方向的初速度为零的匀加速直线运动,其合运动为匀变速曲线运动.小球的速度时刻在改变,所受洛伦兹力也时刻改变.根据运动的合成与分解可以将小球在磁场中运动过程中某时刻的速度进行分解,如图2所示.其中v 1㊁v 2分别为此时刻水平方向㊁竖直方向的分速度.此时小球所受洛伦兹力F 也可以进行分解,如图3所示.图2㊀㊀㊀㊀㊀㊀㊀㊀图3其中F 为合速度对应的洛伦兹力,F 1㊁F 2分别为v 1㊁v 2对应的洛伦兹力.下面我们来计算一下F 1㊁F 2这两个分力从小球进入磁场到小球离开玻璃管过程中的做功情况.由于小球水平方向为匀速直线运动,其速度v 1=5m s-1,这个速度对应的洛伦兹力为F 1,其大小为F 1=qv 1B =0 2N ,这个力的方向竖直向上,此力对小球竖直方向的运动状态产生了影响.这个力做的功为W 1=F 1h =1J .这也是小球竖直方向速度变大的原因.再来分析一下F 2的做功情况.F 2是分速度v 2对应的洛伦兹力,其大小为F 2=q v 2B ,这个分力的方向为水平向左.v 2与时间t 成正比,水平方向的位移x 与时间t 成正比,由此可得v 2正比于水平方向的位移x .由式F 2=q v 2B 可以得到F 2正比于水平方向的位移x .我们可以通过图象来反映F 2与水平方向位移x的变化关系,如图所示.图424通过已知条件可知小球飞出管口用时1s ,图4中的x 1=v 1t =5m ,小球离开管口时受到的水平分力F ᶄ2=q v 2B =0 4N ,F 2在此过程中所做的功数值上与图中阴影部分的面积相等,即W 2=-1J .动生电动势的产生原因同样也涉及洛伦兹力分力做功问题.下面我们来分析一下动生电动势的产生.如图5所示,一金属直导线以速度v 在垂直于纸面向外的匀强磁场B 内匀速向右运动,由右手定则可以得到导线b 端的电势高于a 端的电势,在导线中产生了电动势,这个电动势是怎么产生的呢?图5我们先来回顾一下电动势的概念.人教版高中物理教材«选修3G1»中对电动势是这样描述的: 电动势在数值上等于非静电力把1C 的正电荷在电源内从负极移送到正极所做的功. 在上面的情境中,是什么力充当了非静电力使电荷移动,从而产生了电动势呢?我们知道,在金属中能够自由移动的是自由电子,我们以其中的一个电子为研究对象进行分析.由于导线的运动使电子在水平方向产生了位移,水平方向的速度对应的洛伦兹力F 是竖直向上的.这样电子在竖直方向就产生了位移,与上面的题目类似,电子在匀强磁场中同时参与了水平方向和竖直方向两个方向的运动.正是水平方向的速度对应的洛伦兹力F 充当了非静电力使电子从b 端向a 端运动,从而产生了动生电动势.分析洛伦兹力做功问题时需要明确是哪个速度对应的洛伦兹力.合速度对应的洛伦兹力是不做功的,若把速度分解,其分速度对应的两个洛伦兹力就会分别对运动电荷做功.(作者单位:山东省邹平市第一中学)Җ㊀江苏㊀黄㊀剑㊀㊀新课程改革强调核心素养的培育,核心素养能有效推动学生的进步和发展,是促进学生各方面均衡发展的基石.因此,在物理教学活动中,务必加强对核心素养的培养.本文以 静摩擦力 为例,根据学生的特点及知识含量设计相关的课堂内容,旨在促进学生物理学科核心素养的养成.1㊀设计思想摩擦力是高中物理中的基础知识点,摩擦力在生活中处处有体现,学生能够自主感知事物的特点.教师应根据实际生活中的摩擦力,引导学生去感悟,再借助通俗易懂的实例给学生讲解什么是摩擦力.利用生活实际配合实验让学生自主思考,真正理解摩擦力的意义,建立物理概念.2㊀静摩擦力的教学设计2.1㊀教材分析静摩擦力是高中物理«必修1»教材中的重要知识点.在教学开始时,由重力㊁弹力等概念引出摩擦力,既有利于学生理解摩擦力,还能为力与运动㊁功与能等知识进行良好的铺垫.2.2㊀教学目标1)初步认识摩擦力的概念和种类;2)了解静摩擦力的产生条件;3)知晓静摩擦力的方向和大小,理解二力平衡.2.3㊀教学重点与难点明白静摩擦力的产生原因;掌握静摩擦力的方向和大小.2.4㊀教学流程设计教学流程如图1所示.创设情境游戏引入⇒复习回顾引出问题⇒实验感知形成概念⇒实验探究建立规律⇒讨论交流深入理解⇒学习小结总结提升图12.5㊀教学过程设计说明1)设置问题情境引入内容教师:提前备好绳子,让两名力气差别较大的学34。
《洛伦兹力》 知识清单

《洛伦兹力》知识清单一、什么是洛伦兹力洛伦兹力是指运动电荷在磁场中所受到的力。
当电荷在磁场中运动时,磁场会对电荷施加一种力的作用,这个力就被称为洛伦兹力。
它的发现对于理解电磁现象和现代物理学的发展具有极其重要的意义。
二、洛伦兹力的表达式洛伦兹力的表达式为:F =qvBsinθ其中,F 表示洛伦兹力,q 表示电荷的电荷量,v 表示电荷的速度,B 表示磁感应强度,θ 表示电荷速度方向与磁感应强度方向的夹角。
需要注意的是,当θ = 0°或 180°时,sinθ = 0,洛伦兹力为零,这意味着电荷沿着磁场方向或反方向运动时不受洛伦兹力。
三、洛伦兹力的方向洛伦兹力的方向可以用左手定则来判断。
伸开左手,让磁感线穿过掌心,四指指向正电荷运动的方向(或负电荷运动的反方向),大拇指所指的方向就是洛伦兹力的方向。
洛伦兹力的方向总是垂直于电荷运动的速度方向和磁场方向所确定的平面。
四、洛伦兹力的特点1、洛伦兹力永不做功因为洛伦兹力始终与电荷的运动方向垂直,所以它在任何情况下都不会对电荷做功。
它只是改变电荷的运动方向,而不改变电荷的速度大小。
2、洛伦兹力与电荷的运动状态有关电荷的速度大小、方向以及磁场的强弱和方向都会影响洛伦兹力的大小和方向。
3、洛伦兹力只作用在运动电荷上静止的电荷在磁场中不会受到洛伦兹力的作用。
五、洛伦兹力与安培力的关系安培力是磁场对通电导线的作用力,而导线中的电流实际上是由大量自由电子定向移动形成的。
从微观角度来看,安培力是洛伦兹力的宏观表现。
可以通过对一段导线中自由电子所受洛伦兹力的分析,推导出安培力的表达式。
六、洛伦兹力的应用1、质谱仪质谱仪是利用电场和磁场来分析带电粒子质量和比荷的仪器。
带电粒子先经过加速电场加速,获得一定的速度,然后进入磁场中做圆周运动。
根据粒子在磁场中运动的半径和所加磁场的强度,可以计算出粒子的比荷或质量。
2、回旋加速器回旋加速器通过电场对带电粒子进行加速,然后利用磁场使粒子做圆周运动,多次经过电场加速,最终使粒子获得较高的能量。
洛伦兹力做功特点应用浅议

洛伦兹力做功特点应用浅议洛伦兹力做功特点应用浅议一、洛伦兹力做功特点洛伦兹力每时每该都与速度方向垂直,因此洛伦兹力对带电粒子不做功,它只起到改变带粒子运动方向的作用,不改变粒子的速率,也即不改变粒子的动能。
二、依照洛伦兹力做功的特点,用能的观点解决问题带电粒子在复合场中做复杂的曲线运动时,假如不涉及求时刻的问题,往往能够从能的角度动身去解决问题比较方便。
例1 如图1所示,质量为m ,带电量为+q 的粒子,从两平行电极板正中央垂直电场和磁场的方向以速度V 飞入,已知两板间距为d ,磁感应强度为B ,这时粒子恰能直线穿过电场和磁场区域(不计重力),今将磁感应强度增大到某值。
则粒子将落到极板上,求粒子落到极板上的动能。
解析:题中有两个物理情形,开始是粒子选择器模型,当粒子所受洛伦兹力等于电场力时,即Eq qvB =,粒子不偏转,将磁感应强度增大后,洛伦兹力大于电场力,粒子向下偏,但不是类平抛运动,因为洛伦兹力方向时刻改变,不能用运动的合成与分解处理,又不是圆周运动,从力和运动的角度处理有困难,可抓住洛伦兹力不做功的特点,用能量观点处理。
在整个过程中,电场力做负功为2U q-,设末动能为k E ,用动能定理列方程可得:2212mv E U qk -=- 解得:qU mv E k 21212-= 例2 如图2所示,匀强电场的场强m V E /4=,方向水平向左,匀强磁场的磁感应强度B=2T ,方向垂直纸面向里,一个质量m=1g ,带正电的小物块A 从M 点沿绝缘粗糙的竖直壁无初速下滑,当它滑行h=0.8m 到N 点时就离开壁做曲线运动.当A 运动到P 点时,恰好处于平稳状态,现在速度方向与水平方向成450角,设P 与M 的高度差H=1.6m ,求(1)A 沿壁下滑时摩擦力做的功;(2)P 与M 的水平距离(g 取10m/s 2)。
解析:分析A 物体所做的运动可知,物体有三个运动过程:第一过程(M N )对粒子进行受力分析,如图3所示。
《洛伦兹力的应用》 讲义

《洛伦兹力的应用》讲义一、什么是洛伦兹力在物理学中,洛伦兹力是指运动电荷在磁场中所受到的力。
当一个带电粒子以速度 v 在磁场 B 中运动时,它所受到的洛伦兹力 F 的大小可以用公式 F =qvBsinθ 来计算,其中 q 是粒子的电荷量,θ 是速度 v 与磁场 B 的夹角。
洛伦兹力的方向始终与电荷运动的方向和磁场的方向垂直,遵循左手定则。
伸出左手,让磁感线穿过掌心,四指指向正电荷运动的方向(或负电荷运动的反方向),那么大拇指所指的方向就是洛伦兹力的方向。
二、洛伦兹力的特点1、洛伦兹力永不做功这是因为洛伦兹力始终与电荷的运动方向垂直,所以它只会改变电荷的运动方向,而不会改变电荷的速度大小,也就不会对电荷做功。
2、洛伦兹力只作用于运动电荷静止的电荷在磁场中不会受到洛伦兹力的作用。
三、洛伦兹力的应用1、质谱仪质谱仪是一种用于测量带电粒子质量和比荷的仪器。
它的基本原理就是利用洛伦兹力。
在质谱仪中,带电粒子先经过加速电场加速,获得一定的速度。
然后进入磁场,由于不同粒子的比荷不同,它们在磁场中做圆周运动的半径也不同。
通过测量粒子做圆周运动的半径,就可以计算出粒子的质量和比荷。
质谱仪在化学分析、核物理学、医学等领域都有广泛的应用。
例如,在化学分析中,可以用来确定化合物的成分和结构;在医学中,可以用于检测生物分子的质量和浓度。
2、回旋加速器回旋加速器也是利用洛伦兹力来加速带电粒子的装置。
带电粒子在回旋加速器的两个半圆形的中空金属盒之间运动。
在两个金属盒之间加上交变电场,使带电粒子在经过电场时被加速。
同时,在金属盒所在的区域加上垂直的匀强磁场,使带电粒子在磁场中做圆周运动。
通过不断地加速,带电粒子的速度可以达到很高的值。
回旋加速器在核物理研究、放射性治疗等方面发挥着重要作用。
3、磁流体发电机磁流体发电机是一种新型的发电装置,其原理同样基于洛伦兹力。
在磁流体发电机中,高温等离子体(含有大量带电粒子)以高速喷射进入磁场。
高中物理:洛伦兹力做功的特点及冲量的应用

⾼中物理:洛伦兹⼒做功的特点及冲量的应⽤⼀、洛伦兹⼒做功的特点洛伦兹⼒每时每刻都与速度⽅向垂直,所以洛伦兹⼒对带电粒⼦不做功,它只起到改变带粒⼦运动⽅向的作⽤,不改变粒⼦的速率,也不改变粒⼦的动能。
⼆、洛伦兹⼒的冲量如图1,⼀带电粒⼦电量为q,在磁感应强度为B的匀强磁场中做匀速圆周运动,速度为v。
某时刻v与x轴的夹⾓为,则它受到的洛伦兹⼒F与y轴的夹⾓也为。
分别将v、F正交分解,可知:在时间t内F沿x轴⽅向的冲量为:同理,F在y轴⽅向的冲量为:例1. 如图2所⽰,在竖直绝缘的平台上,⼀个带正电的⼩球以⽔平速度抛出,⽅向与垂直纸⾯向⾥的磁场⽅向垂直,⼩球飞离平台后落在地板上,设着地速度的⽔平分量为,竖直分量为。
若磁场减弱,其它条件不变,⼩球着地速度的⽔平分量为,竖直分量为。
则:()A.B.C.D.分析:设平台⾼为h,因为洛伦兹⼒在x⽅向分量向右,由洛伦兹⼒在x⽅向的冲量及动量定理得:可知,h⼀定,⽽,则,故C正确。
⼜由于洛伦兹⼒总不做功,两种情况下⼩球都只有重⼒做功且做功均为mgh,由动能定理可知⼩球落地速率相等,即再由,B正确。
故本题的正确答案为BC。
例2. 如图3所⽰,是两块⾯积很⼤,互相平⾏⼜相距较近的带电⾦属板,相距为d,两板间的电势差为U。
同时,在这两板间还有垂直纸⾯向外的匀强磁场。
⼀束电⼦通过左侧带负电的板上的⼩孔,沿垂直于⾦属板的⽅向射⼊磁场,为使该电⼦束不碰到右侧带正电的板,问所加磁场的磁感应强度⾄少要多⼤?电⼦的重⼒以及从⼩孔射⼊时的初速度均可不计。
分析:电⼦在电场⼒作⽤下开始向右加速运动,同时受到洛伦兹⼒作⽤⽽向上偏转。
为使电⼦束不碰到右板,临界条件是当电⼦到达板时,速度⽅向刚好与板平⾏。
电场⼒⽔平向右,电⼦在竖直⽅向上只受洛伦兹⼒作⽤,由洛伦兹⼒的冲量公式和动量定理有:在电⼦的运动过程中,电场⼒做正功,洛伦兹⼒不做功,由动能定理有:▍编辑:Wulibang(ID:2820092099)▍来源:综合⽹络。
洛伦兹力永远不做功吗?

洛伦兹力永远不做功吗?作者:刘大华来源:《物理教学探讨》2007年第13期1 洛伦兹力可以做功当我们打开高中物理参考资料时,常常会见到这样的论断:洛伦兹力永远不做功。
洛伦兹力真的永远不做功吗?请看下面的例题。
例题如图1所示,在空间有水平方向的匀强磁场,磁感应强度大小为B,方向垂直纸面向内,在磁场中有一长为L,内壁光滑且绝缘的细筒MN竖直放置,在筒的底部有一质量为m、带电量为q的小球,现使细筒MN沿垂直磁场方向水平向右匀速运动,设小球的带电量不变,重力忽略不计,则当细筒以速度V1运动时,试计算小球刚好运动到细筒顶部M时的动能为多大?解析因为细筒作匀速运动,可以以细筒为参照物,由题意可知,竖直方向上小球只受洛伦兹力f1作用,如图2所示。
设小球从细筒的底部上升到顶部M时,相对细筒的速度为V2,根据动能定理,有:以地面为参照物,小球到达筒顶M的总动能为:由以上的解析过程可以看出,在小球沿细筒上升的过程中,小球受到的洛伦兹力f1对小球做了功。
这种判断正确吗?2 洛伦兹做功的物理意义我们继续分析上述例题。
在小球沿细筒上升时,小球就获得了相对细筒竖直向上的速度,从而使得小球在水平方向上受到洛伦兹力f2的作用,如图2所示,由于f2的方向水平向左,所以f2对小球做负功。
在小球从筒底到筒顶的过程中f2做了多少负功呢?请看下面的解析过程:设小球从筒底到筒顶的运动时间为t,该过程中小球的水平位移为x,f2所作的功为W2,则:由以上四式联立可以解得W2=-BqV1L。
可见f1做正功,f2做负功,且两力做功的代数和W1+W2=0,那么两力做功的代数和为零与两力不做功的物理意义相同吗?不同。
我们知道功是能量转化的量度。
在克服f2做功的过程中,要消耗其他能;f1做正功,又把克服f2所消耗的能转化为小球的动能。
可见虽然W1+W2=0,但是正是由于f1、f2做功才实现了把其他形式的能转化为小球动能的物理过程,即从总体上来看,洛伦兹力做功并没有产生或消耗能量,而是起着转化能量的作用,亦即洛伦兹力如果做功的话,其做功的代数和仍然为零。
高中物理洛伦兹力的知识点介绍

【导语】安培⼒是学⽣学习⽆,⾼考物理需要学习到,在选择题中经常会考到这⽅⾯的知识点,下⾯将为⼤家带来关于安培⼒的介绍,希望能够帮助到⼤家。
洛伦兹⼒是带电粒⼦在磁场中运动时受到的磁场⼒。
洛伦兹⼒f的⼤⼩等于Bvq,其的特点就是与速度的⼤⼩相关,这是⾼中物理中少有的⼀个与速度相关的⼒。
我们从⼒的⼤⼩、⽅向、与安培⼒关系这三个⽅⾯来研究洛伦兹⼒。
洛伦兹⼒的⼤⼩ ⒈当电荷速度⽅向与磁场⽅向垂直时,洛伦兹⼒的⼤⼩f=Bvq;⾼中物理建议同学们⽤⼩写的f来表⽰洛伦兹⼒,以便于和安培⼒区分。
⒉磁场对静⽌的电荷⽆作⽤⼒,磁场只对运动电荷有作⽤⼒,这与电场对其中的静⽌电荷或运动电荷总有电场⼒的作⽤是不同的。
⒊当时电荷沿着(或逆着)磁感线⽅向运⾏时,洛伦兹⼒为零。
⒋当电荷运动⽅向与磁场⽅向夹⾓为θ时,洛伦兹⼒的⼤⼩f=Bvqsinθ; 洛伦兹⼒的⽅向 ⒈⽤左⼿定则来判断:让磁感线穿过⼿⼼,四指指向正电荷运动的⽅向(或负电荷运动⽅向的反⽅向),⼤拇指指向就是洛伦兹⼒的⽅向。
⒉⽆论v与B是否垂直,洛伦兹⼒总是同时垂直于电荷运动⽅向与磁场⽅向。
洛伦兹⼒的特点 洛伦兹⼒的⽅向总与粒⼦运动的⽅向垂直,洛伦兹⼒只改变速度的⽅向,不改变速度的⼤⼩,故洛伦兹⼒永远不会对v有积分,即洛伦兹⼒永不做功。
安培⼒和洛伦兹⼒的关系 洛伦兹⼒是磁场对运动电荷的作⽤⼒,安培⼒是磁场对通电导线的作⽤⼒,两者的研究对象是不同的。
安培⼒是洛伦兹⼒的宏观表现,洛伦兹⼒是安培⼒的微观实质。
对洛伦兹⼒和安培⼒的联系与区别,可从以下⼏个⽅⾯理解: 1.安培⼒⼤⼩为F=ILB,洛伦兹⼒⼤⼩为F=qvB。
安培⼒和洛伦兹⼒表达式虽然不同,但可互相推导,相互印证。
2.洛伦兹⼒是微观形式,安培⼒是宏观表现。
洛伦兹⼒是单个运动电荷在磁场中受到的⼒,⽽安培⼒是导体中所有定向移动的⾃由电荷受的洛伦兹⼒的宏观表现。
3.尽管安培⼒是导体中所有定向移动的⾃由电荷受的洛伦兹⼒的宏观表现,但也不能认为定培⼒就简单地等于所有定向移动电荷所受洛伦兹⼒的和,⼀般只有当导体静⽌时才能这样认为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛伦兹力到底做不做功
作者:杨朝平
来源:《物理教学探讨》2007年第05期
在高中《物理》教材(第二册·必修加选修)第十五章“磁场”的第四节“磁场对运动电荷的作用”中,有这样一个思考与讨论:“带电粒子在磁场中运动时,洛伦兹力对带电粒子是否做功?说明理由。
”
下面是笔者在组织学生讨论时的情况。
先让学生进行独立思考后在组内进行讨论,教师巡视指导。
发现大多数学生很快就能根据洛伦兹力的方向始终与带电粒子的运动速度方向垂直而得出与教材相同的结论。
但也有少数学生眉头紧缩,组内讨论时进行得非常激烈。
最后进行小组的汇报发言,每个组的发言都是相同的,一致认为洛伦兹力对在磁场中运动的带电粒子不做功。
原因是带电粒子受到的洛伦兹力的方向始终是与粒子的运动方向垂直的,只改变带电粒子运动的速度方向,不改变粒子运动的速率。
这正是所需要的结果。
这时我才发现刚才争论得最激烈的几个同学仍旧是眉头紧缩,在下面窃窃私语。
于是我问道:有没有不同的意见?
马上就有学生抢着回答:有,我没有想通,既然洛伦兹力对单个在磁场中运动的带电粒子不做功,那洛伦兹力的合力为什么又能做功?
我觉得教学的机会来了。
就让学生对这个问题开展讨论,我也来到学生中和他们一起讨论。
生:在本节课的前面推导洛伦兹力的大小时讲过“安培力F安可以看作是作用在每个运动电荷上的洛伦兹力F的合力”。
但在本章第二节“安培力磁感应强度”的练习题中做过安培力是可以做功的,这是怎么一回事?是不是作用在单个运动电荷上的洛伦兹力不做功,而洛伦兹力的合力又是可以做功的?
师:你们能将前后知识结合起来思考很好,但不要这样快就下结论。
我们先举例来进行分析讨论。
生:在前面我们做过这样的题:如图,在竖直向下的匀强磁场B中,有两根放置在水平面上的光滑平行直导电轨道ab,cd。
ab与cd之间距离为L,在两轨道上垂直放置一导体棒MN,已知电源的电动势为E,内阻不计,导体棒MN的电阻为R。
其余部分电阻不计。
MN 与ab,cd间的接触良好。
(要求学生将题写在黑板上)
师:这个例子举得很好,能说明问题。
生:导体棒MN受到安培力,且:
F=BIL=BLE/R。
F的方向由左手定则可知,平行于ab向右,由于轨道光滑,MN将向右运动,此时安培力F就做了正功。
师:对,你的计算是正确的。
下面大家以导体中的一个电荷为对象进行研究。
(提示:为了方便计算,可以设一个带电量为+Q电荷,在电场力的作用下运动的速度为v。
)
生:由图可知,电荷+Q在电场力作用下定向移动的方向为由M向N运动。
则受到的洛伦兹力:F洛=QvB。
由左手定则可知F洛的方向水平向右,与v的方向垂直,洛伦兹力对电荷没有做功。
学生回答后满脸疑惑地看着老师。
这时有学生说:电荷+Q还有一个分运动,它也在随棒MN运动。
师:对,这就是问题的关键。
导体MN中的电荷不仅在电场力的作用下沿导体以速度v定向移动,而且还随导体在安培力的作用下以速度v运动。
下面我们大家一起来研究这种情况下的电荷受到的洛伦兹力的情况。
如图所示,导体棒中的正电荷Q参与了两个运动,在电场力的作用下产生的定向移动的速度v,和随棒一起向右运动的速度v′,合速度为v合。
电荷受到的总洛伦兹力:F合=Qv合B。
F合的方向与V合的方向垂直,其对电荷不做功。
F合的一个分量是F1=QvB。
这个分力使电荷(导体棒)产生向右的加速度,形成向右的速度v′,所以这个分力对电荷做正功。
F合的另一个分量是F2=Qv′B。
F2的方向与v的方向相反,阻碍电荷的定向移动,做负功。
可以证明两个分力F1和F2所做功的代数和为零。
结果仍然是洛伦兹力并不做功。
生:那么在这里洛伦兹力有什么作用?
师:这个问题问得很好,大家可以从能量的角度进行分析。
生:分力F2阻碍电荷的定向移动做负功,消耗了电能。
分力F1做正功,电荷的动能增加。
师:对,再归纳一下。
生:我认为在本题中洛伦兹力没有做功,只起到传递能量的作用。
电场力克服洛伦兹力的一个分力F2所做的功,通过另一个分力F1做功转化为导体棒的动能。
师:对,从宏观的角度讨论时,F的两个部分是起着不同作用:F2与导体棒平行起着阻碍电荷定向移动的作用,做负功,消耗电能;F1与导体棒垂直,在宏观上表现为导体棒受到的安培力。
当导体棒在安培力的作用下运动时,做正功,将电能转化为动能。
所以,这里说的安培力实际上是洛伦兹力的一个分力的宏观表现,安培力做功只是在传递能量。
洛伦兹力是不做功的。
生:哦,我明白了,在课文上之所以说成“安培力F安可以看作是作用在每个运动电荷上的洛伦兹力F的合力。
”而没有说“安培力F安是作用在每个运动电荷上的洛伦兹力F的合力”。
原来安培力只是洛伦兹力的一个分量的宏观表现,无论在什么情况下洛伦兹力都不做功。
(栏目编辑罗琬华)。