2018年云南省中考数学试卷(word版)
云南省昆明市2018年中考数学试题及答案解析(word版)

2018年省市中考数学试卷(全卷三个大题,共26个小题,共6页;满分120分,考试时间120分钟)一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是.2.(3.00分)共享单车进入市已两年,为市民的低碳出行带来了方便,据报道,市共享单车投放量已达到240000辆,数字240000用科学记数法表示为.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC 的度数为.4.(3.00分)若m+=3,则m2+=.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A. B. C. D.8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值围是()A.m<3 B.m>3 C.m≤3 D.m≥39.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO 的度数为()A.90°B.95°C.100° D.120°12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B. C. D.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B 处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)20.(8.00分)(列方程(组)与不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值图;(2)在第二象限的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP 交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.2018年省市中考数学试卷参考答案与试题解析一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是1.[分析]根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.[解答]解:在实数﹣3,0,1中,最大的数是1,故答案为:1.[点评]此题主要考查了实数的大小,关键是掌握实数比较大小的方法.2.(3.00分)共享单车进入市已两年,为市民的低碳出行带来了方便,据报道,市共享单车投放量已达到240000辆,数字240000用科学记数法表示为 2.4×105.[分析]科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.[解答]解:将240000用科学记数法表示为:2.4×105.故答案为2.4×105.[点评]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以与n的值.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC 的度数为150°42′.[分析]直接利用度分秒计算方法得出答案.[解答]解:∵∠BOC=29°18′,∴∠AOC的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.[点评]此题主要考查了角的计算,正确进行角的度分秒转化是解题关键.4.(3.00分)若m+=3,则m2+=7.[分析]把已知等式两边平方,利用完全平方公式化简,即可求出所求.[解答]解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7[点评]此题考查了分式的混合运算,以与完全平方公式,熟练掌握运算法则与公式是解本题的关键.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为y=﹣x.[分析]直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.[解答]解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(﹣3,4),设过点A′的正比例函数的解析式为:y=kx,则4=﹣3k,解得:k=﹣,则过点A′的正比例函数的解析式为:y=﹣x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A″,此时OA″与OA′在一条直线上,故则过点A′的正比例函数的解析式为:y=﹣x.[点评]此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为﹣(结果保留根号和π).[分析]正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,根据正多边形的中心角公式求出∠DOE,求出OH,得到正六边形ABCDEF的面积,求出∠A,利用扇形面积公式求出扇形ABF的面积,结合图形计算即可.[解答]解:正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,∠DOE==60°,∴OD=OE=DE=1,∴OH=,∴正六边形ABCDEF的面积=×1××6=,∠A==120°,∴扇形ABF的面积==,∴图中阴影部分的面积=﹣,故答案为:﹣.[点评]本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、角的计算公式、扇形面积公式是解题的关键.二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A. B. C. D.[分析]找到个图形从左边看所得到的图形即可得出结论.[解答]解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.[点评]此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值围是()A.m<3 B.m>3 C.m≤3 D.m≥3[分析]根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值围即可.[解答]解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.[点评]本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间[分析]根据≈2.236,可得答案.[解答]解:∵≈2.236,∴﹣1≈1.236,故选:B.[点评]本题考查了估算无理数的大小,利用≈2.236是解题关键.10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件[分析]直接利用样本容量以与方差的定义以与中位数的定义和必然事件的定义分别分析得出答案.[解答]解:A、甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,故此选项错误;B、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;C、在“童心向党,下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;D、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.故选:D.[点评]此题主要考查了样本容量以与方差、中位数和必然事件的定义,正确把握相关定义是解题关键.11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO 的度数为()A.90°B.95°C.100° D.120°[分析]依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.[解答]解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.[点评]本题主要考查了三角形角和定理以与三角形外角性质的运用,解题时注意:三角形角和等于180°.12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=[分析]直接利用二次根式以与单项式乘以单项式运算法则和实数的计算化简求出即可.[解答]解:A、,错误;B、,错误;C、3a3•2a﹣2=6a(a≠0),正确;D、,错误;故选:C.[点评]此题主要考查了二次根式以与单项式乘以单项式运算法则和实数的计算等知识,正确掌握运算法则是解题关键.13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=[分析]直接利用两船的行驶距离除以速度=时间,得出等式求出答案.[解答]解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.[点评]此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B. C. D.[分析]如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;[解答]解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.[点评]本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.[分析]根据ASA证明△ADE≌△ABC;[解答]证明:(1)∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,[点评]本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.[分析]根据分式的运算法则即可求出答案.[解答]解:当a=tan60°﹣|﹣1|时,∴a=﹣1∴原式=•==[点评]本题考查分式的运算法则,解题的关键是熟练运用分式运算法则,本题属于基础题型.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为108度.(3)若该超市这一周有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?[分析](1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.[解答]解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.[点评]本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.[分析](1)列表得出所有等可能结果;(2)从表格中得出抽到B队和C队参加交流活动的结果数,利用概率公式求解可得.[解答]解:(1)列表如下:由表可知共有6种等可能的结果;(2)由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,所以抽到B队和C队参加交流活动的概率为=.[点评]本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B 处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)[分析]如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD﹣BC计算即可;[解答]解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.[点评]本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.20.(8.00分)(列方程(组)与不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?[分析](1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.[解答]解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米[点评]本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.[分析](1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH 为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.[解答](1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.[点评]本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值图;(2)在第二象限的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.[分析](1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)将AB所在直线的解析式求出,利用直线AP与AB垂直的关系求出直线AP 的斜率k,再求直线AP的解析式,求直线AP与x轴交点,求点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.[解答]解:(1)由题意得,,解得,∴抛物线的解析式为y=x2﹣2x,令y=0,得x2﹣2x=0,解得x=0或2,结合图象知,A的坐标为(2,0),根据图象开口向上,则y≤0时,自变量x的取值图是0≤x≤2;(2)设直线AB的解析式为y=mx+n,则,解得,∴y=3x﹣6,设直线AP的解析式为y=kx+c,∵PA⊥BA,∴k=,则有,解得c=,∴,解得或,∴点P的坐标为(),∴△PAB的面积=|﹣|×||﹣×||×﹣×|﹣|×||﹣×|2﹣1|×|0﹣(﹣3)|=.[点评]本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP 交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.[分析](1)过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC;(2)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得∴,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得==.[解答]解:(1)过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;(2)∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF﹣AE=AC﹣=AC,∴==[点评]本题考查相似三角形的综合问题,涉与相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.21 / 21。
2018年云南省中考数学试卷及答案解析

2018年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1. (分)-1的绝对值是2. (分)已知点P (a, b)在反比例函数丫=的图象上,贝U ab= .3. (分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为2-4= .(分)分解因式:X. 4 -5. (分)如图,已知AB// CD若=,则=. ---------------6. (分)在厶ABC中, AB= AC=5若BC边上的高等于3,贝U BC边的长为 .——二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7. (分)函数丫=的自变量x的取值范围为()A. x < 0B. x< 1C. x > 0D. x > 18. (分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A. 三棱柱B .三棱锥C .圆柱D .圆锥9. (分)一个五边形的内角和为()A. 540°B. 450°C. 360°D. 180°23456,...... ,第aa,an,- a,-,10.(分)按一定规律排列的单项式:a, - a个单项式是()nnn+1nnn a1)D. B . —a1 C. (―)(-. Aaa11. (分)下列图形既是轴对称图形,又是中心对称图形的是()A. 三角形B .菱形C .角D .平行四边形12. (分)在Rt△ ABC中,/ C=90,AC=1, BC=3 则/A的正切值为()A. 3B. C. D.溪达四海”]数字工坊[玉汝于成,]数字工匠[以“日,8月12年2017(分).13. 为主题的2017 一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B. “非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人2+=(x+=6 ,则x)1 4.(分)已知A.38 B.36 C.34 D.32 三、解答题(共9 小题,满分70 分)-io)(分)计算:—2cos45° —()—(n—115.16. (分)如图,已知AC平分/ BAD AB=AD求证:△ ABC^A ADC17. (分)某同学参加了学校举行的“五好小公民?红旗飘飘”演讲比赛,7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1 评委 2 评委 3 评委 4 评委 5 评委 6 评委7888657 打分7(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18. (分)某社区积极响应正在开展的“创文活动” ,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造. 已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积的三张卡片(注:这三张卡片的形状、3,2,1(分)将正面分别写着数字. 19. 大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.( 1 )用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.2+bx+c的图象经过A (0, 3), B20.(分)已知二次函数y=- x (-4,-)两点. (1)求b, c的值.2+bx+c 的图象与x 轴是否有公共点,求公共点的坐标;若)二次函数y=- x(2 没有,请说明情况.21. (分)某驻村扶贫小组为解决当地贫困问题, 带领大家致富. 经过调查研究, 他们决定利用当地生产的甲乙两种原料开发A, B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品32120200 商品B设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小22. (分)如图,已知AB是。
云南省昆明市2018年中考试数学试题(原卷版).docx

2018年昆明市初中学业水平考试数学试题卷(全卷共三个大题,共23个小题,共8页;满分120分,考试时间120分钟)一、填空题:(每小题3分,共18分。
请将答案写在相应题号后的横线上。
)1.在实数-3,0,1中,最大的数是。
2.共享单车进入昆明已两年,为市民的的低碳出行带来了方便。
据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学计数法表示为。
3.如图,过直线AB上一点O作射线OC,∠BOC=29018',则AOC的度数为。
4.若13mm+=,则221mm+=5.如图,点A的坐标为(4,2)。
将点A绕坐标原点O旋转900后,再向左平移1个单位长度得到点A',则过点A'的正比例函数的解析式为。
6.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为。
(结果保留根号和π)。
第3题图第5题图第6题图二、选择题:(每小题4分,共 32 分,在每小题给出的四个选项中,只有一个是正确的,请将正确选项的代号填在相应的括号内。
)7.下列几何体的左视图为长方形的是()A.B. C. D.8.关于x 一元二次方程x 2-x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A.m <3B.m >3C.m ≤3D.m ≥39.你估算1的值( )A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间 10.下列判断正确的是( )A.甲乙两组学生身高的平均值均为1.58,方差分别为S 2 =2.3,S 2 =1.8,则甲组学生的身高更整 齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事 件11.在∆AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( ) A.900 B.950 C.1000 D.1200第11题图12.下列运算正确的是()A.(-13)2=9B.20180-38-=-1C.3a3∙2a-2 =6a(a≠0)D.18126-=13.甲乙两船从相距300km的A,B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.18012066x x=+- B.18012066x x=-+ C.1801206x x=+ D.1801206x x=-14.如图,点A在双曲线y=kx(x>0)上,过点A作AB⊥x轴,垂足为点B。
2018年云南中考数学试卷(含解析)

2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________. 【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________.【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310.4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果.5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OA OC=________. 【答案】14. 【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,AB =34,AC =5.若BC 边上的高等于3,则BC 边的长为________.【答案】1或9.【解析】设边BC 上的高为AD .当边BC 上的高AD 在△ABC 的内部时,如答图1所示,在Rt △ABD 中,由勾股定理得BD =22AB AD -=22(34)3-=5,在Rt △ACD 中,由勾股定理得CD =22AC AD -=2253-=4,所以BC =5+4=9.在边BC 上的高AD 在△ABC 的外部时,如答图2所示,同理BD =5,CD =4,所以BC =5-4=1.(第5题图) C DAB O(第6题答图1) CD A B (第6题答图2) CDA B二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数y =1x -的自变量x 取值范围为 ········································ ( )A .x ≤0B .x ≤1C .x ≥0D .x ≥1【答案】B .【解析】函数y =1x -自变量x 满足1x -≥0,解得x ≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。
2018年云南省昆明市中考数学试卷

2018年云南省昆明市中考数学试卷(全卷三个大题,共23个小题,共6页;满分120分,考试时间120分钟) 一、填空题(每小题3分,满分18分)1.在实数–3,0,1中,最大的数是_____1___.2.共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为__2.4×105______.3.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18',则∠AOC 的度数为__150°72'______. 4.若m +m 1=3 ,则m 2+21m=____7____. 5.如图,点A 的坐标为(4,2),将点A 绕坐标原点O 能转90°后,再向左平移1个单位长度得到点A',则过点A' 的正比例函数的解析式为__y=x 34-或 y=–4x ______. 6.如图,正六边形 ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF , 则图中阴影部分的面积为__3323π-______(结果保留根号和π).二、选择题(每小題4分,满分32分)7.下列几何体的左视图为长方形形的是( C )8.关于x 的一元二次方程x 2–23x +m =0有两个不相等的实数根,则实数m 的取值范围是( A )A .m <3B .m >3C .m ≤3D .m ≥3OB AC (第3题图) 29°18'OxyA(第5题图) ABCDEF (第6题图)9.黄金分割数215-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算15-的值( B )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间10.下列判断正确的是( D )A .甲乙两组学生身高的平均数均为1.58,方差分别为S 2甲=2.3,S 2乙=1.8,则甲组学生的身高较整齐; B .为了了解某县七年年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000;CD .有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.在△AOC 中,OB 交AC 正点D 量角器的摆放如图所示,则∠CDO 的度数为( B )A .90°B .95°C .100°D .120° 12.下列运算正确的是( C )A .9312=⎪⎭⎫⎝⎛- B .2018°–38-=–1C .)0(62323≠=⋅-a a a aD .18–12=613.甲、乙两船从相距300km 的A ,B 两地同时出发相向而行.甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km /h ,若甲、乙两船在静水中的速度均为x km /h ,则求两船在静水中的速度可列方程为( A )A .=+6180x 6120-x B .=-6180x6120+x C .=+6180x x 120 D . =x1806120-x 14.如图,点A 在双曲线y =xk(x >0)上,过点A 作AB ⊥x 轴,垂足为点B .分别以BAC (第11题图)点O 和点A 为圆心,大于21OA 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC .若AC =1,则k 的值为( B ) A .2B .2532C .534 D .5252+ 三、解答题(共9题,满分70分) 15.(本小题6分)如图,在△ABC 和△ADE 中,AB =AD ,∠B =∠D ,∠1=∠2.16.(本小题7分)先化简,再求值:6311212--÷⎪⎭⎫ ⎝⎛+-a a a ,其中a =tan 60°–1-17.(本小题7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列间题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图:在扇形统计图中A 种支付方式所对应的圆心角为_______度 (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?18.(本小题6分)为了促进“足球进校园”活动的开展展,某市举行了中学生足球比赛活动.现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.19.(本小题7分)小婷在放学路上,看到隧道上方有一块宣传“中国——南亚博览会”竖直标语牌卧CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42≈0.90,3≈20.(本小题8分)(列方程(组)及不式解应用题)水是人类生命之源,为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费.........不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21.(本小题8分)如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 点F ,AC 平 分∠BAD ,连接BF . (1)求证:AD ⊥ED ; (2)若CD =4,AF =2,求⊙O 的半径.22.(本小题9分)如图,抛物线y =ax 2+bx 过点B (1,–3),对称轴是直线x =2,且抛物线与x 轴的正半轴交于点A .(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.23.(本小题12分)如图1.在矩形ABCD 中,P 为CD 边上一点(DP <CP )∠APB =90°.将△ADP 沿AP 翻折得到△AD'P ,PD' 的延长线交边AB 于点M ,过点B 作BN ∥MP 交DC 于点N .(1)求证:AD 2=DP ·PC(2)请判断四边形PMBN 的形状,并说明理由;(3)如图2,连接AC ,分别别交PM ,PB 于点E ,F .若AD DP =21,求AEEF的值.C DABC D P N D 'FABCD P N D 'E21.22.23.。
(完整版)2018年云南省中考数学试卷及答案.doc

机密★2018 年云南省学业水平考试试题卷数学一、填空(共 6 小,每小 3 分,分 18 分)1.(3 分) 1 的是.2.(3 分)已知点 P(a,b)在反比例函数 y= 的象上, ab= .3.(3 分)某地主“不忘初心,牢使命”的告会,参加会的人3451 人,将3451 用科学数法表示.4.(3 分)分解因式: x 2 4= .5.(3 分)如,已知 AB∥ CD,若= ,= .6.(3 分)在△ ABC中,AB= ,AC=5,若 BC上的高等于 3, BC的.二、(共8 小,每小 4 分,分 32 分 . 每小只有一个正确)7.(4 分)函数 y= 的自量 x 的取范()A. x≤ 0 B .x≤1C. x≥ 0 D .x≥18.(4 分)下列形是某几何体的三(其中主也称正,左也称),个几何体是()A.三棱柱 B .三棱C.柱 D .9.(4 分)一个五形的内角和()A.540° B .450°C.360° D .180°10.(4 分)按一定律排列的式:a, a2,a3, a4, a5,6个式是()a ,⋯⋯,第 nA. a n B . a nC.( 1)n+1a n D .( 1)n a n11.(4 分)下列形既是称形,又是中心称形的是()A.三角形 B. 菱形C.角 D .平行四形12.(4 分)在 Rt△ ABC中,∠ C=90°, AC=1,BC=3,∠ A 的正切()A. 3 B .C. D .13.(4 分) 2017 年 12 月 8 日,以“ [ 数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海” 主的2017 一一路数学科技文化?玉溪第 10 届全国三数字化新大(称“全国 3D大”)决在玉溪幕.某学校了解学生次大的了解程度,在全校 1300 名学生中随机抽取部分学生行了一次卷,并根据收集到的信息行了,制了下面两幅.下列四个的是()A .抽取的学生人数为 50 人B.“非常了解”的人数占抽取的学生人数的 12%C.a=72°2+ =(D.全校“不了解”的人数估计有 428 人.(分)已知x+ ,则)14 4 =6xA .38 B. 36 C. 34 D. 32三、解答题(共9 小题,满分70 分)15.(6 分)计算:﹣2cos45 °﹣()﹣1 0 ﹣(π﹣1)16.(6 分)如图,已知 AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .17.(8 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A (0,3), B(﹣ 4,﹣)两点.(2)二次函数 y=﹣ x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品100 千克进行深入研究,已知现有甲种原料 293 千克,乙种原料 314 千克,生产 1 千克 A 商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千生产成本(单位:元)克)A 商品 3 2 120B 商品 2.5 3.5 200设生产 A 种商品 x 千克,生产 A 、 B 两种商品共 100 千克的总成本为 y 元,根据上述信息,解答下列问题:(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?22.( 9 分)如图,已知 AB 是⊙ O 上的点,C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD= ∠BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.23.(12 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点,AF=AD +FC,平行四边形 ABCD 的面积为 S,由 A 、E、F 三点确定的圆的周长为 t.(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.2018 年云南省中考数学试卷参考答案与试题解析一、填空题(共 6 小题,每小题 3 分,满分 18 分)1.(3.00 分)﹣ 1 的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵ | ﹣ 1| =1,∴﹣ 1 的绝对值是 1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.2.( 3.00 分)已知点 P(a,b)在反比例函数y=的图象上,则ab= 2.【分析】接把点 P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点 P( a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为: 2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00 分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451 人,将3451 用科学记数法表示为 3.451×103 .【分析】科学记数法的表示形式为 a× 10n的形式,其中 1≤ | a| <10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】解: 3451=3.451×103,故答案为: 3.451×103.a×10n的形式,其中 1 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为≤| a| <10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3.00 分)分解因式: x 2﹣ 4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解: x2﹣4=( x+2)( x﹣ 2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00 分)如图,已知 AB ∥ CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵ AB ∥CD ,∴△ AOB ∽△ COD,∴= = ,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00 分)在△ ABC 中, AB=,AC=5,若BC边上的高等于3,则 BC 边的长为9 或1 .【分析】△ABC 中,∠ ACB 分锐角和钝角两种:①如图 1,∠ ACB 是锐角时,根据勾股定理计算BD 和 CD 的长可得 BC 的值;②如图 2,∠ ACB 是钝角时,同理得: CD=4, BD=5,根据 BC=BD ﹣ CD 代入可得结论.【解答】解:有两种情况:①如图 1,∵ AD 是△ ABC 的高,∴∠ ADB= ∠ADC=90°,由勾股定理得: BD===5,CD===4,∴BC=BD +CD=5+4=9;②如图 2,同理得: CD=4, BD=5,∴BC=BD ﹣ CD=5﹣4=1,综上所述, BC 的长为 9 或 1;故答案为: 9 或 1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8 小题,每小题 4 分,满分 32 分.每小题只有一个正确选项)7.(4.00 分)函数 y=的自变量x的取值范围为()A .x ≤0B. x≤ 1C. x≥ 0D. x≥ 1【分析】根据被开方数大于等于0 列式计算即可得解.【解答】解:∵ 1﹣ x≥0,∴x≤1,即函数 y= 的自变量 x 的取值范围是 x ≤1,故选: B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式 ,被开方数非 .8.(4.00 分)下列 形是某几何体的三 (其中主 也称正 ,左 也称 ) ,个几何体是( )A .三棱柱B .三棱C . 柱D . 【分析】 由三 及 条件知,此几何体 一个的 . 【解答】 解:此几何体是一个 , 故 : D .【点 】 考 三 的理解与 用,主要考 三 与 物 之 的关系,三 的投影是: “主 、俯 正;主 、左 高平 ,左 、俯相等 ”.9.(4.00 分)一个五 形的内角和 ( ) A .540° B . 450° C . 360° D . 180° 【分析】 直接利用多 形的内角和公式 行 算即可. 【解答】 解:解:根据正多 形内角和公式: 180°×( 5 2)=540°,答:一个五 形的内角和是 540 度,故 : A . 【点 】 此 主要考 了正多 形内角和,关 是掌握内角和的 算公 式..( 分)按一定 律排列的 式:2, a 3 , a 4, a 5, a 6,⋯⋯ ,第 n 个 10 4.00 a , a式是( ) A .a n B . a n C .( 1)n +1a n D .( 1)n a n 【分析】 察字母 a 的系数、次数的 律即可写出第 n 个 式.2 3 4 56,⋯⋯ ,( 1) n +1 n.【解答】 解: a , a ,a , a ,a , a?a故 : C .a 的系数 奇数 ,符号 正;系数字母【点 】 考 了 式,数字的 化 ,注意字母 a 的系数 偶数 ,符号 .11.(4.00 分)下列 形既是 称 形,又是中心 称 形的是()A .三角形B .菱形C .角D .平行四 形 【分析】 根据 称 形与中心 称 形的概念求解.【解答】 解: A 、三角形不一定是 称 形和中心 称 形,故本 ;B 、菱形既是 称 形又是中心 称 形,故本 正确;C 、角不一定是 称 形和中心 称 形,故本 ;D 、平行四 形不一定是 称 形和中心 称 形,故本 ;故 : B .【点 】 此 主要考 了中心 称 形与 称 形的概念:判断 称 形的关 是 找 称 , 形两部分沿 称 折叠后可重合; 判断中心 称 形是要 找 称中心,旋 180度后与原图重合.12.(4.00 分)在 Rt △ABC 中,∠ C=90°,AC=1, BC=3,则∠ A 的正切值为()A .3B .C .D .【分析】 根据锐角三角函数的定义求出即可.【解答】 解:∵在 Rt △ABC 中,∠ C=90°, AC=1,BC=3,∴∠ A 的正切值为= =3,故选: A .【点评】 本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00 分) 2017 年 12 月 8 日,以 “[数字工匠 ] 玉汝于成, [ 数字工坊 ] 溪达四海 ”为主题的 2017 一带一路数学科技文化节 ?玉溪暨第 10 届全国三维数字化创新设计大赛(简称 “全国 3D 大赛 ”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校 1300 名 学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下 面两幅统计图.下列四个选项错误的是( )A .抽取的学生人数为 50 人B . “非常了解 ”的人数占抽取的学生人数的 12%C .a=72°D .全校 “不了解 ”的人数估计有 428 人【分析】 利用图中信息一一判断即可解决问题;【解答】 解:抽取的总人数为 6+10+16+18=50(人),故 A 正确,“非常了解 ”的人数占抽取的学生人数的 =12%,故 B 正确,α =360×° =72°,故正确,全校 “不了解 ”的人数估计有1300× =468(人),故 D 错误,故选: D .【点评】 本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型..( 4.00 分)已知x+ =6,则 x 2+ =( )14A .38B .36C .34D . 32【分析】 把 x+ =6 两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把 x+ =6 两边平方得:( x+)2=x2++2=36,则x2+ =34,故选: C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共 9 小题,满分70 分)15.(6.00 分)计算:﹣ 2cos45 °﹣()﹣1 0 ﹣(π﹣ 1)【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式 =3 ﹣2×﹣ 3﹣ 1=2 ﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00 分)如图,已知AC 平分∠ BAD , AB=AD .求证:△ ABC ≌△ ADC .【分析】根据角平分线的定义得到∠BAC= ∠DAC ,利用 SAS 定理判断即可.【解答】证明:∵ AC 平分∠ BAD ,∴∠ BAC= ∠DAC ,在△ ABC 和△ ADC 中,,∴△ ABC ≌△ ADC .【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的 SAS 定理是解题的关键.17.(8.00 分)某同学参加了学校举行的“五好小公民 ?红旗飘飘”演讲比赛, 7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】( 1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为: 5, 6, 7,7,8,8,8,数据 8 出现了三次最多为众数,7 处在第 4 位为中位数;(2)该同学所得分数的平均数为(5+6+7× 2+8×3)÷ 7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数 =总数÷个数.18.(6.00 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据工作时间 =总工作量÷工作效率结合甲工程队完成300 平方米的绿化面积比乙工程队完成300 平方米的绿化面积少用 3 小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿化面积,根据题意得:﹣=3,解得: x=50,经检验, x=50 是分式方程的解.答:乙工程队每小时能完成50 平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出( x, y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】( 1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由( 1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有 6 种等可能的结果:( 1,2)、( 1, 3)、( 2, 1)、(2,3)、(3,1)、( 3,2);(2)∵共有 6 种等可能结果,其中数字之和为偶数的有 2 种结果,∴取出的两张卡片上的数字之和为偶数的概率P= =.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率 =所求情况数与总情况数之比.20.(8.00 分)已知二次函数 y=﹣x2+bx+c 的图象经过 A ( 0, 3),B(﹣ 4,﹣)两点.(1)求 b, c 的值.(2)二次函数 y=﹣x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】( 1)把点 A 、 B 的坐标分别代入函数解析式求得b、 c 的值;( 2 )利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程﹣x2 + x+3=0,通过解该方程求得 x 的值即为抛物线与 x 轴交点横坐标.【解答】解:(1)把 A (0,3), B(﹣ 4,﹣)分别代入 y=﹣x2+bx+c,得,解得;(2)由( 1)可得,该抛物线解析式为:y=﹣x2+ x+3.△=()2﹣4×(﹣)× 3=>0,所以二次函数 y=﹣x2+bx+c 的图象与 x 轴有公共点.∵﹣x2+ x +3=0 的解为: x1=﹣2,x2=8∴公共点的坐标是(﹣ 2, 0)或( 8,0).【点评】考查了抛物线与 x 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A ,B 两种商品,为科学决策,他们试生产 A 、B 两种商品 100 千克进行深入研究,已知现有甲种原料293 千克,乙种原料314 千克,生产 1 千克A商品, 1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品B商品设生产 A 种商品解答下列问题:3 2 1202.53.5 200x 千克,生产 A 、 B 两种商品共100 千克的总成本为 y 元,根据上述信息,(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本y 最小?【分析】( 1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;【解答】解:(1)由题意可得: y=120x+200(100﹣x)=﹣80x+20000,,解得: 72≤x ≤86;(2)∵ y=﹣80x+20000,∴y 随 x 的增大而减小,∴x=86 时, y 最小,则y=﹣80× 86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00 分)如图,已知 AB 是⊙ O 上的点, C 是⊙ O 上的点,点 D 在 AB 的延长线上,∠BCD=∠ BAC .(1)求证: CD 是⊙ O 的切线;(2)若∠ D=30°,BD=2 ,求图中阴影部分的面积.【分析】( 1)连接 OC,易证∠ BCD= ∠ OCA,由于 AB 是直径,所以∠ ACB=90°,所以∠OCA+OCB=∠ BCD+∠ OCB=90°,CD 是⊙ O 的切线(2)设⊙ O 的半径为 r,AB=2r,由于∠ D=30°,∠OCD=90°,所以可求出 r=2,∠AOC=120°,BC=2,由勾股定理可知: AC=2 ,分别计算△ OAC 的面积以及扇形 OAC 的面积即可求出影响部分面积【解答】解:(1)连接 OC,∵OA=OC ,∴∠ BAC= ∠OCA ,∵∠ BCD= ∠ BAC ,∴∠ BCD= ∠OCA ,∵AB 是直径,∴∠ ACB=90°,∴∠ OCA+OCB=∠ BCD+∠OCB=90°∴∠ OCD=90°∵OC 是半径,∴CD 是⊙ O 的切线(2)设⊙ O 的半径为 r ,∴AB=2r ,∵∠ D=30°,∠ OCD=90°,∴OD=2r,∠ COB=60°∴r+2=2r,∴r=2,∠ AOC=120°∴B C=2,∴由勾股定理可知: AC=2易求 S △ AOC = ×2× 1=S 扇形 OAC = =∴阴影部分面积为 ﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含 30 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点, AF=AD +FC ,平行四边形 ABCD 的面积为 S ,由 A 、E 、F 三点确定的圆的周长为 t .(1)若△ ABE 的面积为 30,直接写出 S 的值;(2)求证: AE 平分∠ DAF ;(3)若 AE=BE ,AB=4 , AD=5 ,求 t 的值.【分析】( 1)作 EG ⊥AB 于点 G ,由 S △ ABE = ×AB × EG=30 得 AB?EG=60,即可得出答案; ( 2 )延长 AE 交 BC 延长线于点 H ,先证△ ADE ≌△ HCE 得 AD=HC 、 AE=HE 及 AD +FC=HC+FC ,结合 AF=AD +FC 得∠ FAE=∠CHE ,根据∠ DAE= ∠CHE 即可得证;(3)先证∠ ABF=90°得出 AF 22+BF 2 ( ﹣ )2 = ( FC+CH )2 ( ) 2,据此求 =AB =16+ 5 FC= FC+5 得 FC 的长,从而得出 AF 的长度,再由 AE=HE 、AF=FH 知 FE ⊥AH ,即 AF 是△ AEF 的外 接圆直径,从而得出答案.【解答】 解:(1)如图,作 EG ⊥ AB 于点 G ,则 S △ ABE = × AB × EG=30,则 AB?EG=60,∴平行四边形 ABCD 的面积为 60;(2)延长 AE 交 BC 延长线于点 H ,∵四边形 ABCD 是平行四边形,∴AD ∥BC ,∴∠ ADE= ∠HCE ,∠ DAE= ∠CHE ,∵E 为 CD 的中点,∴CE=ED,∴△ ADE ≌△ HCE,∴AD=HC 、 AE=HE ,∴AD +FC=HC+FC,由AF=AD +FC 和 FH=HC+FC 得AF=FH ,∴∠ FAE=∠ CHE,又∵∠ DAE= ∠CHE,∴∠ DAE= ∠FAE,∴AE 平分∠ DAF ;(3)连接 EF,∵AE=BE 、AE=HE ,∴AE=BE=HE ,∴∠ BAE= ∠ ABE ,∠ HBE= ∠BHE,∵∠ DAE= ∠CHE,∴∠BAE +∠DAE= ∠ABE +∠HBE ,即∠DAB= ∠CBA ,由四边形ABCD 是平行四边形得∠DAB+∠CBA=180°,∴∠ CBA=90°,∴AF 2=AB 2+BF2 =16+( 5﹣ FC)2=(FC+CH)2=(FC+5)2,解得: FC= ,∴AF=FC +CH=,∵AE=HE 、AF=FH ,∴FE⊥ AH ,∴AF 是△ AEF 的外接圆直径,∴△ AEF 的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。
2018年云南省昆明市中考数学试卷

2018年云南省昆明市中考数学试卷(全卷三个大题,共23个小题,共6页;满分120分,考试时间120分钟) 一、填空题(每小题3分,满分18分) 1.在实数–3,0,1中,最大的数是_____1___.2.共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车 投放量已达到240000辆,数字240000用科学记数法表示为__2.4×105______.3.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18',则∠AOC 的度数为__150°72'______.4.若m +m 1=3 ,则m 2+21m=____7____. 5.如图,点A 的坐标为(4,2),将点A 绕坐标原点O 能转90°后,再向左平移1个单位 长度得到点A',则过点A' 的正比例函数的解析式为__y=x 34-或 y=–4x ______. 6.如图,正六边形 ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF , 则图中阴影部分的面积为__3323π-______(结果保留根号和π).二、选择题(每小題4分,满分32分) 7.下列几何体的左视图为长方形形的是( C )OBAC(第3题图)29°18'O xyA(第5题图)ABCDEF (第6题图)8.关于x的一元二次方程x2–23x+m=0有两个不相等的实数根,则实数m的取值范围是( A ) A.m<3 B.m>3 C.m≤3D.m≥39.黄金分割数215-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算15-的值( B )A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间10.下列判断正确的是( D )A.甲乙两组学生身高的平均数均为1.58,方差分别为S2甲=2.3,S2乙=1.8,则甲组学生的身高较整齐;B.为了了解某县七年年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000;C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.在△AOC中,OB交AC正点D量角器的摆放如图所示,则∠CDO的度数为( B ) A.90°B.95°C.100°D.120°12.下列运算正确的是( C )BAC(第11题图)A .9312=⎪⎭⎫⎝⎛- B .2018°–38-=–1C .)0(62323≠=⋅-a a a a D .18–12=613.甲、乙两船从相距300km 的A ,B 两地同时出发相向而行.甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km /h ,若甲、乙两船在静水中的速度均为x km /h ,则求两船在静水中的速度可列方程为( A )A .=+6180x 6120-x B .=-6180x 6120+x C .=+6180x x 120 D . =x1806120-x 14.如图,点A 在双曲线y =xk(x >0)上,过点A 作AB ⊥x 轴,垂足为点B .分别以点O 和点A 为圆心,大于21OA 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC .若AC =1,则k 的值为( B ) A .2 B .2532C .534D .5252+ 三、解答题(共9题,满分70分)15.(本小题6分)如图,在△ABC 和△ADE 中,AB =AD ,∠B =∠D ,∠1=∠2.16.(本小题7分)先化简,再求值:6311212--÷⎪⎭⎫⎝⎛+-a a a ,其中a =tan 60°–1-17.(本小题7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列间题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图:在扇形统计图中A 种支付方式所对应的圆心角为_______度(3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?18.(本小题6分)为了促进“足球进校园”活动的开展展,某市举行了中学生足球比赛活动.现从A ,B ,C 三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流. (1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果; (2)求出抽到B 队和C 队参加交流活动的概率.19.(本小题7分)小婷在放学路上,看到隧道上方有一块宣传“中国——南亚博览会”竖直标语牌卧CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道道高6.5m(即BC=6.5m),求标语牌CD一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42≈0.90,3≈1.7320.(本小题8分)(列方程(组)及不式解应用题)水是人类生命之源,为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立不变.甲方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费.........用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21.(本小题8分)如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 点F ,AC 平 分∠BAD ,连接BF . (1)求证:AD ⊥ED ;(2)若CD =4,AF =2,求⊙O 的半径.22.(本小题9分)如图,抛物线y =ax 2+bx 过点B (1,–3),对称轴是直线x =2,且抛物 线与x 轴的正半轴交于点A .(1)求抛物线的解析式,并根据图象直接写出当y ≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.23.(本小题12分)如图1.在矩形ABCD 中,P 为CD 边上一点(DP <CP )∠APB =90°.将△ADPCD沿AP 翻折得到△AD'P ,PD' 的延长线交边AB 于点M ,过点B 作BN ∥MP 交DC 于点N . (1)求证:AD 2=DP ·PC(2)请判断四边形PMBN 的形状,并说明理由; (3)如图2,连接AC ,分别别交PM ,PB 于点E ,F .若AD DP =21,求AEEF的值. 21.(图1) A BC DP ND ' FA BCDPND 'E(图2)22.23.。
云南省昆明市2018年中考数学试题(含解析).doc

2018年云南省昆明市中考数学试卷一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是.2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为.4.(3.00分)若m+=3,则m2+=.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A .B .C .D .8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥39.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90°B.95°C.100° D.120°12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)20.(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.2018年云南省昆明市中考数学试卷参考答案与试题解析一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是1.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.【点评】此题主要考查了实数的大小,关键是掌握实数比较大小的方法.2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为 2.4×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将240000用科学记数法表示为:2.4×105.故答案为2.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为150°42′.【分析】直接利用度分秒计算方法得出答案.【解答】解:∵∠BOC=29°18′,∴∠AOC的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.【点评】此题主要考查了角的计算,正确进行角的度分秒转化是解题关键.4.(3.00分)若m+=3,则m2+=7.【分析】把已知等式两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为y=﹣x.【分析】直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.【解答】解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(﹣3,4),设过点A′的正比例函数的解析式为:y=kx,则4=﹣3k,解得:k=﹣,则过点A′的正比例函数的解析式为:y=﹣x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A″,此时OA″与OA′在一条直线上,故则过点A′的正比例函数的解析式为:y=﹣x.【点评】此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为﹣(结果保留根号和π).【分析】正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,根据正多边形的中心角公式求出∠DOE,求出OH,得到正六边形ABCDEF的面积,求出∠A,利用扇形面积公式求出扇形ABF的面积,结合图形计算即可.【解答】解:正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,∠DOE==60°,∴OD=OE=DE=1,∴OH=,∴正六边形ABCDEF的面积=×1××6=,∠A==120°,∴扇形ABF的面积==,∴图中阴影部分的面积=﹣,故答案为:﹣.【点评】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A.B.C.D.【分析】找到个图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【分析】根据≈2.236,可得答案.【解答】解:∵≈2.236,∴﹣1≈1.236,故选:B.【点评】本题考查了估算无理数的大小,利用≈2.236是解题关键.10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D .有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件【分析】直接利用样本容量以及方差的定义以及中位数的定义和必然事件的定义分别分析得出答案.【解答】解:A 、甲乙两组学生身高的平均数均为1.58,方差分别为S 甲2=2.3,S 乙2=1.8,则乙组学生的身高较整齐,故此选项错误;B 、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;C 、在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;D 、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.故选:D .【点评】此题主要考查了样本容量以及方差、中位数和必然事件的定义,正确把握相关定义是解题关键.11.(4.00分)在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( )A .90°B .95°C .100°D .120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.【点评】本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=【分析】直接利用二次根式以及单项式乘以单项式运算法则和实数的计算化简求出即可.【解答】解:A、,错误;B、,错误;C、3a3•2a﹣2=6a(a≠0),正确;D、,错误;故选:C.【点评】此题主要考查了二次根式以及单项式乘以单项式运算法则和实数的计算等知识,正确掌握运算法则是解题关键.13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.【解答】解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【分析】根据ASA证明△ADE≌△ABC;【解答】证明:(1)∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=tan60°﹣|﹣1|时,∴a=﹣1∴原式=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式运算法则,本题属于基础题型.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为108度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【分析】(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.【解答】解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.【分析】(1)列表得出所有等可能结果;(2)从表格中得出抽到B队和C队参加交流活动的结果数,利用概率公式求解可得.【解答】解:(1)列表如下:(2)由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,所以抽到B队和C队参加交流活动的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.20.(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.【分析】(1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.【解答】(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)将AB所在直线的解析式求出,利用直线AP与AB垂直的关系求出直线AP的斜率k,再求直线AP的解析式,求直线AP与x轴交点,求点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【解答】解:(1)由题意得,,解得,∴抛物线的解析式为y=x2﹣2x,令y=0,得x2﹣2x=0,解得x=0或2,结合图象知,A的坐标为(2,0),根据图象开口向上,则y≤0时,自变量x的取值范图是0≤x≤2;(2)设直线AB的解析式为y=mx+n,则,解得,∴y=3x﹣6,设直线AP的解析式为y=kx+c,∵PA⊥BA,∴k=,则有,解得c=,∴,解得或,∴点P的坐标为(),∴△PAB的面积=|﹣|×||﹣×||×﹣×|﹣|×||﹣×|2﹣1|×|0﹣(﹣3)|=.【点评】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.【分析】(1)过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC;(2)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得∴,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得==.【解答】解:(1)过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;(2)∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF﹣AE=AC﹣=AC,∴==【点评】本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
91、2018年云南省中考数学试卷
一、填空题(共6小题,每小题3分,满分18分)
1.(3.00分)﹣1的绝对值是.
2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.
4.(3.00分)分解因式:x2﹣4=.
5.(3.00分)如图,已知AB∥CD,若=,则=.
6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.
二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()
A.x≤0 B.x≤1 C.x≥0 D.x≥1
8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()
A.三棱柱B.三棱锥C.圆柱D.圆锥
9.(4.00分)一个五边形的内角和为()
A.540°B.450°C.360° D.180°
10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()
A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n
11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形
12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.
13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()
A.抽取的学生人数为50人
B.“非常了解”的人数占抽取的学生人数的12%
C.a=72°
D.全校“不了解”的人数估计有428人
14.(4.00分)已知x+=6,则x2+=()
A.38 B.36 C.34 D.32
三、解答题(共9小题,满分70分)
15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0
16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.
17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:
评委评委1评委2评委3评委4评委5评委6评委7
打分6878578(1)直接写出该同学所得分数的众数与中位数;
(2)计算该同学所得分数的平均数
18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?
19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片
看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.
(2)求取出的两张卡片上的数字之和为偶数的概率P.
20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.
(1)求b,c的值.
(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.
21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.
甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)32120
A
商
品
2.5
3.5200
B
商
品
设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:
(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;
(2)x取何值时,总成本y最小?
22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延
长线上,∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.
(1)若△ABE的面积为30,直接写出S的值;
(2)求证:AE平分∠DAF;
(3)若AE=BE,AB=4,AD=5,求t的值.。