基因芯片的操作流程及步骤

合集下载

基因芯片的操作流程及步骤ppt课件

基因芯片的操作流程及步骤ppt课件
能的序列共有65536种。 • 假如只考虑完全互补的杂交,那么48个8 nt亚序列探针中,
仅有上述5个能同靶DNA杂交。 • 可以用人工合成的已知序列的所有可能的n体寡核苷酸探
针与一个未知的荧光标记DNA/RNA序列杂交,通过对杂 交荧光信号检测,检出所有能与靶DNA杂交的寡核苷酸, 从而推出靶DNA中的所有8 nt亚序列,最后由计算机对大 量荧光信号的谱型(pattern)数据进行分析,重构靶 DNA 的互补寡核苷酸序列。
生物芯片的制作步骤
细胞
对mRNA进行标记 杂交
基因表达资料
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
基因芯片研制的总体蓝图
检测样品 的制备
获取样品分子的 数量和序列信息
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
基因芯片是信息时代的产物
横跨:生命科学、物理学、
计算机科学、微电子技术 光电技术、材料科学 等现代高 科技。
我国第一家批量生产基因 芯片 拥有近2千条基因药物发明专利
• 东南大学吴健雄实验室 • 中科院计算所生物信息学实验室 • 上海生科院
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。

基因芯片检测流程

基因芯片检测流程

基因芯片检测流程基因芯片检测是一种高通量的基因分析技术,可以同时检测大量基因的表达水平或基因组的变异情况。

该技术的流程主要包括样本准备、芯片处理、数据分析和结果解读等步骤。

首先,样本准备是基因芯片检测的关键步骤。

样本可以是组织、细胞、血液等。

首先,需要提取样本中的总RNA,然后利用逆转录酶将RNA转录成cDNA,并标记上荧光染料。

这一步骤可以通过不同的实验方法进行,如全基因组扩增、dscDNA合成等。

随后,将标记好的cDNA与芯片上的探针进行杂交反应。

其次,芯片处理是对标记好的cDNA进行杂交的步骤。

将标记好的cDNA溶液滴在芯片上,并利用温度控制设备进行加热、冷却等环境控制,促进标记物与芯片上的探针结合。

芯片上的探针可以是单链DNA、RNA或寡核苷酸等,可以选择特定的探针来检测特定基因。

然后,进行数据分析是基因芯片检测的重要步骤。

通过激光扫描芯片上的标记物,可以获取荧光强度信号。

这些信号表示了样本特定基因的表达水平。

通过对比不同样本之间的信号差异,可以分析某个基因在不同样本中的表达差异。

数据分析可以使用各种统计学方法和生物信息学工具进行,常用的包括聚类分析、差异表达分析、富集分析等。

最后,基因芯片检测的结果解读是整个流程的最终目标。

数据分析得到了许多的基因表达信息和差异表达基因,需要对这些数据进行解读和分析。

通过比对已有的数据库和研究结果,可以找出与特定疾病或生理过程相关的重要基因。

进一步的实验验证可以进一步证实芯片分析结果的可靠性。

综上所述,基因芯片检测流程是一个复杂且关键的分子生物学技术。

通过样本准备、芯片处理、数据分析和结果解读等步骤,可以对大量基因进行快速、高通量的检测和分析。

基因芯片检测在疾病诊断、生物学研究等领域具有重要的应用价值。

AFFYMETRIX基因芯片操作流程

AFFYMETRIX基因芯片操作流程

AFFYMETRIX 基因芯片操作流程第一章真核靶片断制备<一> RNA 的抽提一、 哺乳动物细胞或组织RNA 的抽提1. 总 RNA 使用 QIAGEN ' 哺乳动物组织作为+2. Poly(A) mRNA 哺乳动物细胞使用 哺乳动物组织作为 离步骤或使用kit.二、 RNA 沉淀1. 总 RNA在用RNeasy Total RNA Isolation kit 分离或洗涤后没有必要沉淀总 RNA.调整洗脱体积以制备cDNA 合成接近希望的 RNA 浓度。

注:为获得足够量的标记 cRNA 用来评估和基因芯片表达探针杂交, AFFYMETRIX 建议开 始合成cDNA 的Poly(A) +mRNA 最小浓度为0.02卩g/卩l 时的最小量是0.2卩g,总RNA 最 小浓度为0.5卩g/卩l 时的最小量是5卩g.这样有两个好处: (1) 有足够量在各步检查样品浓度和质量 (2)制备足够的cRNA 用于杂交在TRIzol 分离和热酚提取后需要乙醇沉淀;见下面方法 +2. Poly(A) mRNA大多数Poly(A) +mRNA 分离过程都会导致得到较稀浓的 RNA ,所以需要在cDNA 合成前浓缩mRNA. 3. 沉淀步骤: (1) 力口 1/10体积3M NaOAc,PH5.2,和2.5倍体积乙醇. (2) 混匀,-20C 放置最少1小时. (3) 4C ,> 12000x g 离心 20 分钟. (4) 80%乙醇洗涤沉淀 2次.(5) 空气干燥沉淀.继续下面步骤前检查是否干燥 . (6)DEPC 处理水重新溶解沉淀.最合适的溶解体积由cDNA 合成中需要的 RNA 的浓度和量来决定.先阅读cDNA 合成的过程来决定这一步的适合溶解体积4. RNA 测定用分光光度计分析 RNA 浓度,在260nm1单位吸光度等于 40卩g/mlRNA.需要在260和280nm 测定吸光度来确定样品的浓度和纯度 A 260/A 280应接近2.0为较纯的RNA(比值在1.9-2.1也可)<二>由纯化的总RNA 合成双链cDNAAFFYMETRIX 强烈建议 HPLC 纯化 T7-(d7) 24 primerRNeasy Total RNA Isolation kit 成功抽提哺乳动物细胞总 RNA.RNA 的来源,建议使用 TRIzol 抽提总RNA.QIAGEN ' Oligotex Direct mRNA kit,从总 RNA 中抽提 mRNA . RNA 的来源,应首先使用 TRIzol 纯化,再进行一个 Poly(A)+mRNA 分一、第一链cDNA合成开始RNA的量:高质量RNA5.0卩g -40.0卩g纯化后RNA浓缩由260nm吸光度决定(1单位吸光度=40卩g/mlRNA ), A260/A280应接近2.0,在1.8-2.1的范围内。

基因芯片检测原理及简要过程

基因芯片检测原理及简要过程

基因芯片检测原理及简要过程1.样本准备:首先需要从目标生物体中获得样本,可以是DNA、RNA或蛋白质。

样本处理的方式根据研究目的不同而不同,可能需要提取DNA或RNA,并对其进行纯化和扩增。

2.样本标记:为了将样本引入芯片中进行检测,样本需要与荧光标记物结合。

在样本处理过程中,可以使用反应物来标记样本中的基因或序列。

标记物的选择基于实验设计和研究目的。

3.杂交:标记的样本与芯片上的核酸探针进行杂交反应。

核酸探针是单链DNA分子,具有与目标样本中的DNA互补的序列。

这种杂交反应是通过将样本和核酸探针同时加入一个反应混合物中,使它们相互结合。

4.洗涤:经过杂交反应后,需要对芯片进行洗涤以去除未结合的标记物和杂交物。

这个过程是为了减少背景信号,提高检测的特异性和灵敏度。

5.扫描:在洗涤后,芯片被放入一台专门的扫描仪中,这个扫描仪使用激光或LED光源来激发标记物的荧光信号。

随后,该信号被检测并记录下来。

6.数据分析:通过扫描仪获得的数据可以用来分析芯片上的每个探针的荧光强度。

根据荧光强度的变化,可以推断出样本中的基因表达和变异情况。

通常使用的数据分析方法包括基因差异分析、聚类分析、富集分析和通路分析等。

总结起来,基因芯片检测是一种高通量的基因分析技术,可以同时检测数以千计的基因或序列,用于揭示基因表达和变异的情况。

其基本原理是通过将样本与芯片上的核酸探针进行杂交,再通过标记物的荧光信号检测和数据分析,得出样本中的基因信息。

这项技术已经广泛应用于基因组学、遗传学、癌症研究等领域,促进了对基因功能和疾病机制的理解。

基因芯片第三章基因芯片的制作方法

基因芯片第三章基因芯片的制作方法

基因芯片第三章基因芯片的制作方法基因芯片是一种用于检测和分析基因表达的工具,它可以同时测量上千至上百万个基因的表达水平。

基因芯片的制作方法主要包括芯片设计、探针合成、芯片加工和芯片测试等步骤。

下面将详细介绍基因芯片的制作方法。

第一步:芯片设计芯片设计是基因芯片制作的关键步骤,它决定了芯片上每个位置的探针序列。

探针可以是DNA或RNA分子,用于与待测样品中的RNA结合。

探针的设计需要考虑到基因序列的特异性,以及探针长度、探针间隔等参数的选择。

设计好的探针序列将被用于后续的探针合成。

第二步:探针合成探针的合成常常采用固相合成技术。

通过在固相合成反应中逐步添加不同的核苷酸单元(A、T、G、C),可以合成出具有特定序列的寡核苷酸。

合成好的探针需要经过纯化和检测,确保其质量符合要求。

第三步:芯片加工芯片加工是将探针固定在芯片表面的过程。

目前常用的芯片加工技术有光刻和喷墨技术。

光刻技术是通过在芯片表面涂覆光敏材料,然后使用掩膜和紫外线照射,将探针序列的图案直接写入芯片表面。

喷墨技术则是将合成好的探针溶液喷洒在芯片表面,并利用喷嘴的高精度控制,将探针序列分别定位到芯片上的每个位置。

第四步:芯片测试芯片测试是基因芯片制作的最后一步,也是评估芯片质量和性能的重要环节。

通过将待测RNA样品与芯片上固定的探针进行杂交反应,可以检测每个位置的探针与RNA的结合情况。

一般采用荧光探针或放射性标记物等技术,将杂交信号转化为可测的荧光强度或放射性强度。

通过对杂交信号的分析和比较,可以得到样品中各个基因的表达水平。

总结起来,基因芯片的制作方法包括芯片设计、探针合成、芯片加工和芯片测试等步骤。

这些步骤的顺序和操作都对基因芯片质量和性能有重要影响,因此需要严格控制每个步骤的条件和参数。

随着技术的发展,基因芯片的制作方法也在不断更新与改进,以满足对基因芯片在生物医学和生命科学领域的研究应用需求。

基因芯片操作方法

基因芯片操作方法

基因芯片操作方法基因芯片是用于检测和分析基因表达的一种高通量技术。

它能够同时检测上千个基因的表达水平,通过测量RNA或DNA分子与芯片上的探针结合的情况,可以得到目标基因在样本中的表达水平。

本文将介绍基因芯片操作的步骤及相关注意事项。

首先,进行实验前需要准备样品和试剂。

样品可以是RNA或DNA提取物,可以来自细胞系、组织样本等。

而试剂包括芯片、标记物(如荧光素或生物素)、缓冲液、洗涤液等。

接下来,样品中的RNA或DNA需要被标记。

标记物通常与RNA或DNA进行酶反应,将荧光素或生物素等标记反应到目标分子上。

此步骤可以使用商业化的标记试剂盒完成。

第三步是将样品和标记物混合。

样品和标记物混合后,在合适的反应条件下进行杂交作用,使标记的RNA或DNA与芯片上的探针结合。

芯片上的探针是一系列具有特异性的寡核苷酸序列,在芯片上形成固定阵列。

第四步是对芯片进行洗涤。

洗涤的目的是去除没有结合的标记物和杂质。

洗涤液中的盐和其他成分可以改变探针和样品分子之间的亲和性,帮助去除非特异性结合。

接下来,通过芯片扫描仪读取芯片上的荧光强度。

被标记的RNA或DNA与芯片上的探针结合后,会发出荧光信号。

芯片扫描仪会记录下每个探针位点的荧光强度,并把数据输出到计算机上。

最后,对芯片数据进行分析和解读。

数据分析可以包括对芯片上每个基因的表达水平进行比较,找出在不同样品之间有差异表达的基因。

此外,还可以进行聚类分析、生物通路分析等,进一步挖掘和解读基因表达的相关信息。

在进行基因芯片操作时,需要注意一些关键点。

首先,样品的制备应该尽量避免污染和降解的问题。

其次,标记物的选择和使用要符合实验要求,并且稳定性好。

不同芯片的探针设计也不同,因此在测序前需要了解所用芯片上的探针信息。

此外,洗涤步骤要严格控制,以免造成杂交效果不佳或者非特异性结合。

最后,在数据分析过程中,要注意处理和解读数据的方法和统计学原则。

总结起来,基因芯片操作包括样品准备、标记、杂交、洗涤、扫描和数据分析等步骤。

AFFYMETRIX基因芯片操作流程

AFFYMETRIX基因芯片操作流程第一章真核靶片断制备<一> RNA的抽提一、哺乳动物细胞或组织RNA的抽提1.总RNA使用QIAGEN’s RNeasy Total RNA Isolation kit成功抽提哺乳动物细胞总RNA.哺乳动物组织作为RNA的来源,建议使用TRIzol抽提总RNA.2.Poly(A)+mRNA哺乳动物细胞使用QIAGEN’s Oligotex Direct mRNA kit,从总RNA中抽提mRNA .哺乳动物组织作为RNA的来源,应首先使用TRIzol纯化,再进行一个Poly(A)+mRNA分离步骤或使用kit.二、RNA沉淀1.总RNA在用RNeasy Total RNA Isolation kit分离或洗涤后没有必要沉淀总RNA.调整洗脱体积以制备cDNA合成接近希望的RNA浓度。

注:为获得足够量的标记cRNA用来评估和基因芯片表达探针杂交,AFFYMETRIX建议开始合成cDNA的Poly(A)+mRNA最小浓度为0.02μg/μl时的最小量是0.2μg, 总RNA最小浓度为0.5μg/μl时的最小量是5μg.这样有两个好处:(1)有足够量在各步检查样品浓度和质量(2)制备足够的cRNA用于杂交在TRIzol分离和热酚提取后需要乙醇沉淀;见下面方法.2. Poly(A)+mRNA大多数Poly(A)+mRNA分离过程都会导致得到较稀浓的RNA,所以需要在cDNA合成前浓缩mRNA.3.沉淀步骤:(1)加1/10体积3M NaOAc,PH5.2,和2.5倍体积乙醇.(2)混匀,-20℃放置最少1小时.(3)4℃,≥12000x g离心20分钟.(4)80%乙醇洗涤沉淀2次.(5)空气干燥沉淀.继续下面步骤前检查是否干燥.(6)DEPC处理水重新溶解沉淀.最合适的溶解体积由cDNA合成中需要的RNA的浓度和量来决定.先阅读cDNA合成的过程来决定这一步的适合溶解体积.4.RNA测定用分光光度计分析RNA浓度,在260nm 1单位吸光度等于40μg/mlRNA.●需要在260和280nm测定吸光度来确定样品的浓度和纯度●A260/A280应接近2.0为较纯的RNA(比值在1.9-2.1也可)<二>由纯化的总RNA合成双链cDNAAFFYMETRIX强烈建议HPLC纯化T7-(d7)24 primer一、第一链cDNA合成开始RNA的量:高质量RNA5.0μg -40.0μg纯化后RNA浓缩由260nm吸光度决定(1单位吸光度=40μg/mlRNA),A260/A280应接近2.0,在1.8-2.1的范围内。

基因芯片的操作流程及步骤


02
基因芯片操作流程
基因芯片的设计与制备
01
02
03
确定目标基因
根据研究目的,确定需要 检测的目标基因或基因组 区域。
设计探针
根据目标基因序列,设计 特异性捕获探针,确保探 针的特异性、灵敏度和稳 定性。
制备芯片
将探针合成并固定在芯片 基质上,形成基因芯片。
样本准备
样本收集
采集待检测样本,如组织、 血液、细胞等。
背景校正
通过特定的算法和技术,对基因芯片中的背景信号进行校正,排除非特异性信号和背景 噪声的干扰,提高数据的准确性和可靠性。
数据分析与结果解读
数据分析
运用统计分析、机器学习等方法,对基 因芯片数据进行深入分析,包括差异表 达基因的筛选、基因功能注释、通路富 集分析等。
VS
结果解读
根据分析结果,结合生物学知识和文献资 料,对基因表达谱进行解释和推理,揭示 基因之间的相互作用和调控关系,为后续 实验提供理论依据和指导。
06
应用实例
基因表达谱分析
目的
了解不同组织或不同生长条件下基因的表达情况,寻找差异表达基 因。
操作步骤
提取组织或细胞的总RNA,逆转录为cDNA,将cDNA标记后与基 因芯片进行杂交,洗涤、检测并分析结果。
注意事项
确保RNA质量、标记效率和杂交条件的优化。
单核苷酸多态性检测
目的
检测基因组中单核苷酸的变异,如SNPs,了解遗传变异与疾病的 关系。
交,洗涤、检测并分析结果。
注意事项
03
确保DNA标记效率和杂交条件的优化,注意控制实验条件和背
景噪音。
THANKS
感谢观看
核酸提取
从样本中提取出所需的核 酸(DNA或RNA)。

基因芯片的必备知识和操作流程

基因芯片技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。

本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。

基因芯片技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。

本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。

1.基本原理和技术基础基因芯片以DNA杂交为基本原理,基于A和T、G和C的互补关系。

它是在探针的基础上研制出的。

所谓探针是一段人工合成或筛选出的已知顺序的碱基序列,样品分子上连接有一些cy3、cy5等可检测的物质。

经激光共聚焦荧光显微镜检出杂交或反应信号,通过计算机处理、分析,即可获得所需信息。

例如,用红、绿荧光分别标记实验样本和对照样本的cDNA,混合后与微阵列杂交,可显示实验样本和对照样本基因的表达强度(显示红色、绿色或黄色),由此可在同一微阵列上同时检测两样本的基因表达差异。

在基因芯片工作过程中,固定位点使用不同分子生物学技术和碱基互补配对原则与待测基因片段杂交,并通过自动阅读设备分析杂交结果,达到定性、定量分析的目的。

基因芯片通过应用平面微细加工技术和超分子自组装技术,把大量分子检测单元集成在一个微小的固体基片表面,可同时对大量的核酸等生物分子实现高效、快速、低成本的检测和分析。

基因芯片的检测主要建立在放射标记技术、荧光标记技术、质谱分析、化学发光等技术上。

使用荧光标记的基因芯片需要专用的荧光扫描仪。

对于高密度的基因芯片,目前最常用的是激光共聚焦显微镜和高性能的冷却CCD。

目前专用于荧光扫描的扫描仪大致分为两类:一类是基于CCD(charge-coupled device,电荷耦合装置)的检测光子;另一类则是基于PMT(photomultiplier tube,光电倍增管)的检测系统。

生物芯片的发展得益于微细加工技术和现代分子生物技术的结合。

基因芯片的操作流程及步骤

精准诊断
结合患者的基因组信息,基因芯片技术可以 实现疾病的精准诊断,为后续治疗提供指导 。
个性化治疗方案设计
通过分析患者的基因变异信息,可以为每位患者量 身定制个性化的治疗方案,提高治疗效果。
预后评估
基因芯片技术可用于评估患者的预后情况, 为医生制定后续治疗方案提供参考。
06
基因芯片技术挑战与展望
固定化效果检测
通过荧光标记等方法检测 探针的固定化效果,确保 芯片质量。
探针合成与标记
01
探针合成
根据设计序列,通过化学合成方 法合成探针,并进行纯化和质量 控制。
探针标记
02
03

标记效果检测
将合成好的探针进行荧光标记或 其他标记,以便于后续的信号检 测。
通过荧光扫描仪等设备检测探针 的标记效果,确保标记成功且均 匀。
VS
意义
基因芯片技术的出现和发展为生命科学研 究和医学诊断等领域带来了革命性的变革 。它不仅提高了检测效率和准确性,还为 我们提供了更加全面和深入的基因信息, 有助于揭示生命活动的本质和规律,为疾 病的预防、诊断和治疗提供更加有效的手 段。
02
基因芯片制备流程
芯片设计与制造
芯片类型选择
根据实验需求,选择合适的芯片类型,如cDNA芯 片、寡核苷酸芯片等。
质量控制与标准化管理
1 2
实验设计
制定合理的实验设计方案,包括样本选择、实验 重复次数等,以确保实验结果的可靠性和可重复 性。
标准化操作
建立标准化的实验操作流程和质量控制标准,确 保实验过程中各项操作的准确性和一致性。
3
数据质量评估
采用多种方法对实验数据进行质量评估,如信噪 比、动态范围、重复性等指标,以确保数据的准 确性和可靠性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因芯片的操作流程及步骤
基因芯片是一种用于检测和分析基因表达的高通量技术。

它能够同时检测上万个基因,在生物医学研究、生物工程和临床诊断等领域具有重要的应用价值。

基因芯片的操作流程主要包括前处理、杂交、显像和数据分析等步骤。

下面是详细的操作流程及各步骤的介绍。

1.前处理:
a.提取RNA:从细胞或组织中提取总RNA,可以使用常规的酚/氯仿法或者商业化的RNA提取试剂盒等方法。

b.反转录:使用反转录酶将RNA逆转录成cDNA,以便进一步扩增和检测。

这一步骤可以使用随机引物或专用的引物结合反转录酶进行。

2.样品标记:
a.样品标记:将cDNA样品标记为荧光基团,例如使用荧光染料dCTP 或其他标记物。

b.去除杂交物:通过水解或其他方法去除未反应的标记试剂,并纯化标记后的cDNA样品。

3.制备探针:
a.设计探针:选择适当的探针序列,通常是与待检测基因的特定片段互补的DNA片段,用于检测基因表达。

b.生产探针:使用DNA合成技术或PCR等方法合成大量的探针,通常是固定在玻片上的寡核苷酸序列。

4.杂交:
a.样品混合:将标记后的cDNA样品与探针混合,可以加入包含缓冲液、杂交解聚剂等的杂交液。

b.杂交反应:在恒温条件下,将混合物进行杂交反应,使探针与标记的cDNA靶标发生互补反应,形成探针-靶标复合物。

5.洗涤:
a.洗涤:使用一系列含有不同浓度盐或洗涤缓冲液的溶液,去除没有结合的或非特异结合的探针-靶标复合物。

b.除去二级结构和非特异结合:使用高盐浓度的洗涤缓冲液或其他特定条件洗涤,去除可能形成的非特异结合和二级结构。

6.显像:
a.扫描:使用光学设备测量芯片上的荧光强度,将探针-靶标复合物的检测结果转化为数字信号。

b.校准:对每个荧光信号进行校准,以消除技术偏差和背景噪声。

7.数据分析:
a.数据提取:将荧光强度数据转化为基因表达的相对量,通常是使用专门的数据分析软件进行。

b.统计分析:使用统计学方法对基因表达数据进行分析,包括聚类分析、差异表达分析和信号通路分析等。

基因芯片的操作流程可以根据实际需要进行一定的调整和优化,但上述步骤是一个通用的基因芯片操作流程。

然而,随着技术的发展,现在也
有一些新的方法和技术用于检测基因表达,例如RNA测序和单细胞测序等,这些新技术可以提供更全面和深入的基因表达信息。

相关文档
最新文档