浙江省温州市2017-2018学年九年级上学期期末数学试题

合集下载

2017-2018学年九年级数学期末试卷及答案

2017-2018学年九年级数学期末试卷及答案

2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。

全卷共计100分。

考试时间为90分钟。

第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。

2017-2018上学期九年级数学期末试卷

2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。

浙江省温州市2023-2024学年九年级上学期期末数学试题

浙江省温州市2023-2024学年九年级上学期期末数学试题

温州市2023学年第一学期九年级(上)学业水平期末检测数学试卷本试卷分为选择题和非选择题两个部分,共4页,考试时间90分钟,全卷满分100分.答题时请在答题纸答题区域作答,不得超出答题区域边框线.选择题部分一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.抛物线()2345y x =−−+的顶点坐标是( ) A .()4,5B .()4,5−C .()4,5−D .()4,5−−2.已知点P 到圆心O 的距离为5,若点P 在圆内,则O 的半径可能为( ) A .3B .4C .5D .63.如图是海上风力发电装置,相同的三个转子叶片呈均匀分布.若图案绕中心旋转n °后能与原图案重合,则n 可以取( )(第3题) A .90B .120C .150D .1804.图1是《墨经》中记载的“小孔成像”实验图,图2是其示意图,其中物距2m BF =,像距1m CE =.若像的高度CD 是0.9m ,则物体的高度AB 为( )图1 图2 (第4题) A .1.2mB .1.5mC .1.8mD .2.4m阅读背景素材,完成5~6题.一个不透明的盒子内装有1个红球,1个黄球,1个蓝球,它们除颜色外其余均相同.现从中随机摸出一球,记下颜色后放回搅匀,如此继续.5.右表是小温前两次摸球的情况,当小温第三次摸球时,下列说法正确的是( )次数 第1次 第2次 第3次 颜色红球红球(第5题) A .一定摸到红球B .一定摸不到红球C .摸到黄球比摸到蓝球的可能性大D .摸到红球、黄球和蓝球的可能性一样大6.小州摸球两次,则出现相同颜色的概率为( ) A .19B .16C .13D .127.已知二次函数()20y ax bx c a ++≠的图象如图所示,则点(),A a b c +所在的象限是( )(第7题) A .第一象限 B .第二象限C .第三象限D .第四象限8.如图,ABC △内接于O ,AC 为直径,半径OD BC ∥,连结OB ,AD .若AOB α∠=,则BAD∠的度数为( )(第8题)A .2αB .902α°−C .904α°−D .1802α°−9.如图,在ABC △中,AB AC =,在AC 上取点D ,使CBD BAC ∠=∠,延长BC 至点E ,使得DE DB =.若BE k BC =,则ADAB等于( )(第9题) A .1k −B .11k − C .kD .1k10.已知抛物线()20y ax bx b a a =++−>,当03x ≤≤时,50y −≤≤.若将抛物线向左平移4个单位后经过点()1,0−,则b 的值为( )A .1−B .32−C .2−D .52−二、填空题(本题有6个小题,11-15每小题3分,16题4分,共19分)11.若一个正多边形的一个外角为36°,则这个正多边形的边数是______. 12.若扇形的圆心角为120°,半径为4,则它的弧长为______.(结果保留π) 13.某次踢球,足球的飞行高度h (米)与水平距离x (米)之间满足2560h x x =−+,则足球从离地到落地的水平距离为______米.14.如图,四边形ABCD 内接于圆,点E 在 CD 上,若 AB AD =,BC CE ED ==,105BCD ∠=°,则CDE ∠为______度.(第14题)15.如图,在ABC △中,90C ∠=°,点D 在AB 上,作DE BC ⊥于点E ,将BDE △绕点D 逆时针旋转至FDG △,点G ,F 分别落在AB ,AC 上.若2DG =,3FG =,则CE =______.(第15题)16.【情境】图1是某庭院所砌的一堵带有月洞门的墙,其设计图(图2)是轴对称图形,对称轴GH 交圆弧于点G ,墙面ABCD 为正方形,门洞上方匾额的中点M ,N ,P ,Q 分别是上方两个矩形对角线的交点.已知154AB =米,32EF =米,218GH =米,38EK =米.【问题】月洞门所在圆的半径为______米,匾额的长与宽之比为______.图1 图2 (第16题)三、解答题(本题有6小题,共51分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题5分)已知线段..a ,b ,满足23a b=. (1)求3a bb−的值. (2)当线段..x 是线段a ,b 的比例中项,且4a =时,求x 的值.18.(本题6分)某校七年级社会实践,安排三辆车,编号分别为A ,B ,C .小温与小州都可以从这三辆车中任意选择一辆搭乘.(1)求小温没有搭乘C 车的概率.(2)若小温没有搭乘C 车,请用画树状图或列表的方法,求出小温与小州不同车的概率. 19.(本题6分)如图,A ,B ,O 三点都在方格纸的格点上,请按要求在方格纸内作图.(图1) (图2) (第19题)(1)在图1中以点O 为位似中心,作线段AB 的位似图形CD ,使其长度为AB 的2倍.(2)已知OPQ △的三边比为1:2,在图2中画格点ABD △,使ABD △与OPQ △相似.20.(本题10分)如图,抛物线2y x bx c =−++经过点()1,0A −,()3,0B ,与y 轴交于点C .(第20题)(1)求抛物线的表达式及C 点坐标.(2)点(),3D m 是抛物线上一点,且当x m ≥时,y 的最大值为3,求BCD △的面积.21.(本题12分)如图,在ABC △中,90ACB ∠=°,点D 在BC 边上,ACD △的外接圆O 交AB 于点E ,AC CE =,过点C 作CG AD ⊥于点G ,延长CG 交AB 于点F .(第21题)(1)求证:FAC ACG ∠=∠.(2)求证:GC AGCA BC=.(3)若3CF FG =,AC =BD 的长.22.(本题12分)综合与实践:设计公交车停靠站的扩建方案.【素材1】图1为某公交车停靠站,顶棚截面由若干段形状相同的抛物线拼接而成.图2为某段结构示意图,1C ,2C 皆为轴对称图形,且关于点M 成中心对称,该段结构水平宽度为8米.图1 图2 图3【素材2】图3为停靠站部分截面示意图,两根长为2.5米的立柱11M N ,22M N 竖直立于地面并支撑在对称中心1M ,2M 处.小温将长为2.8米的竹竿AB 竖直立于地面,当点A 触碰到顶棚时,测得2N B 为1米. 【素材3】将顶棚扩建,要求截面为轴对称图形,且水平宽度为27米.计划在顶棚两个末端到地面之间加装垂直于地面的挡风板.【任务】(1)确定中心:求图2中点M到该结构最低点的水平距离l.C的函数表达式.(2)确定形状:在图3中建立合适的直角坐标系,求1(3)确定高度:求挡风板的高度.2023-2024学年浙江省温州市九年级(上)期末数学试卷(参考答案及评分标准)一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ADBCDCBCAD二、填空题(11-15每小题3分,16题4分)11.十 12.8π313.1214.2515 16.54;7:3三、解答题(共51分,5分+6分+6分+10分+12分+12分)17.解:(1)23a b = ,3323113a b a b b b b −∴=−=×−=(2)334622b a ==×= ,24624x ab ==×=,x ∴18.解:(1)计算:P (小温未搭乘C )23=(2)列表如下:由表可知,共有6种等可能结果,其中小温和小州搭不同车的结果有4种,∴小温和小州搭不同车的概率为4263=.19.解:(1)(2)注:答案不唯一.20.解:(1)把1x =−,0y =;3x =,0y =代入,得()()2011b c =−−+×−+,()2033b c =−+×+解得2b =,3c =223y x x ∴=−++;点C 为()0,3.(其他解法,相应给分) (2)由题意得,二次函数经过点(),3D m 由(1)得,()2221b a −=−=×−012m +∴=,2m =; 2CD ∴=,3OC = 12332BCD S ∴=××=△(第20题) 21.(本题12分)(第21题) (1)证明:AC CE= FAC ADC ∴∠=∠ 90ACB =°∠ ,CG AD ⊥90ACG DCG ADC DCG ∴∠+∠=∠+∠=° ACG ADC ∴∠=∠FAC ACG ∴∠=∠(2)证明:CG AD ⊥ ,90AGC BCA ∴∠=∠=°FAC ADC ∠=∠ AGC BCA ∴∽△△GC AGAC BC∴= (3)解:3CF FG = 设FG a =,3FA FC a ==在AFG Rt △中,AG ==ABC ACG ∽△△,AC =BC ACAG CG ∴==∴90AGC ACD ∠°∠== ,CAG DAC ∠=∠ ACG ADC ∴∽△△,CG CD AG AC ∴==CD ∴BD BC CD ∴=−=.(利用重心的性质得出D 为中点相应得分) 22.(本题12分)解:(1)由中心对称性得:824÷=米,由轴对称性得:422÷=米. (2)以2M 点为原点,按如图形式建立直角坐标系,由条件得,1C 过()0,0、()1,0.3,对称轴为2x =,设顶点式为()22y a x h =−+,将()0,0、()1,0.3代入得()()220020.312a ha h=−+ =−+ ,解得:0.4h =,0.1a =−.()210.120.4C y x =−−+(3)27833m −×=,332m 2÷=(图3) 情况①:当37222x =+=时,()120.120.40.175m C y x =−−+=, 2.5 2.675m h y =+=情况②:将31222x =−=−时,()220.120.40.175m C y x =+−=−, 2.5 2.325m h y =+=法二:由图形为轴对称图形可知,图形必由若干个图2结构和一个1C 或者2C 构成;48328+×=,28271−=,120.5÷=米,只需将0.5x =;0.5x =−相应代入1C ,2C 即可()120.10.520.40.175C y =−−+=米, 2.5 2.675m h y =+= 或()220.10.520.40.175m C y =−+−=−, 2.5 2.325m h y =+=. 建系二:按如图形式建立直角坐标系,(2)由条件得,1C 过()0,0.3、()1,0−,210.10.20.3C y x x =−++(3)27833m −×=,332m 2÷=. 情况①:当352122x =+−=时,120.10.20.30.175m c y x x =−++=, 2.5 2.675m h y =+=.情况②:将332122x=−+−=− 时,220.10.60.50.175m C y x x =++=−, 2.5 2.325m h y =+=.建系三:以A 为原点,按如图形式建立直角坐标系,(2) 由条件得,1C 过()0,0、()1,0.3−−,120.10.2C y x x =−+(3)27833m −×=,332m 2÷= 情况①:当352122x =+−=时,120.10.20.125m C y x x =−+=−, 2.8 2.675m h y =+=.情况②:将332122x=−+−=−时,220.10.60.20.475mCy x x=++=−, 2.8 2.325mh y=+=.。

浙江省温州市九年级(上)期末数学试卷

浙江省温州市九年级(上)期末数学试卷

B. 5cm
C. 6cm
D. 7cm
3. 若将抛物线 y=x2 向下平移 1 个单位,则所得抛物线对应的函数关系式为( )
A. y=(x−1)2
B. y=(x+1)2
C. y=x2−1
D. y=x2+1
4. 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 3cm,4.5cm 和 6m,另一个三角形的最长边长为 12cm,则它的最短边长为( )
1. 下列事件属于不确定事件的是( )
A. 若 a 是实数,则|a|≥0
B. 今年元旦那天温州的最高气温是 10℃
C. 抛掷一枚骰子,球的袋子中摸球,摸出黑球
2. 已知点 P 在半径为 5cm 的圆内,则点 P 到圆心的距离可以是( )
A. 4cm
【解析】
解:设另一个三角形的最短边长为 xcm,
根据题意,得: = ,
解得:x=6, 即另一个三角形的最短边的长为 6cm. 故选:A. 根据相似三角形的对应边成比例求解可得. 本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于 中考常考题型. 5.【答案】D
【解析】
第 6 页,共 17 页
则劣弧 AC 的长为( )
A. 23π
B. 3π
C. 43π
D. 4π
9. 如图,Rt△ABC 中,∠ACB=Rt∠,BC=2AC.正方形 DEFG 如图
放置,点 D,G 分别在 AC,BC 上,E,F 都在边 AB 上,若
AB=14,则 EF 的长为( )
A. 2
B. 4
C. 25
D. 8
10. 如图,阴影部分表示以直角三角形各边为直径的三个半圆所
在 Rt△ACB 中,∵∠ACB=90°,BC=2AC,AB=14,

2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+33.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1084.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.245.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.210.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是(填写正确结论的序号).16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2017-2018学年九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=108【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,=×4×6=12,∴S△ABC=×2×3=3,∴S△DEF∴==4.故选:A.【点评】本题考查了正多边形和圆,以及勾股定理、垂径定理,直角三角形的性质,明确边心距半径边长的一半正好组成直角三角形是解题的关键.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.2【分析】首先解方程求得方程的两个解,根据已知条件可以得到:x1*x2的值是两个根中的最大的一个.【解答】解:由方程x2+x﹣2=0得到(x+2)(x﹣1)=0,解得x1=﹣2,x2=1,∵,∴x1*x2=1.故选:A.【点评】本题主要考查了一元二次方程的解法,关键是理解a*b=a(a≥b)或者a*b=b (a<b).10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=﹣2.【分析】把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,然后解方程后利用一元二次方程的定义确定m的值.【解答】解:把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.【分析】分析题干知,贴纸的面积等于大扇形的面积﹣小扇形的面积.【解答】解:∵弧BC的长为20πcm,∴L=αr=20π,解得r=30,∴AB=30cm,贴纸的面积=大扇形的面积﹣小扇形的面积,==cm2.【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是①②④(填写正确结论的序号).【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:①由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;②∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故②正确;③直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故③错误;④∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以④正确;⑤∵b=2a,a+b+c<0,∴b+b+c=0,即3b+2c<0,故⑤错误;故答案是:①②④.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,=OD•AB=OA•OB,∵S△ABO∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.【点评】此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=,∴x=﹣2;(2)∵(x﹣1)(x+1)﹣(x+1)=0,∴(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得:x=﹣1或x=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)分别作出点A、B绕点C逆时针旋转90°得到其对应点,再顺次连接可得,绕后利用弧长公式计算可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA2=90°,∴点A到A2的路径长为=π.【点评】本题主要考查作图﹣轴对称变换、旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义和性质及弧长公式.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【分析】(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.【解答】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.【点评】本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE ∥AC是解决问题的关键.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.【点评】本题考查了函数关系式以及其最大值的求解问题.23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.【分析】(1)先利用勾股定理得出CE,再判断出△CEF∽△CAE,得出比例式即可得出结论;(2)先判断出∠ECA=∠ABF,进而得出△CEA∽△BFA,即可得出结论;(3)由(2)得出△CEA∽△BFA,即可表示出AB,最后利用锐角三角函数建立方程求出x,即可得出结论.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.【点评】此题是四边形综合题,主要考查了相似三角形的判定和性质,勾股定理,锐角三角函数,解(1)的关键是判断出△CEF∽△CAE,解(2)(3)的关键是判断出△CEA∽△BFA.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.。

浙江省温州市部分学校2017-2018学年高一(下)期末数学试卷 Word版含解析

浙江省温州市部分学校2017-2018学年高一(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.已知角α的终边上一点的坐标为则角α的正弦值为()A.B.C.D.2.下列四个结论中,正确的是()A.a>b,c<d⇒a+c>b+d B.a>b,c>d⇒ac>bdC.D.3.已知向量,,如果∥,那么实数k的值为()A.﹣1 B.1 C.D.4.等差数列﹣3,﹣1,…,2k﹣1的项数是()A.k+3 B.k+2 C.k+1 D.k5.在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,且a=1,c=4,则△ABC的面积为()A.1 B.2 C.D.26.已知x,y满足不等式组,则,则x+2y的最大值是()A.3 B.7 C.8 D.107.在等比数列{a n}中,a n>0,a1+a2=1,a3+a4=9,则a4+a5=()A.16 B.27 C.36 D.818.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()A.B.C.D.9.在等比数列{a n}中,a1=2,前n项和为S n,若数列{a n+1}也是等比数列,则S n等于()A.2n+1﹣2 B.3n C.2n D.3n﹣110.在△ABC中,角A,B,C所对的边为a,b,c,若角,则关于△ABC的两个判断“①一定锐角三角形②一定是等腰三角形”中()A.①②都正确B.①正确②错误C.①错误②正确D.①②都错误二、填空题:本大题共7小题,每小题3分,共21分,把答案填在答题纸上11.计算:(cos15°+sin15°)(cos15°﹣sin15°)=.12.数列{a n}满足a1=1,a n+1=﹣1,则a4=.13.已知一元二次不等式2kx2+kx+≥0对一切实数x都成立,则实数k的取值范围是.14.在△ABC中,若,那么点O是△ABC的.(填:外心、内心、重心、垂心)15.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(6)=.16.已知函数y=ax2+b图象经过点(﹣1,2),则的最小值是.17.已知S n是等差数列{a n}(n∈N*)的前n项和,且S6>S7>S5,有下列四个:①d<0;②S11>0;③S12<0;④数列{S n}中的最大项为S11,其中正确的序号是.三、解答题:本大题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤.18.已知向量,若向量与的夹角为60°,求cos(α﹣β)的值.19.已知函数f(x)=Asin(ωx+φ)(其中A>0,)的图象如图所示.(Ⅰ)求A,w及φ的值;(Ⅱ)若tana=2,求的值.20.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船.(Ⅰ)求处于C处的乙船和遇险渔船间的距离;(Ⅱ)设乙船沿直线CB方向前往B处救援,其方向与成θ角,求f(x)=sin2θsinx+cos2θcosx (x∈R)的值域.21.已知二次函数f(x)的二次项系数为a,且不等式f(x)>﹣4x的解集为(1,3),若f(x)的最大值大于﹣3,求a的取值范围.22.已知数列{a n}的前n项和是S n,a1=3,且a n+1=2S n+3,数列{b n}为等差数列,且公差d >0,b1+b2+b3=15.(Ⅰ)求数列的通项公式;(Ⅱ)若成等比数列,求数列的前n项和T n.浙江省温州市部分学校2014-2015学年高一(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.已知角α的终边上一点的坐标为则角α的正弦值为()A.B.C.D.考点:任意角的三角函数的定义.专题:常规题型.分析:由任意角的三角函数定义知先求得该点到原点的距离,再由定义求得.解答:解:角α的终边上一点的坐标为,它到原点的距离为1,由任意角的三角函数定义知:sinα=,故选A.点评:本题是基础题,考查任意角的三角函数的定义,送分题.2.下列四个结论中,正确的是()A.a>b,c<d⇒a+c>b+d B.a>b,c>d⇒ac>bdC.D.考点:不等式的基本性质.分析:根据不等式的基本性质,对答案中的四个推理,进行逐一的判断论证,分别判断其真假,即可得到答案.解答:解:当a=d=2,b=c=1时,>b,c<d成立,但a+c=b+d,故A错误;当0>a>b,0>c>d时,ac<bd,故B错误;当,故C正确;当a>b>0时,,故D错误;故选C点评:本题考查的知识点是不等式的基本性质,其中在判断一个推理不成立时,我们仅需要举出一个反例即可.3.已知向量,,如果∥,那么实数k的值为()A.﹣1 B.1 C.D.考点:平面向量共线(平行)的坐标表示.专题:计算题.分析:本题是一个向量共线问题,两个向量使用坐标来表示的,根据向量平行的充要条件的坐标形式,写出成立的条件,得到关于k的方程,解方程即可得到结果.解答:解:因为∥,所以6=﹣6k,解得k=﹣1,故选A.点评:本题是一个向量位置关系的题目,是一个基础题,向量用坐标形式来表示,使得问题变得更加简单,比用有向线段来表示要好理解.4.等差数列﹣3,﹣1,…,2k﹣1的项数是()A.k+3 B.k+2 C.k+1 D.k考点:等差数列的通项公式.专题:计算题.分析:由题意可得:等差数列的通项公式为a n=2n﹣5,令2n﹣5=2k﹣1即可得到答案.解答:解:由题意可得:等差数列的首项为﹣3,公差2,所以等差数列的通项公式为a n=2n﹣5,令2n﹣5=2k﹣1可得n=k+2.故选B.点评:本题主要考查等差数列的通项公式.5.在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,且a=1,c=4,则△ABC的面积为()A.1 B.2 C.D.2考点:正弦定理;等差数列的性质.专题:计算题.分析:由A,B及C成等差数列,根据等差数列的性质得到B的度数,进而求出sinB的值,再由a及c的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:解:∵A,B,C成等差数列,∴2B=A+C,又A+B+C=π,∴3B=π,即B=,又a=1,c=4,则△ABC的面积S=acsinB=×1×4×=.故选C点评:此题考查了三角形的面积公式,等差数列的性质,以及特殊角的三角函数值,根据等差数列的性质,由题意求出B的度数是本题的突破点,熟练掌握三角形的面积公式是解本题的关键.6.已知x,y满足不等式组,则,则x+2y的最大值是()A.3 B.7 C.8 D.10考点:简单线性规划.专题:数形结合法.分析:根据不等式组中的不等式画出可行域,如图所示,然后设z=x+2y,将最大值转化为y轴上的截距,求出即可.解答:解:先根据约束条件画出可行域,如图所示,设z=x+2y,将最大值转化为y轴上的截距,当直线z=x+2y经过点B(0,5)时,z最大,最大值为10.故选:D.点评:此题考查了简单线性规划,利用了数形结合的思想,画出相应的图形是解本题的关键.7.在等比数列{a n}中,a n>0,a1+a2=1,a3+a4=9,则a4+a5=()A.16 B.27 C.36 D.81考点:等比数列的性质.专题:计算题.分析:先根据已知条件求出公比,再对a4+a5整理,利用整体代换思想即可求解.解答:解:设等比数列的公比为q.则由已知得:a1(1+q)=1,①a1q2(1+q)═9 ②⇒q2=9.又∵a n>0,∴q=3.所以:a4+a5=a1•q3(1+q)=1×33=27.故选:B.点评:本题主要考查等比数列基本性质的应用.在解决这一类型题目时,一般常用方法是列出关于首项和公比的等式,求出首项和公比,也可以不求首项,直接利用整体代换思想来求解.8.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()A.B.C.D.考点:数量积表示两个向量的夹角.专题:计算题.分析:利用向量模的平方等于向量的平方得到两个向量的关系,利用向量的数量积公式求出两向量的夹角.解答:解:依题意,∵|+|=|﹣|=2||∴=∴⊥,=3,∴cos<,>==﹣,所以向量与的夹角是,故选C点评:本题考查向量模的平方等于向量的平方、利用向量的数量积公式求向量的夹角.9.在等比数列{a n}中,a1=2,前n项和为S n,若数列{a n+1}也是等比数列,则S n等于()A.2n+1﹣2 B.3n C.2n D.3n﹣1考点:等比数列的前n项和.专题:计算题.分析:根据数列{a n}为等比可设出a n的通项公式,因数列{a n+1}也是等比数列,进而根据等比性质求得公比q,进而根据等比数列的求和公式求出s n.解答:解:因数列{a n}为等比,则a n=2q n﹣1,因数列{a n+1}也是等比数列,则(a n+1+1)2=(a n+1)(a n+2+1)∴a n+12+2a n+1=a n a n+2+a n+a n+2∴a n+a n+2=2a n+1∴a n(1+q2﹣2q)=0∴q=1即a n=2,所以s n=2n,故选C.点评:本题考查了等比数列的定义和求和公式,着重考查了运算能力.10.在△ABC中,角A,B,C所对的边为a,b,c,若角,则关于△ABC的两个判断“①一定锐角三角形②一定是等腰三角形”中()A.①②都正确B.①正确②错误C.①错误②正确D.①②都错误考点:三角形的形状判断.专题:计算题.分析:根据正弦定理=化简已知的等式,由sinA不为0,得到sinB=sin2C,根据角C的范围及三角形的内角和定理得出A=C,根据等角对等边可得三角形ABC为等腰三角形,由A和C都为等腰三角形的底角,根据三角形的内角和定理得出顶角B也为锐角,从而得出三角形ABC为锐角三角形,得到关于三角形ABC两个判断都是正确的.解答:解:,∵sinA≠0,∴sinB=sin2C,因为,所以B=π﹣2C⇒B+C=π﹣C⇒π﹣A=π﹣C⇒A=C,∴△ABC一定为等腰三角形,选项②正确;且,,∴0<B<,即△ABC一定为锐角三角形,选项①正确.故选A点评:此题考查了三角形形状的判断,涉及的知识有正弦定理,正弦函数的图象与性质,等腰三角形的判定,学生做题时注意运用C的范围及三角形内角和定理这个隐含条件.二、填空题:本大题共7小题,每小题3分,共21分,把答案填在答题纸上11.计算:(cos15°+sin15°)(cos15°﹣sin15°)=.考点:二倍角的余弦.专题:计算题.分析:先利用平方差公式化简后,根据三角函数的二倍角公式求得答案.解答:解:(cos15°+sin15°)(cos15°﹣sin15°)=cos215°﹣sin215°=cos30°=故答案为:点评:本题主要考查了二倍角公式的化简求值.三角函数中的基础公式特别多,在平时的训练中应多记忆.12.数列{a n}满足a1=1,a n+1=﹣1,则a4=﹣.考点:数列递推式.专题:计算题.分析:根据题中已知条件分别将n=2,n=3和n=4代入公式中即可求得a4的值.解答:解:由题意知a1=1,;当n=2时,a2=﹣1=﹣1=﹣;当n=3时,a3=﹣1=2﹣1=1;当n=4时,a4=﹣1=﹣1=﹣;故答案为﹣.点评:本题主要考查了数列的递推公式,考查了学生的运算能力,解题时注意整体思想和转化思想的运用,同学们在平常要多加练习,属于中档题.13.已知一元二次不等式2kx2+kx+≥0对一切实数x都成立,则实数k的取值范围是(0,4].考点:一元二次不等式与一元二次方程.专题:计算题.分析:一元二次不等式2kx2+kx+≥0对一切实数x都成立,y=2kx2+kx+的图象在x轴上方,,由此能够求出k的取值范围.解答:解:∵一元二次不等式2kx2+kx+≥0对一切实数x都成立,由题意知k≠0,根据y=2kx2+kx+的图象∴,∴,解为(0,4].∴k的取值范围是(0,4].故答案为:(0,4].点评:本题考查二次函数的图象和性质,解题时要抓住二次函数与x轴无交点的特点进行求解.主要考查了二次函数的恒成立问题.二次函数的恒成立问题分两类,一是大于0恒成立须满足开口向上,且判别式小于0,二是小于0恒成立须满足开口向下,且判别式小于0.14.在△ABC中,若,那么点O是△ABC的垂心.(填:外心、内心、重心、垂心)考点:三角形五心;向量在几何中的应用.专题:证明题.分析:由已知中在△ABC中,若,我们易根据=0,得到OB⊥AC,同理可证:OA⊥BC,OC⊥AB,进而根据三角形五心的定义,得到答案.解答:解:若即==0即OB⊥AC同理可证:OA⊥BC,OC⊥AB故点O是△ABC的三条高的交点,故点O是△ABC的垂心故答案为:垂心点评:本题考查的知识点是三角形五心,向量在几何中的应用,其中根据=0,得到OB⊥AC,将向量数量积转化为线线垂直是解答本题的关键.15.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(6)=61.考点:归纳推理.专题:探究型.分析:先分别观察给出正方体的个数为:1,1+4,1+4+8,…总结一般性的规律,将一般性的数列转化为特殊的数列再求解.解答:解:根据前面四个发现规律:f(2)﹣f(1)=4×1,f(3)﹣f(2)=4×2,f(4)﹣f(3)=4×3,…,f(n)﹣f(n﹣1)=4(n﹣1)这n﹣1个式子相加可得:f(n)=2n2﹣2n+1.当n=6时,f(6)=61.故答案为:61.点评:本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,若求解的项数较少,可一直推理出结果,若项数较多,则要得到一般求解方法,再求具体问题.16.已知函数y=ax2+b图象经过点(﹣1,2),则的最小值是4.考点:基本不等式在最值问题中的应用.专题:计算题;转化思想.分析:由题意,函数y=ax2+b图象经过点(﹣1,2),可得出a+b=2,此处出现了和为定值,故的最值可以归结到基本不等式求最值问题中1的运用,由基本不等式求出最值即可解答:解:∵函数y=ax2+b图象经过点(﹣1,2),∴a+b=2∴=(a+b)×()=2+≥2+2=4,等号当且仅当,即a=b=1时成立所以的最小值是4故答案是4点评:本题考查基本不等式在最值问题中的应用,解题的关键是在解题的过程中,由题设条件得出a+b=2后能观察出来的最小值求法可用基本不等式,解题过程中能根据求解的情况判断出问题解决转化的方向是一个非常好的学习品质17.已知S n是等差数列{a n}(n∈N*)的前n项和,且S6>S7>S5,有下列四个:①d<0;②S11>0;③S12<0;④数列{S n}中的最大项为S11,其中正确的序号是①②.考点:等差数列的性质.专题:压轴题.分析:先由条件确定第六项和第七项的正负,进而确定公差的正负,再将S11,S12由第六项和第七项的正负判定.解答:解:由题可知等差数列为a n=a1+(n﹣1)ds6>s7有s6﹣s7>0即a7<0s6>s5同理可知a6>0a1+6d<0,a1+5d>0由此可知d<0 且﹣5d<a1<﹣6d∵s11=11a1+55d=11(a1+5d)>0s12=12a1+66d=12(a1+a12)=12(a6+a7)>0,s13=13a1+78d=13(a1+6d)<0即①②是正确的,③是错误的故答案是①②点评:本题主要考查等差数列的前n项和公式的应用.三、解答题:本大题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤.18.已知向量,若向量与的夹角为60°,求cos(α﹣β)的值.考点:两角和与差的余弦函数;平面向量数量积的运算.专题:计算题.分析:根据向量模与数量积运算公式,我们易计算出||,||,•,代入=6cos(α﹣β),即可求出结果.解答:解:(3分)∵=3(6分)∴6cos(α﹣β)=3,cos(α﹣β)=(9分)点评:本题考查了两角和与差的余弦公式以及向量模与数量积运算公式,属于基础题.19.已知函数f(x)=Asin(ωx+φ)(其中A>0,)的图象如图所示.(Ⅰ)求A,w及φ的值;(Ⅱ)若tana=2,求的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.分析:(1)根据函数图象的最大值和最小值确定A的值,由周期可知ω的值,最后再代入特殊值可确定φ的值.(2)先表示出f(α+)的表达式,根据tana=2求出cos2a的值代入即可得到答案.解答:解:(Ⅰ)由图知A=2,T=2()=p,∴w=2,∴f(x)=2sin(2x+φ)又∵=2sin(+φ)=2,∴sin(+φ)=1,∴+j=,φ=+2kπ,∵,∴φ=(2)由(Ⅰ)知:f(x)=2sin(2x+),∴=2sin(2a+)=2cos2a=4cos2a﹣2∵tana=2,∴sina=2cosa,又∵sin2a+cos2a=1,∴cos2a=,∴=点评:本题主要考查根据图象求三角函数解析式.一般的,根据函数图象的最大值和最小值确定A的值,由周期可知ω的值,最后再代入特殊值可确定φ的值.20.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船.(Ⅰ)求处于C处的乙船和遇险渔船间的距离;(Ⅱ)设乙船沿直线CB方向前往B处救援,其方向与成θ角,求f(x)=sin2θsinx+cos2θcosx (x∈R)的值域.考点:解三角形的实际应用;余弦定理.专题:计算题.分析:(Ⅰ)连接BC,依题意可知AC,AB的值和∠CAB,进而由余弦定理求得BC.(Ⅱ)先根据正弦定理求得sinθ,进而根据同角三角函数基本关系求得cosθ,进而利用两角和公式化简函数的解析式,进而根据正弦函数的性质求得函数的值域.解答:解:(Ⅰ)连接BC,由余弦定理得BC2=202+102﹣2×20×10COS120°=700.∴BC=10.(Ⅱ)∵,∴sinθ=∵θ是锐角,∴,f(x)=sin2θsinx+cos2θcosx=∴f(x)的值域为.点评:本题主要考查了解三角形中的实际运用.考查了学生运用所学知识解决实际问题的能力.21.已知二次函数f(x)的二次项系数为a,且不等式f(x)>﹣4x的解集为(1,3),若f(x)的最大值大于﹣3,求a的取值范围.考点:一元二次不等式与二次函数.专题:计算题.分析:不等式f(x)>﹣4x的解集为(1,3),得方程f(x)=﹣4x两个根是1,3.由此可得出二次函数f(x)中的系数间的关系,又f(x)的最大值大于﹣3,得二次项系数a<0且可以得到关于a的不等关系.解答:解:设f(x)=ax2+bx+c,(a<0),由题意得方程f(x)=﹣4x两个根是1,3,即ax2+(b+4)x+c=0两个根是1,3.∴∴b=﹣4a﹣4,c=3a又f(x)的最大值大于﹣3,即消去b,c得到关于a不等式,a2+5a+4>0解得a的取值范围是﹣1<a<0或a<﹣4.点评:本题考查不等式与方程之间的内在联系,体现了函数与方程的数学思想,解题的过程中,要有主元素的思想,即要把条件转化成关于a的不等关系.22.已知数列{a n}的前n项和是S n,a1=3,且a n+1=2S n+3,数列{b n}为等差数列,且公差d >0,b1+b2+b3=15.(Ⅰ)求数列的通项公式;(Ⅱ)若成等比数列,求数列的前n项和T n.考点:数列的求和;等比数列的通项公式.专题:综合题.分析:(Ⅰ)由a n+1=2S n+3,a n=2S n﹣1+3(n≥2)两式作差即可求得a n;(Ⅱ)由(Ⅰ)求得a n=3n,成等比数列可求得b n,用裂项法可求得数列的前n项和T n.解答:解:(Ⅰ)由a n+1=2S n+3,a n=2S n﹣1+3(n≥2)得:a n+1﹣a n=2a n∴a n+1=3a n(n≥2)∴(2分),(3分)∴∴a n=3n(4分)(Ⅱ)由b1+b2+b3=15,得b2=5(5分)则b1=5﹣d,b3=5+d,则有:64=(6﹣d)(14+d)即:d2+8d﹣20=0(6分)d=2或d=﹣10∵d>0∴d=2(7分)∴b n=b1+(n﹣1)d=3+2(n﹣1)=2n+1(8分)∴=(10分)点评:本题考差数列求和,重点考查学生的转化思想,方程思想及裂项法求和,难点在于裂项法求和的理解与应用,属于中档题.。

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。

若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

2017-2018学年人教版九年级(上册)期中数学试卷及答案

2017-2018学年人教版九年级(上册)期中数学试卷及答案2017-2018学年九年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程x^2-2(3x-2)+(x+1)=0的一般形式是()A。

x^2-5x+5=0B。

x^2+5x-5=0C。

x^2+5x+5=0D。

x^2+5=02.目前我国建立了比较完善的经济困难学生资助体系。

某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A。

438(1+x)^2=389B。

389(1+x)^2=438C。

389(1+2x)^2=438D。

438(1+2x)^2=3893.观察下列图案,既是中心对称图形又是轴对称图形的是()A。

B。

C。

D。

4.把二次函数y=-x^2-x+3用配方法化成y=a(x-h)^2+k的形式时,应为()A。

y=-(x-2)^2+2B。

y=-(x-2)^2+4C。

y=-(x+2)^2+4D。

y=-(x+2)^2+35.二次函数y=ax^2+bx+c(a≠0)的图像如图所示,下列结论正确的是()A。

a<0___<0C。

当-12D。

-2<c<06.对抛物线:y=-x^2+2x-3而言,下列结论正确的是()A。

与x轴有两个交点B。

开口向上C。

与y轴的交点坐标是(0,-3)D。

顶点坐标是(1,-2)7.以3和-1为两根的一元二次方程是()A。

x^2+2x-3=0B。

x^2+2x+3=0C。

x^2-2x-3=0D。

x^2-2x+3=08.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图像可能是()A。

B。

C。

D。

9.将抛物线y=3x^2向左平移2个单位,再向下平移1个单位,所得抛物线为()A。

y=3(x-2)^2-1B。

y=3(x-2)^2+1C。

y=3(x+2)^2-1D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省温州市2017-2018学年九年级上学期期末数
学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()
A.1cm B.2cm C.4cm D.8cm
2. 已知,则代数式的值为()
A.B.C.D.
3. 抛物线y=x2+2x+3的对称轴是( )
A.直线x=1 B.直线x=-1
C.直线x=-2 D.直线x=2
4. 如图,在⊙O中,点M是的中点,连结MO并延长,交⊙O于点N,连结BN.若∠AOB=140°,则∠N的度数为()
A.70°B.40°C.35°D.20°
5. 在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是()A.B.C.D.
6. 如图,四边形内接于圆,若,则
()
A.B.C.D.
7. 已知点A(﹣2,a),B(1,b),C(3,c)是抛物线y=x2﹣2x+2上的三点,则a,b,c的大小关系为()
A.a>c>b B.b>a>c C.c>a>b D.b>c>a
8. 如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是()
A.3B.4C.D.2
9. 如图,在Rt△ABC中,∠A=20°,AC=6,将△ABC绕直角顶点C按顺时针方向旋转得到△A′B′C,当点B′第一次落在AB边上时,点A经过的路径长
(即的长)为()
A.B.C.2π
D.
10. 如图,点A为x轴上一点,点B的坐标为(a,b),以OA,AB为边构造?OABC,过点O,C,B的抛物线与x轴交于点D,连结CD,交边AB于点E,
若AE=BE,则点C的横坐标为()
A.a﹣b
B.C.D.
二、填空题
11. 如图,直线AB∥CD∥EF,已知AC=3,CE=4,BD=3.6,则DF的长为
_____.
12. 某工厂从一批保温杯中随机抽取1000个进行质量检测,结果有980个保温杯质量合格,那么可以估计这批保温杯的合格率约为_____.
13. 请写出一个开口向上,且其图象经过原点的抛物线的解析式_____.
14. 已知扇形的圆心角为45°,半径为3cm,则该扇形的面积为_____cm2.
15. 如图,点P是△ABC的重心,过点P作DE∥AB交BC于点D,交AC于点E,若AB的长度为6,则DE的长度为_____.
16. 一根排水管的截面如图所示,已知水面宽AB=40cm,水的最大深度为
8cm,则排水管的半径为_____cm.
17. 函数y=ax2﹣8ax(a为常数,且a>0)在自变量x的值满足2≤x≤3时,其对应的函数值y的最大值为﹣3,则a的值为_____.
18. 如图是一个摩天轮,它共有8个座舱,依次标为1~8号,摩天轮中心O的离地高度为50米,摩天轮中心到各座舱中心均相距25米,在运行过程中,当
1号舱比3号舱高5米时,1号舱的离地高度为_____米.
三、解答题
19. 有三张分别标有数字2,5,9的卡片,它们的背面都相同.现将它们背面朝上,从中任意抽出一张卡片,不放回,再从剩余的两张卡片里任意抽出一张.
(1)请用树状图或列表法表示出所有可能的结果.
(2)求两张卡片的数字之和为偶数的概率.
20. 如图,在所给的方格纸中,每个小正方形边长都是1,△ABC是格点三角形(顶点在方格顶点处).
(1)在图1画格点△A1B1C1,使△A1B1C1与△ABC相似,相似比为2︰1.
(2)在图2画格点△A2B2C2,使△A2B2C2与△ABC相似,面积比为2︰1.
21. 如图,抛物线y=x2﹣2x﹣3与x轴交于A,B两点(A在B的左侧),顶点为C.
(1)求A,B两点的坐标;
(2)若将该抛物线向上平移t个单位后,它与x轴恰好只有一个交点,求t的
值.
22. 如图,在△ABC中,AB=AC,D是BC边上的中点,过A,C,D三点的圆交BA的延长线于点E,连接EC.
(1)求证:∠E=90°;
(2)若AB=6,BC=10,求AE的长.
23. 创客联盟的队员想用3D打印完成一幅边长为4米的正方形作品ABCD,设计图案如图所示(四周阴影是四个全等的矩形,用材料甲打印;中心区是正方形A′B′C′D′,用材料乙打印).在打印厚度保持相同的情况下,两种材料
材料甲乙
价格(元/米
60 30
2)
设矩形的较短边AH的长为x米,打印材料的总费用为y元.
(1)A′D′的长为米(用含x的代数式表示);
(2)求y关于x的函数解析式;
(3)当中心区的边长不小于3时,预备材料的购买资金700元够用吗?请利用
函数的增减性来说明理由.
24. 如图,在平面直角坐标系中,A(3,4),B(5,0),连结AO,A
A.点C是线段AO上的动点(不与A,O 重合),连结BC,以BC为直径作⊙H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF⊥x轴于F,交BC于B.
(1)AO的长为
,AB的长
为(直接写出答案)
(2)求证:△ACE∽△BEF;
(3)若圆心H落在EF上,求BC的长;
(4)若△CEG是以CG为腰的等腰三角形,求点C的坐标.。

相关文档
最新文档