2012合工大超越考研数学二及答案
2012考研数学二真题及参考答案

2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。
正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。
故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
2012考研数二真题及解析

2012考研数二真题及解析考研数学二对于很多考生来说是具有一定挑战性的科目。
2012 年的考研数二真题也不例外,它全面考查了考生对数学知识的掌握和运用能力。
我们先来看看选择题部分。
比如,有一道关于函数极限的题目,要求判断某个函数在特定点的极限是否存在。
这就需要考生熟练掌握极限的定义和计算方法。
还有一道关于导数定义的题目,考查了考生对导数概念的深刻理解。
填空题中,涉及到了曲线的切线方程、定积分的计算等知识点。
像求曲线在某一点的切线方程,考生要先求出该点的导数,也就是切线的斜率,然后再利用点斜式方程求出切线方程。
接下来是解答题。
第一道通常是关于求函数的导数或者微分,这是基础知识的直接应用,但也需要考生细心计算,避免出错。
有一道关于二重积分的题目,需要考生正确选择积分顺序,并且准确计算出积分的结果。
这要求考生对二重积分的概念和计算方法有清晰的认识。
还有一道关于常微分方程的题目,考查了考生求解方程的能力。
在解题过程中,要根据方程的类型选择合适的解法。
在整个真题中,对于数学基础知识的考查非常扎实。
比如,函数的性质、导数的应用、积分的计算等,都是考试的重点。
对于这些真题,我们在复习的时候要有针对性地进行训练。
首先,要把教材中的基本概念、定理和公式理解透彻,牢记于心。
然后,通过大量的练习题来提高解题的速度和准确性。
对于做错的题目,一定要认真分析原因,总结经验教训。
是因为知识点掌握不牢固,还是因为解题方法不正确,或者是因为粗心大意。
只有找到问题所在,才能在下次遇到类似的题目时不再犯错。
在复习的过程中,还要注重知识的系统性和连贯性。
比如,函数、导数、积分这几部分的知识是相互关联的,要能够融会贯通。
另外,要培养自己的解题思维和技巧。
比如,在遇到难题时,要学会从已知条件出发,逐步推导,寻找解题的突破口。
总之,2012 年考研数二真题全面考查了考生的数学素养和解题能力。
通过对这些真题的认真分析和研究,考生可以更好地把握考试的重点和难点,为今后的复习提供有力的指导。
2012年考研数学二真题及解析

# ! " . # " !
! " 3 . 4 ."# 5 . !
2 # ! " . # " !
! " . # " ! 3 . 4 . 5 ." $ 1
! ! ! +! $!-4,# . / # " $. / $ 0# ! !! #! ! ! ! #! " " " 567$%# 89:! $%# " & # ! ( ! ! " " %! " # 6" ;<=$ > ’! ? # !" 1 ## 1 $! #(
W) 6X# ? [6 UVEQ& , . / , . / + (* ( YZ # (
( "0 ( "0
( 2 *
! " 6" !"OP)*# 3C! + ! %" ’ $ 2 ( * " 89! A:! 2 # " & ! ! ! ! $ !# %# ’ % & 0 ) + ! ! " 6" !"OP6 ! $ ! , ! ! ! ! !" ## ## %" ! 2 2 , . ! 2 2 , . $! ! ! ! !# ## %"! ! 2 $ " ! ! 2 / / 2 2 ! 2 2 !
! " ! z&k># ! & " >" *# " " # #, #
9! 9 " $ $¬’! $ $ $ ! ! & +®/! ! #& #$ !$ &" &# " * + " * &# ! ~¢"* +( "" ! ~4u¯v& #$ #" ’ °’ ±/r²³!
2012年考研数学二真题及答案解析

数学(二)试题 第 5 页 (共 11 页)
(23)(本题满分 11 分)已知
1)求 a 的(k=1,2,3),则有()
0
(A)I1< I2 <I3.
(B) I3< I2< I1.
(C) I2< I3 <I1,
(D) I2< I1< I3.
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 f (x, y) x
f (x, y) >0, y <0,f(x1,y1)<f
(A) (1)n1(n 1)!
(B) (1)n (n 1)!
(C) (1)n1n!
(D) (1)n n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)既非充分也非必要条件.
已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(16)(本题满分 10 分)
( ) -x2+y2
求函数 f x, y = xe 2 的极值。
(17)(本题满分 10 分)
(2)记(1)中的实根为
xn
,证明
lim
n
xn
存在,并求此极限。
(22)(本题满分 11 分)
1 a 0 0
1
设
A
0
1
a
2012数二考研真题答案

2012数二考研真题答案2012年的数学二真题是考研数学复习中的重要一环,对于考生来说,掌握这些真题的答案是非常重要的。
在本文中,我们将深入探讨2012年数学二真题的答案,为考生提供一些参考和指导。
首先,我们来看一道选择题。
题目如下:已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,对于任意x∈[0,1],均有0≤f(x)≤1,那么函数f(x)在区间[0,1]上至少有几个不动点?要解答这道题,我们可以通过分析函数图像来得到答案。
根据题目中给出的条件,我们可以确定函数f(x)在区间[0,1]上是递增的,且在x=0和x=1处取得最小值和最大值。
因此,函数f(x)至少有两个不动点,即x=0和x=1。
接下来,我们来看一道填空题。
题目如下:设A是3阶方阵,且满足A^2-3A+2I=0,其中I为3阶单位矩阵,则A的特征值为______。
要解答这道题,我们需要运用矩阵的特征值和特征向量的概念。
根据题目中给出的条件,我们可以得到A^2-3A+2I=0。
将该方程进行化简,得到A^2-3A=-2I。
根据矩阵的特征值和特征向量的定义,我们知道特征值是使得矩阵与特征向量相乘等于特征向量的常数。
因此,我们可以得到特征值为2和1。
最后,我们来看一道计算题。
题目如下:已知函数f(x)=x^3-3x^2+3x-1,求f(x)的极值点。
要解答这道题,我们需要求出函数f(x)的导数,并令导数等于0,求出其极值点。
首先,对函数f(x)求导,得到f'(x)=3x^2-6x+3。
然后,令f'(x)=0,解方程得到x=1。
将x=1带入函数f(x),得到f(1)=0。
因此,函数f(x)在x=1处取得极小值。
通过以上三道题目的解答,我们可以看出,解题的关键在于理解题目的要求,灵活运用所学的数学知识和方法。
在考研数学复习中,做真题是非常重要的,通过做真题可以提高解题能力和应试技巧。
因此,考生在备考过程中,应该多做一些真题,并对答案进行仔细分析和总结。
2012全国考研数二真题及解析.doc

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为() (A )0(B )1 (C )2 (D )3(2)设函数2()(1)(2)()x x nx f x e ee n =---,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - (3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件. (C)必要非充分条件.(D )即非充分地非必要条件. (4)设2k x k e I e =⎰ sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3.(B) I 2< I 2< I 3. (C) I 1< I 3 <I 1, (D) I 1< I 2< I 3.(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f (x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1. (C) x 1< x 2, y 1< y 2. (D) x 1< x 2, y 1> y 2.(6)设区域D 由曲线,1,2,sin =±==y x x y π围成,则())(15⎰⎰=-dxdy y x ππ--)(2)(2)()(D C B A(7)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα (B )124,,ααα(C )134,,ααα (D )234,,ααα(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( )(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭(C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21y x y e -+=所确定的隐函数,则________。
2012年考研数学二真题和答案

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:(C ) 【解析】:221lim1x x x x →+=∞-,所以1x =为垂直渐近线22l i m 11x x x x →∞+=-,所以1y =为水平渐近线,没有斜渐近线,总共两条渐近线,选(C )。
(2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 【答案】:(C )【解析】:''22()(2)()(1)(2)()x x nx x x nx f x e e e n e e e n ⎡⎤=--+---⎣⎦所以'(0)f =1(1)!n n --,故选(C )。
(3)设0,(1,2,...)n a n >=,1...n n s a a =++,则数列{}n s 有界是数列{}n a 收敛的 (A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(B)【解析】:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim n n s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。
反之,{}n a 收敛,{}n s 却不一定有界,例如令1n a =,显然有{}n a 收敛,但n s n =是无界的。
2012年考研数学真题及参考答案(数学二)

(B) I2< I2< I3.
(C) I1< I3 <I1,
(D) I1< I2< I3.
【答案】:(D)
∫ 【 解 析 】::
Ik =
k ex2 sin xdx
e
看为以
k
为自变量的函数,则可知
∫ Ik ' = ek2 sin k ≥ 0, k ∈(0,π ) ,即可知 Ik =
k ex2 sin xdx 关于 k 在(0,π ) 上为单调增
=
(
y3
+
C
)
1 y
又因为 y = 1时 x = 1,解得 C = 0 ,故 x = y2 .
(13)曲线 y = x2 + x(x < 0) 上曲率为
2
的点的坐标是________。
2
您所下载的资料来源于 考研资料下载中心
获取更多考研资料,请访问
又因为,当 x → 0 时, x − sin x 与 1 x3 等价,故 f (x) − a ~ 1 x ,即 k = 1
6
6
(16)(本题满分 10 分)
求 f ( x, y) = xe − x2 + y2 的极值。
2
【解析】: f ( x, y) = xe − x2 + y2 ,
2
您所下载的资料来源于 考研资料下载中心 获取更多考研资料,请访问
(C) x1< x2, y1< y2.
(D) x1< x2, y1> y2.
【答案】:(D)
【解析】: ∂f (x, y) > 0 , ∂f (x, y) < 0 表示函数 f (x, y) 关于变量 x 是单调递增的,关于变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本人花万元报名参加北京一内部考研辅导班,该辅导班考前会发布押题,押题命中率百分之90左右,去年该培训班考生全部高分过线。
如果需要发布的押题可以联系我QQ673351717免费索取
来者不拒 一一发布 希望大家都能顺利高分通过2012研考
来者不拒 一一发布 希望大家都能顺利高分通过2012研考
本人花万元报名参加北京一内部考研辅导班,该辅导班考前会发布押题,押题命中率百分之90左右,去年该培训班考生全部高分过线。
如果需要发布的押题可以联系我QQ673351717免费索取
来者不拒 一一发布 希望大家都能顺利高分通过2012研考。