函数及其表示 ppt课件

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

《函数及其表示》PPT课件

《函数及其表示》PPT课件
1.了解函数单调性和导数的关系;能利用导数研究函数的单调 性,会求函数的单调区间(对多项式函数一般不超过三次). 2.了解函数在某点取得极值的必要条件和充分条件;会用导数 求函数的极大值、极小值(对多项式函数一般不超过三次);会 求闭区间上函数的最大值、最小值(对多项式函数一般不超过 三次). 3.会利用导数解决某些实际问题.
求下列函数的定义域:
(1)y= x+1+lgx-2-1x0;
(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域. 解析: (1)要使函数y= x+1+lgx-2-1x0有意义,
x+1≥0, 应有2x--1x>≠00,,
2-x≠1.
即xx≠≥1-,1, x<2,
有-x≠11≤. x<2,
答案: A
工具
第二章 函数、导数及其应用
3.下列各组函数中表示同一函数的是( ) A.f(x)=x与g(x)=( x)2 B.f(x)=|x|与g(x)=3 x3
x2 x>0 C.f(x)=x|x|与g(x)=-x2 x<0 D.f(x)=xx2--11与g(t)=t+1(t≠1)
解析: A中定义域不同,B中解析式不同,C中定义域不同. 答案: D
叫做函数的值域. 3.函数的构成要素为: 定义域 、 对应关系 和 值域 . 由 于值域是由定义域和对应关系决定的,所以,如果两个函数的 定义域 相 同,并且 对应关系 完全一致,我们就称这两个函数 相等 .
工具
第二章 函数、导数及其应用
【思考探究】 2.若两个函数的定义域与值域相同,是否为相等函 数?
答案: [-5,+∞)
工具
第二章 函数、导数及其应用
工具
第二章 函数、导数及其应用
1.求函数定义域的步骤 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式

函数的概念及表示法ppt课件

函数的概念及表示法ppt课件

(1)对于x的每一个值,y都满足有唯一的值与之对应吗?
不满足
(2)y是x的函数吗?为什么?
不是,因为y的值不是唯一的.
26
26
随堂练习
演练
1. 下面四个关系式:① y = ;② = x ;
③2 x2- y =0;④ y = ( x >0).
其中 y 是 x 的函数的是(
D )
27
随堂练习
报酬按16元/时计算. 设小明的哥哥这个月工作的时间为t
小时,应得报酬为m元,填写下表:
怎样用关于t的代数式表示m? m = 16t
对于这个函数,当t=5时,把它代入函数表达式,得
m = 16t=16×5=80(元).
m = 80是当自变量t=5时的函数值.
代入法
19
19
探究新知
函数与函数值
对于自变量在可取值范围内的一个确定的值a,函
判断一个关系是否是函数关系,根据函数定义,主
要从以下3个方面分析:
(1) 是否在一个变化过程中;
(2) 在该过程中是否有两个变量;
(3) 对于一个变量每取一个确定的值,另一个变量
是否有唯一确定的值与其对应.
13
13
探究新知
知识点
函数的三种表示法
合作探究
m = 16t
这几个函数用等式来表示,
这种表示函数关系的等式,
16
80
160
240
320

t

16t
怎样用关于t的代数式表示m? m = 16t
5
5
探究新知
合作探究
2.跳远运动员按一定的起跳姿势,其跳远的距离s
(米)与助跑的速度v(米/秒)有关. 根据经验,跳

函数的概念与表示法课件(共19张PPT)

函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.

函数及其表示 课件

函数及其表示 课件

解 (1)A 中的元素 0 在 B 中没有对应元素,故不是 A 到 B 的函数; (2)对于集合 A 中的任意一个整数 x,按照对应关系 f:x→y=x2, 在集合 B 中都有唯一一个确定的整数 x2 与其对应,故是集合 A 到 集合 B 的函数; (3)A 中为负数的元素没有平方根,故在 B 中没有对应的元素且 x 不一定为整数,故此对应关系不是 A 到 B 的函数; (4)对于集合 A 中任意一个实数 x,按照对应关系 f:x→y=0,在 集合 B 中都有唯一一个确定的数 0 与它对应,故是集合 A 到集合 B 的函数.
题型三 求函数的定义域
【例 3】 (12 分)求下列函数的定义域: (1)y=xx++112- 1-x;
(2)y=
5-x |x|-3 .
审题指导 列出不等式组 → 解不等式组 → 得定义域
[规范解答] (1)要使函数有意义,自变量 x 的取值必须满足
x+1≠0, 1-x≥0,
(3 分)
解得 x≤1 且 x≠-1,
题型一 函数概念的应用 【例 1】 下列对应关系是否为 A 到 B 的函数. (1)A=R,B={x|x>0},f:x→y=|x|; (2)A=Z,B=Z,f:x→y=x2; (3)A=R,B=Z,f:x→y= x; (4)A=[-1,1],B={0},f:x→y=0. [思路探索] 可根据函数的定义直接判断.
②关于对应关系 f,它是函数的本质特征,它好比是计算机中的 某个“程序”,当 f( )中括号内输入一个值时,在此“程序” 作用下便可输出某个数据,即函数值.如 f(x)=3x+5,f 表示 “自变量的 3 倍加上 5”,如 f(4)=3×4+5=17. 提醒 f(x)与 f(a),a∈A 的区别与联系:f(a)表示当 x=a 时的函 数值,是常量,而 f(x)表示自变量为 x 的函数,表示的是变量.

函数及其表示PPT教学课件

函数及其表示PPT教学课件
➢气温随海拔的升高而降低,每上升1000米,气 温降低约6℃。
气温对生物的影响:
⒈许多动物的行为和气温变化有关. ⒉气温对人类生活和生产的影响也很 大.
⒈夏天来临时,家里常用哪些方法来抗高 温?冬天来临时,家里常用哪些方法来 御寒?
⒉高温和严寒有哪些危害?可以采取什么 防范措施?
气温与生活
海滩:炎热夏季的好去所
f(a)=-1,f(b)=0,f(c)=-1; f(a)=0,f(b)=-1,f(c)=-1;
f(a)=-1,f(b)=1,f(c)=0; f(a)=1,f(b)=-1,f(c)=0; f(a)=f(b)=f(c)=0;
f(a)=1,f(b)=0,f(c)=1; f(a)=0,f(b)=1,f(c)=1.
2
2
的值.
b=3
例4 如图,将一块半径为1的半圆形钢
板,切割成等腰梯形ABCD,其下底边AB是
圆O的直径,上底边CD的端点在圆周上,设
梯形的一条腰长为Biblioteka ,周长为f(x),求函数f(x)的值域.
D
C
f (x) x2 2x 4 AE
B
x (0, 2)
f (x) (4,5]
例5 已知集合A=(a,b,c},B={-1,0,1}, 映射f:A→B满足f(a)+f(b)=f(c),求这样 的映射共有多少个?
作业: P44 复习参考题A组:6,7,8.
B组:4,5.
气温、湿度和降水
1、气温和气温的测定
气温是指什么的冷热程度? 空气
测定气温的工具是? 温度计
气温的单位是? 怎样观测气温?
摄氏度 0C 百叶箱
思考探究题:
1、根据平时的观察一天中的气温最高值 和最低值大概出现在什么时候?

函数的概念及表示法PPT课件

函数的概念及表示法PPT课件

4
5
6
y(元)
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (2)以上表中的x值为横坐标,对应的y值为纵坐标,在直角 坐标系中依次作出点(1 , 0.12)、(2 , 0.24)、(3 , 0.36)、 (4,0.48)、(5,0.6)、(6,0.72),则函数的图像法表示如图所示.
巩固知识 典型例题
例2 设 f x 2x 1 ,求 f 0 , f 2 , f 5 , f b .
3
分析 本题是求自变量x=x0时对应的函数值,方法是将x0代入 到函数表达式中求值.
解 f 0 20 1
3
f 5 2 5 1
3
, f 2 2 2 1
3
, f b 2b 1
3
, .
巩固知识 典型例题
动 脑思考 探索新 知
作函数图像的一般方法——描点法
.
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (3)关系式y=0.12 x就是函数的解析式, 故函数的解析法表示为 y=0. .12 x, x ∈{1,2,3,4,5,6}
总结演示
判断下列对应能否表示y是x的函数
(1)能(2)不能(3) 能 (4)不能
应用知识 强化练习
教材练习3.1.1
1.求下列函数的定义域:
(1) f x 2 ;(2) f x x2 6x 5 .
x4
2.已知 f x 3x 2 ,求 f 0 , f 1 , f a .

4.函数的表示法PPT课件16张

4.函数的表示法PPT课件16张

课后活动
每位同学寻找发现两个生 活中的函数关系的实例。
课堂练习 P35 2 、4题
用函数的三种表示法来 表示y 与 n 的函数关系
某礼堂共有25排座位,第一排 有20个座位,后面每一排都比前一 排多一个座位,写出每排的座位数
m与这排的排数n 的函数解析式, 并写出自变量nA
t
s
S1
S2
O
t
C
s
O
B s
S1 S2 t
S1
S2
O
D
t
握握手,好朋友
• 你想过吗?开学的时候,同学们 • 初次见面,如果每两人握一次手且只 • 握一次手,那么全班同学共握几次手? • 全年级同学又共握多少次手?全校同 • 学又总共握多少次手?有规律吗?
用y表示握手的次数,用x表示 握手的人数,用列表法和公式法 表示y与x的函数关系。
这节课 我学会了--我印象最深的是---
列表法: x 1 y2
公式法:
y=2x
2 3 4 --4 6 8 ---
(x取正整数)
图象法:
如上图:用边长为1的等边三 角形拼成图形,用 y表示拼成的 图形的周长,用 n表示其中等边 三角形的个数。
y 是 n 的函数吗?
想 一 想 ?
用y表示拼成的图形的周长, 用 n表示其中等边三角形的个数。
函数的表示法
数青蛙
如果变量Y随着变量X而变化,并 且对于X取的每一个值,Y都有唯一 的一个值与它对应,那么称Y是X的 函数。
想 一 想 ?
儿歌中包含了哪些函数关系?
青蛙的嘴的张数是青蛙的只数 青蛙的眼睛只数与青蛙的只数 青蛙的腿数与青蛙的只数 青蛙跳入水中的次数与青蛙的只数
青蛙的眼睛只数y是青蛙只数x的函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础知识
题型分类
思维启迪 解析 答案 思维升华
如果 x=1 是 y=f(x)定义域 内的值,由函数定义可知, 直线 x=1 与 y=f(x)的图象 只有一个交点, 即 y=f(x)的图象与直线 x=1 最多有一个交点; 对于③,f(x)与 g(t)的定义域、 值域和对应关系均相同,所 以 f(x)和 g(t)表示同一函数;
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
函数的概念
【例 1】 有以下判断:
思维启迪 解析 答案 思维升华
①f(x)

|x| x

g(x) = 对于①,由于函数 f(x)=|xx|的
1 -1
x≥0 表示同一函数;
x<0
②函数 y=f(x)的图象与直线 x=1
定义域为{x|x∈R 且 x≠0},
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
知识回顾 理清教材
3.函数解析式的求法 求函数解析式常用方法有 待定系数法 、 换元法、配凑
法、消去法.
4.常见函数定义域的求法
(1)分式函数中分母 不等于零 . (2)偶次根式函数被开方式 大于或等于0 .
(3)一次函数、二次函数的定义域为 R.
而函数 g(x)=1-1
x≥0 x<0
的交点最多有 1 个;
的定义域是 R,所以二者不
③f(x)=x2-2x+1 与 g(t)=t2-2t 是同一函数;
+1 是同一函数;
对于②,若 x=1 不是 y=f(x)
④若 f(x)=|x-1|-|x|,则 ff12=0. 定义域内的值,则直线 x=1 其中正确判断的序号是________. 与 y=f(x)的图象没有交点,
综上可知,正确的判断是
③f(x)=x2-2x+1 与 g(t)=t2-2t
+1 是同一函数;
②③.
④若 f(x)=|x-1|-|x|,则 ff12=0.
其中正确判断的序号是________.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
函数的概念
【例 1】 有以下判断:
思维启迪 解析 答案 思维升华
集合 B 的一个函数,记作 y=f(x),x∈A .
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
知识回顾 理清教材
(2)函数的定义域、值域 在函数 y=f(x),x∈A 中,x 叫做自变量,x 的取值范围 A 叫做
函数的 定义域 ;与 x 的值相对应的 y 值叫做函数值,函数值的 集合{f(x)|x∈A}叫做函数的 值域 .显然,值域是集合 B 的子集. (3)函数的三要素:定义域 、 对应关系 和 值域 .
(4)y=ax (a>0 且 a≠1),y=sin x,y=cos x,定义域均为 R.
(5)y=tan x 的定义域为x|x∈R且x≠kπ+π2,k∈Z.
(6)函数 f(x)=xα 的定义域为{x|x∈R 且 x≠0}.
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
夯基释疑
夯实基础 突破疑难
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
函数的概念
【例 1】 有以下判断:
①f(x)

|x| x

g(x) =
1 -1
x≥0 表示同一函数;
x<0
②函数 y=f(x)的图象与直线 x=1
的交点最多有 1 个;
③f(x)=x2-2x+1 与 g(t)=t2-2t
+1 是同一函数; ④若 f(x)=|x-1|-|x|,则 ff12=0. 其中正确判断的序号是________.
①f(x) = 1 x≥0 -1 x<0
|x| x

பைடு நூலகம்
g(x)
表示同一函数;

对于④,由于 f12=12-1- 12=0,所以 ff12=f(0)=1.
②函数 y=f(x)的图象与直线 x=1
的交点最多有 1 个;
③f(x)=x2-2x+1 与 g(t)=t2-2t
+1 是同一函数; ④若 f(x)=|x-1|-|x|,则 ff12=0. 其中正确判断的序号是________.
基础知识
题型分类
思维启迪 解析
思想方法
答案 思维升华
练出高分
题型分类·深度剖析
题型一
函数的概念
【例 1】 有以下判断:
(4)函数的表示法
表示函数的常用方法有 解析法 、 图象法 和 列表法 .
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
知识回顾 理清教材
2.映射的概念 设 A,B 是两个非空的集合,如果按某一个确定的对应关系
f,使对于集合 A 中的任意一个元素 x,在集合 B 中都有唯 一确定 的元素 y 与之对应,那么就称对应 f:A→B 为从集 合 A 到集合 B 的一个 映射 .
①f(x)

|x| x

g(x) =
1 -1
x≥0 表示同一函数;
x<0
②函数 y=f(x)的图象与直线 x=1
思维启迪 解析 答案 思维升华
可从函数的定义、定义域 和值域等方面对所给结论
的交点最多有 1 个;
进行逐一分析判断.
③f(x)=x2-2x+1 与 g(t)=t2-2t
+1 是同一函数; ④若 f(x)=|x-1|-|x|,则 ff12=0. 其中正确判断的序号是________.
思想方法
练出高分
题型分类·深度剖析
题型一
函数的概念
【例 1】 有以下判断:
思维启迪 解析 答案 思维升华
①f(x) = 1 x≥0 -1 x<0
|x| x

g(x)
表示同一函数;

对于④,由于 f12=12-1- 12=0,所以 ff12=f(0)=1.
②函数 y=f(x)的图象与直线 x=1
的交点最多有 1 个;
题号
1 2 3 4 5
答案
(1)× (2) × (3) × (4) √ (5) × (6) √ B C
B
①②
解析
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
函数的概念
【例 1】 有以下判断:
①f(x)

|x| x

g(x) =
1 -1
x≥0 表示同一函数;
x<0
②函数 y=f(x)的图象与直线 x=1
数学 R A(理)
§2.1 函数及其表示
第二章 函数概念与基本初等函数Ⅰ
基础知识·自主学习
要点梳理
知识回顾 理清教材
1.函数的基本概念 (1)函数的定义 设 A,B 是非空的 数集 ,如果按照某种确定的对应关系 f, 使对于集合 A 中的 任意 一个数 x,在集合 B 中都有 唯一 确定 的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到
相关文档
最新文档