2019年高考物理专题复习:原子结构专题
课标版高考物理学科复习题五原子物理与物理学史第16讲选择题对“原子物理学”的考查限时练含解析46

选择题对“原子物理学”的考查[A组基础题练熟练快]1.(2019·甘肃张掖三诊)下列说法正确的是( )A.光电效应和康普顿效应揭示了光具有波粒二象性B.牛顿第一定律是利用逻辑推理对实验事实进行分析的产物,能够用实验直接验证C.英国物理学家汤姆孙发现了电子,否定了“原子不可再分”的观点D.爱因斯坦首先把能量子的概念引入物理学,否定了“能量连续变化”的观点解析:光电效应和康普顿效应揭示了光具有粒子性,A错误;牛顿第一定律是利用逻辑推理对实验事实进行分析的产物,不能够用实验直接验证,B错误;英国物理学家汤姆孙发现了电子,否定了“原子不可再分”的观点,C正确;普朗克在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念,D错误.答案:C2.(2019·宜宾二诊)我国科学家潘建伟院士预言十年左右量子通信将“飞”入千家万户.在通往量子论的道路上,一大批物理学家做出了卓越的贡献,下列有关说法正确的是( ) A.爱因斯坦提出光子说,并成功地解释了光电效应现象B.德布罗意第一次将量子观念引入原子领域,提出了定态和跃迁的概念C.玻尔在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念D.普朗克把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性解析:爱因斯坦提出光子说,并成功地解释了光电效应现象,选项A正确;玻尔第一次将量子观念引入原子领域,提出了定态和跃迁的概念,选项B错误;普朗克在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念,故C错误;德布罗意把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性,选项D错误.答案:A3.2018年中国散裂中子源(CSNS)将迎来验收,目前已建设的3台谱仪也将启动首批实验.有关中子的研究,下列说法正确的是( )A.Th核发生一次α衰变,新核与原来的原子核相比,中子数减少了4B.一个氘核和一个氚核经过核反应后生成氦核和中子是裂变反应C.卢瑟福通过分析α粒子散射实验结果,发现了质子和中子D.中子和其他微观粒子,都具有波粒二象性解析:α衰变的本质是发生衰变的核中减少2个质子和2个中子形成氦核,所以一次α衰变,新核与原来的核相比,中子数减少了2,选项A错误;裂变是较重的原子核分裂成较轻的原子核的反应,而该反应是较轻的原子核的聚变反应,选项B错误;卢瑟福通过分析α粒子散射实验结果,提出了原子的核式结构模型,查德威克通过α粒子轰击铍核(94Be)获得碳核(12 6C)的实验发现了中子,选项C错误;所有粒子都具有波粒二象性,选项D正确.答案:D4.(2019·湖南师大附中模拟)图甲为研究光电效应的电路图;图乙为静止在匀强磁场中的某种放射性元素的原子核AZ X 衰变后产生的新核Y 和某种射线的径迹.下列说法不正确的是( )A .图甲利用能够产生光电效应的两种(或多种)频率已知的光进行实验可测出普朗克常量B .图甲电源的正负极对调,在光照条件不变的情况下,可研究得出光电流存在饱和值C .图乙对应的衰变方程为A Z X→42He +A -4Z -2YD .图乙对应的衰变方程为 A Z X→ 0-1e + A Z +1Y解析:根据光电效应方程得eU 遏=hν-W 0,其中W 0为金属的逸出功,所以h =eU 遏+W 0ν,图甲利用能够产生光电效应的两种(或多种)频率已知的光进行实验可测出普朗克常量,故A 正确;对于一定的光照条件,产生的光电子数目相等,将电源的正负极对调,调节电压,最多能使所有光电子达到另一极板,此时即可研究得出光电流饱和值,故B 正确;由图乙可看出,原子核衰变后放出的粒子与新核所受的洛伦兹力方向相同,而两者速度方向相反,则知两者的电性相反,新核带正电,则放出的必定是β粒子(电子),发生了β衰变,故C 错误,D 正确.答案:C5.(2019·辽宁大连联考)下列说法正确的是( )A .频率越低的光,粒子性越显著B .无论光强多强,只要入射光的频率小于金属的截止频率,就不能发生光电效应C .氢原子吸收光子后,电子运动的轨道半径变大,动能也变大D .发生β衰变时,新核的核电荷数不变解析:频率越低的光,光子的能量值越小,其动量越小,粒子性越不显著,故A 错误.光电效应实验中,无论入射光多强,只要入射光的频率低于金属的截止频率,就不可能发生光电效应,故B 正确;氢原子吸收光子后,电子运动的轨道半径变大,根据k e 2r 2=mv 2r,可知电子的动能减小,故C 错误;发生β衰变时,原子核内的一个中子转化为一个质子和一个电子,新核的质量数不变,核电荷数增加一个,故D 错误.答案:B6.(多选)(2019·全国大联考)关于近代物理,下列说法正确的是( )A.放射性元素的半衰期与压强有关,压强越高,半衰期越大B.光电效应中,光电子的最大初动能与照射光光子能量成正比C.比结合能是结合能与核子数之比,比结合能越大,原子核越稳定D.一个处于n=6的激发态的氢原子向低能级跃迁时最多能辐射出5种不同频率的光解析:放射性元素的半衰期与外部的物理条件以及所处的化学状态均无关,选项A错误;根据爱因斯坦光电效应方程E km=hν-W0,光电效应中,光电子的最大初动能E km随照射光光子能量hν的增大而增大,但不是成正比关系,选项B错误;比结合能是结合能与核子数之比,比结合能越大,原子核分解成核子需要的能量越大,原子核越稳定,选项C正确;一个处于n=6的激发态的氢原子向低能级跃迁时最多能辐射出(6-1)即5种不同频率的光,选项D 正确.答案:CD7.(多选)(2019·安徽宣城二次调研)下列四幅图涉及不同的物理知识,其中说法正确的是( )A.图甲:卢瑟福通过分析α粒子散射实验结果,发现了质子和中子B.图乙:用中子轰击铀核使其发生裂变,链式反应会释放出巨大的核能C.图丙:玻尔理论指出氢原子能级是分立的,所以原子发射光子的频率也是不连续的D.图丁:汤姆孙通过电子的发现揭示了原子核内还有复杂结构解析:卢瑟福通过分析α粒子散射实验结果,得出原子的核式结构模型,故A错误;用中子轰击铀核使其发生裂变,裂变反应会释放出巨大的核能,故B正确;玻尔理论指出氢原子能级是分立的,所以原子发射光子的频率也是不连续的,故C正确;汤姆孙通过电子的发现揭示了原子有一定结构,天然放射现象的发现揭示了原子核内还有复杂结构,故D错误.答案:BC8.(多选)(2019·哈尔滨六中二模)某半导体激光器发射波长为1.5×10-6m,功率为5.0×10-3 W的连续激光.已知可见光波长的数量级为10-7 m,普朗克常量h=6.63×10-34J·s,该激光器发出的( )A.是紫外线B.是红外线C.光子能量约为1.3×10-13 JD.光子数约为每秒3.8×1016个解析:波长的大小大于可见光的波长,属于红外线,故A错误,B正确.光子能量ε=h cλ=6.63×10-34×3×1081.5×10-6J=1.326×10-19 J,故C错误.每秒钟发出的光子数n=Ptε≈3.8×1016,故D正确.答案:BD9.(多选)(2019·广东珠海联考)下列说法正确的是( )A.α粒子散射实验说明原子内部具有核式结构B.在21H+31H→42He+X中,X表示质子C.重核的裂变和轻核的聚变都是质量亏损的放出核能过程D.一个氢原子从n=1能级跃迁到n=2能级,必需吸收光子解析:卢瑟福的α粒子散射实验说明原子的核式结构模型,故A正确.根据质量数与质子数守恒,可知,X的质量数是1,电荷数是0,表示中子,故B错误.重核的裂变和轻核的聚变都存在质量亏损,从而放出核能,故C正确.根据跃迁公式,可知,一个氢原子从n=1能级跃迁到n=2能级,必须吸收能量,可能是吸收光子,也可能是电子与其他的电子发生碰撞而吸收能量,故D错误.故选A、C.答案:AC[B组中难题目练通抓牢]10.(2019·天一大联考)如图所示为光电管的示意图,光照时两极间可产生的最大电压为0.5 V.若光的波长约为6×10-7 m,普朗克常量为h,光在真空中的传播速度为c,取hc=2×10-25J·m,电子的电荷量为1.6×10-19 C,则下列判断正确的是( )A.该光电管K极的逸出功大约为2.53×10-19 JB.当光照强度增大时,极板间的电压会增大C.当光照强度增大时,光电管的逸出功会减小D.若改用频率更大、强度很弱的光照射时,两极板间的最大电压可能会减小解析:该光电管K 极的逸出功大约为W 0=hc λ-Ue =2×10-256×10-7 J -0.5×1.6×10-19 J≈2.53×10-19 J ,选项A 正确;当光照强度增大时,极板间的电压不变,选项B 错误;光电管的逸出功由材料本身决定,与光照强度无关,选项C 错误;在光电效应中,根据光电效应方程知,E km =hν-W 0=eU ,改用频率更大的光照射,光电子的最大初动能变大,两极板间的最大电压变大,故D 错误;故选A.答案:A11.(2019·全国大联考)中国科学家吴宜灿获得2018年欧洲聚变核能创新奖,获奖理由:开发了一种新的基于CAD 的粒子传输软件,用于核设计和辐射安全计算.下列关于聚变的说法中,正确的是( )A .同样质量的物质裂变时释放的能量比同样质量的物质聚变时释放的能量大很多B .裂变过程有质量亏损,聚变过程质量有所增加C .核反应堆产生的能量来自轻核聚变D .聚变反应比裂变反应每个核子释放的平均能量一定大解析:同样质量的物质聚变时释放的能量比同样质量的物质裂变时释放的能量大很多,故A 错误;重核的裂变和轻核的聚变都会放出核能,根据爱因斯坦的质能方程E =mc 2,一定有质量亏损,故B 错误;核反应堆产生的能量来自重核裂变,故C 错误;在一次聚变反应中释放的能量不一定比裂变反应多,但平均每个核子释放的能量一定大,故D 正确.答案:D12.(2019·福建福州质检)研究光电效应现象的实验装置如图(a)所示,用光强相同的黄光和蓝光照射光电管阴极K 时,测得相应的遏止电压分别为U 1和U 2,产生的光电流I 随光电管两端电压U 的变化规律如图(b)所示.已知电子的质量为m ,电荷量为-e ,黄光和蓝光的频率分别为ν1和ν2,且ν1<ν2.则下列判断正确的是( )(a) (b)A .U 1>U 2B .图(b)中的乙线是对应黄光照射C .根据题述条件无法算出阴极K 金属的极限频率D .用蓝光照射时,光电子的最大初动能为eU 2解析:根据光电效应方程则有:E km1=hν1-W 0=eU 1,E km2=hν2-W 0=eU 2,由于蓝光的频率ν2大于黄光的频率ν1,则有U 1<U 2,所以图(b)中的乙线是对应蓝光照射;用蓝光照射时,光电子的最大初动能为eU 2,阴极K 金属的极限频率ν0=W 0h =ν2-eU 2h,故D 正确,A 、B 、C 错误.答案:D[C 组 探究创新从容应对]13.(2019·湖南衡阳联考)在匀强磁场中,一个原来静止的原子核,由于衰变放射出某种粒子,结果得到一张两个相切圆1和2的径迹照片如图所示,已知两个相切圆半径分别为r 1、r 2,则下列说法正确的是( )A .原子核可能发生α衰变,也可能发生β衰变B .径迹2可能是衰变后新核的径迹C .若衰变方程是238 92U→234 90Th +42He ,则衰变后新核和射出的粒子的动能之比为117∶2D .若衰变方程是238 92U→234 90Th +42He ,则r 1∶r 2=1∶45解析:原子核衰变过程系统动量守恒,由动量守恒定律可知,衰变生成的新核与粒子的动量方向相反,粒子速度方向相反,由左手定则可知,若生成的新核与粒子电性相反则在磁场中的轨迹为内切圆,若电性相同则在磁场中的轨迹为外切圆,故A 错误;核反应过程系统动量守恒,原子核原来静止,初动量为零,由动量守恒定律可知,原子核衰变生成的新核与粒子动量p 大小相等,方向相反,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB =m v 2r ,解得:r =mv qB =p qB,由于p 、B 相同,则电荷量q 越大,轨道半径越小,由于新核的电荷量大,所以新核的半径小于粒子的轨道半径,所以r 2为粒子的运动轨迹,故B 错误;核反应过程系统动量守恒,原子核原来静止,初动量为零,由动量守恒定律可知,原子核衰变生成的新核与粒子动量p 大小相等,方向相反,由动能与动量的关系E k =p 22m,所以动能之比等于质量的反比,即为2∶117,故C 错误;由B 项分析知,r 1∶r 2=2∶90=1∶45,故D 正确.答案:D14.(多选)(2019·西南名校联盟联考)如图为英国物理学家查德威克发现中子的实验示意图,利用钋(210 84Po)衰变放出的α粒子轰击铍(94Be)时产生了未知射线.查德威克曾用这种射线分别轰击氢原子(11H)和氮原子(14 7N),结果打出了一些氢核和氮核.他测量了被打出的氢核和氮核的速度,并认为速度最大的氢核和氮核是由未知射线中的粒子分别与它们发生弹性正碰的结果,设氢核的最大速度为v H ,氮核的最大速度为v N ,氢核和氮核在未被打出前可认为是静止的.查德威克运用能量和动量的知识推算了这种未知粒子的质量.设氢原子的质量为m ,以下说法正确的是( )A .钋的衰变方程为210 84Po→208 82Pb +42HeB .图中粒子A 是中子C .未知粒子的质量为14v N -v H v H -v Nm D .未知粒子的质量为14v N +v H v H -v Nm 解析:根据质量数和电荷数守恒可知,A 中的核反应是错误的,选项A 错误;根据题意可知,图中不可见粒子A 是中子,选项B 正确;氢原子的质量为m ,则氮核的质量为14m ,设未知射线粒子的质量为m 0,碰前速度为v 0,则由动量守恒和能量守恒可知:m 0v 0=m 0v 1+mv H ;12m 0v 20=12m 0v 21+12mv 2H ;联立解得:v H =2m 0v 0m 0+m ;同理未知射线与氮核碰撞时,氮核的速度:v N =2m 0v 0m 0+14m;由两式可得:m 0=14v N -v H v H -v Nm ,故选项C 正确,D 错误;故选B 、C. 答案:BC高中物理 第一章 单元高考过关[时间:45分钟 满分:100分]一、选择题(每小题5分,共50分)2017年清明小长假,人们纷纷走出户外祭扫、踏青、赏花、观光……全国大江南北掀起了节日旅游热,显示了中国传统文化的魅力。
高考物理一轮复习 第12章 近代物理初步 第2讲 原子和原子核课时作业(含解析)新人教版-新人教版高

第2讲原子和原子核时间:45分钟总分为:100分一、选择题(此题共14小题,每一小题6分,共84分。
其中1~11题为单项选择,12~14题为多项选择)1.(2019·广东揭阳一模)如下列图,x为未知的放射源,L为薄铝片,假设在放射源和计数器之间加上L后,计数器的计数率大幅度减小,在L和计数器之间再加竖直向下的匀强磁场,计数器的计数率不变,如此x可能是()A.α射线和β射线的混合放射源B.纯α射线放射源C.纯γ射线放射源D.α射线和γ射线的混合放射源答案 D解析在放射源和计数器之间加薄铝片L后,发现计数器的计数率大幅度减小,说明射线中含有穿透能力弱的α射线,在L和计数器之间再加竖直向下的匀强磁场,计数器的计数率不变,说明没有射线或剩下的射线不带电,即为γ射线,因此放射源x可能是α射线或它和γ射线的混合放射源,故A、B、C错误,D正确。
2.(2019·江西高三九校3月联考)如下说法中正确的答案是()A.天然放射现象的发现,揭示了原子核是由质子和中子组成的B.玻尔的原子结构理论是在卢瑟福核式结构学说上引进了量子理论C.天然放射现象中出现的α射线、β射线、γ射线都是高能量的电磁波D.卢瑟福的α粒子散射实验揭示了原子核有复杂结构答案 B解析天然放射现象的发现,揭示了原子核有复杂的结构,故A错误;玻尔的原子结构理论是在卢瑟福核式结构学说的根底上引入了量子理论,故B正确;天然放射现象中出现的α射线、β射线、γ射线,其中α射线是氦原子核,β射线是电子流,只有γ射线是高能量的电磁波,故C错误;卢瑟福的α粒子散射实验揭示了原子有复杂结构,在此根底上,他建立了原子的核式结构模型,故D错误。
3.(2020·安徽省A10联盟高三摸底)据报道,香烟会释放一种危险的放射性元素“钋(210 84 Po)〞,如果每天抽1.5包香烟,一年后累积的辐射相当于300次胸透的辐射。
210 84Po发生一次α衰变和一次β衰变后产生了新核,新核的中子数比质子数多()A.38个B.40个C.42个D.44个答案 B解析210 84Po发生一次α衰变和一次β衰变产生的新核为206 83X,其中子数为206-83=123,中子数比质子数多123-83=40,B正确。
高中人教物理选择性必修二专题16 光电效应和原子结构——教师版

专题16 光电效应和原子结构(教师版)一、目标要求目标要求 重、难点 光电效应 重难点 康普顿效应 原子的核式结构模型 重点 氢原子光谱与玻尔氢原子模型重点二、知识点解析1.光电效应(1)光电效应现象:光照射在金属板上,金属板表面有电子逸出的现象,把这种电子叫做光电子; (2)爱因斯坦光电效应方程爱因斯坦认为,光是由一个个不可分割的能量子组成,频率为ν的光的能量子为hν,h 为普朗克常量,这些能量子称为光子.光电效应中,金属中电子吸收一个光子获得能量,其中一部分用于克服金属原子引力做功,剩下的能量表现为光电子的初动能E k :0E h W k ν=-其中W 0称为金属的逸出功,是使电子脱离金属原子束缚所需做功的最小值,不同金属的逸出功不相同.(3)光电效应的规律:如图1所示①饱和电流逐渐增大两板之间的电压,电流表示数开始时逐渐增大,后保持不变,说明单位时间从K 板逸出的电图1子个数是确定的;光电流的最大值称为饱和电流;入射光的光照强度越大,单位时间内发生光电效应的光电子数目越多,饱和光电流越大;②遏止电压设光电子逸出时的初速度为v 0,改变两极板的电性,使光电子逸出后做减速运动,当电流表示数恰好为零时,两极板间的电压称为遏止电压,用U c 表示:20012c e eU m v h W ν==-可见遏止电压与入射光的频率和金属种类有关,与入射光的光照强度无关; 光电流与电压的关系如图2所示:③截止频率(极限频率)只有入射光的频率超过某一极限值时才会发生光电效应,这个极限值称为入射光的截止频率ν0; 令E k =0,即0=hν0-W 0,解得00W hν=,可见截止频率与金属的种类有关; 若某频率的光照射金属板时不发生光电效应,则无论怎样增大光照强度都不能使金属逸出光电子;而若某频率的光能使金属发生光电效应,极微弱的光照强度也能产生光电子.④瞬时性:当入射光的频率超过截止频率,无论入射光光照强度如何,从照射到逸出光电子的时间不超过10-9s ,即光电效应几乎是瞬时的.2.康普顿效应(1)光的散射:光在介质中与物质微粒相互作用,从而使得传播方向发生变化,这种现象称为光的散射; (2)康普顿效应:美国物理学家康普顿在研究石墨对X 射线的散射作用时,发现部分散射光的波长变长了,经过大量的实验,康普顿提出,光子除了具有能量ε=hν外,同时具有动量p ,如图3所示;图2图3光子的动量为:h pλ=康普顿效应中,光子与晶体中的电子发生碰撞,将一部分动量转移给电子,从而光子的动量减小,对应的波长增大.3.原子结构(1)电子的发现:英国物理学家J.J.汤姆孙认为阴极射线是一种带电粒子流,并在1897年测定了组成阴极射线的粒子的比荷,并将其命名为电子.(2)原子核式结构①汤姆孙的“枣糕模型”:汤姆孙认为原子是一个实心球体,正电荷弥漫性地均匀分布在球体内部,电子镶嵌其中,如图4所示.但“枣糕”模型不能解释高速电子流能透过原子的现象.②卢瑟福的“核式结构”:1911年新西兰英籍物理学家卢瑟福在用α粒子轰击金箔时,发现大部分粒子都穿透金箔,少数粒子有偏转,极少数粒子有较大角度的偏转;卢瑟福认为:在原子内部,正电部分仅占很小的空间,通过计算,原子的直径大约为10-10m,但带正电的核的直径仅有10-15m,而电子充斥在原子空旷的内部中高速运动,如图5所示,这就是卢瑟福提出的原子核式结构.图4(3)质子的发现:1918年,提出原子核式结构的卢瑟福用α粒子轰击氮核得到质子;(4)中子的发现:自卢瑟福发现质子后,科学界认为原子核是由质子组成的,但这与原子的质量有较大的差异,因此卢瑟福预言,原子核内还应有一种不带电的粒子,这种粒子的质量与质子相近;1932年由英国物理学家查德威克利用α粒子轰击铍核得到了这种粒子,并命名为中子.4.玻尔的原子模型利用经典物理学解释原子结构仍然有一定的困难,丹麦物理学家玻尔提出了自己的原子结构假说.(1)轨道量子化电子的轨道半径不是连续的,而是有特定的半径,即电子的轨道是量子化的而不是连续的,原子核内存在分立的轨道;若电子绕原子运动的最小半径为r1,则第n条轨道的半径满足:r n=n2r1电子只能在这些特定的轨道中运动,不可能出现在任意相邻两条轨道之间.(2)能量量子化电子在不同轨道运动时,原子具有不同的能量,玻尔将这些不同的能量值称为能级,原子中具有确定能量的稳定状态称为定态;当电子在最低轨道中运动时,原子具有最小的能量,把原子处于最低能量的状态称为基态,其他能量状态称为激发态;以氢原子核为例,已知电子带电荷量为-e,氢原子核带电荷量为+e,相距为R的Q和q之间具有的电势能为p kQqER=,设电子的轨道半径为r n根据库仑力提供向心力:222nen nv ek mr r=可得电子的动能:22k122e nnkeE m vr==,以及电势能:2p2nkeEr=-故电子在第n条轨道上时,原子的能量为2k p2 nnke E E Er =+=-图5结合r n=n2r1,可知各能级之间的能量满足:12 nE En=氢原子中,E1=-13.6eV.(3)能级跃迁①跃迁:原子由一个能量状态变为另一个能量状态的过程叫做跃迁,对应内部电子轨道的变化,这个过程是不连续的;②频率条件:当电子从某高能级E n向低能级E m跃迁时,会放出能量为hν的光子,hν的大小由前后两个能级的能量差决定:hν=E n-E m,这个规律叫做频率条件;同样,电子从低能级向高能级跃迁时,需要吸收的光子的能量也由频率条件决定,若光子的能量不符合任意两能级的能量差值,电子不会吸收该光子.图6是氢原子的能级图,电子从n=3跃迁至n=1能级;③光子种类:大量电子从第n激发态向基态跃迁时,辐射出的光子种类为(1)2n nk-=种,即跃迁过程中会辐射k种频率的光.④电离:以氢原子为例,使电子彻底脱离原子核束缚的过程称为电离,恰好使电子脱离原子核所需要的能量称为电离能,电子处于不同能级所需要的电离能不相同,即E电=-E n三、考查方向题型1:光电效应的图像分析典例一:(2019高考理综天津卷)如图为a、b、c三种光在同一光电效应装置中测的光电流和电压的关系。
全国通用2019版高考物理大一轮复习第33讲 原子结构与原子核

=R(第 33 讲 原子结构与原子核考纲要求1.氢原子光谱Ⅰ考情分析2017·全国卷Ⅰ, 命题趋势2.氢原子的能级结构、能级公 17高考对本部分知识的考式Ⅰ3.原子核的组成、放射性、原 15子核衰变、半衰期Ⅰ2017·全国卷Ⅱ, 查主要以选择题的形式出现.高考试题往往综合考查氢2016·全国卷Ⅱ, 原子能级的跃迁、放射性元素4.放射性同位素Ⅰ5.核力、核反应方程Ⅰ6.结合能、质量亏损Ⅰ7.裂变反应和聚变反应、裂变35(1) 的衰变、半衰期、核反应,以2016·全国卷Ⅲ, 及质能方程、核反应方程的有35(1) 关计算.学习中要注意对质量2016·天津卷,6 数守恒、电荷数守恒、动量守反应堆Ⅰ8.射线的危害与防护Ⅰ2016·江苏卷,12C(1)恒、能量守恒的理解和应用1.原子核式结构(1)电子的发现:英国物理学家__汤姆孙__发现了电子.(2)α 粒子散射实验:1909~1911 年,英国物理学家__卢瑟福__和他的助手进行了用 α 粒子轰击金箔的实验,实验发现__绝大多数__α 粒子穿过金箔后基本上仍沿原来的方向前进,但有__少数__α 粒子发生了大角度偏转,__极少数__α 粒子偏转的角度甚至大于 90°,也就是说它们几乎被“撞”了回来.如图所示.(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的 __正电荷__和几乎全部__质量__都集中在核里,带负电的电子在核外空间绕核旋转.2.氢原子光谱(1)光谱分析利用元素的特征谱线(线状谱)分析和确定物质的组成成分.(2)氢原子光谱的实验规律1 1 1巴耳末系是氢光谱在可见光区的谱线,其波长公式λ 22-n 2) .(n =3,4,5,…,R 是里德伯常量,减 → R =1.10×107m -1)(3)玻尔模型①玻尔的三条假设a .能量量子化:原子只能处于一系列__不连续__状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做__定态__.1对氢原子满足:E n =n 2E 1,其中 E 1=-13.6eV .b .轨道量子化:原子的__能量状态__跟电子不同的运行__轨道__相对应.原子的能量状态是不连续的,因此电子运动的可能轨道的分布也是不连续的.对氢原子满足:r n =n 2r 1,其中 r 1=0.53×10-10m .c .能级跃迁:原子从一种定态(设能量为 E 2)跃迁到另一种定态(设能量为 E 1)时,它__辐射或吸收__一定频率的光子,光子的能量由这两种定态的能量差决定,即 h ν =E 2-E 1.②氢原子能级图:如图所示.3.原子核(1)天然放射现象的发现1896 年,__贝可勒尔__在铀矿石中发现未知的射线,把这些射线称为 α 射线、β 射线、γ 射线,这就是天然放射现象的发现.天然放射现象的发现,说明原子核__具有复杂结构__.(2)三种射线的比较种类组成带电荷量质量在电磁场中穿透本领电离作用α 射线高速氦核流2e4m p偏转β 射线高速电子流-em p 1840与 α 射线反向偏转增强 ――弱γ 射线光子流静止质量为零不偏转(3)原子核的衰变Z Z2202Z Z101τ920380541120①衰变原子核由于自发地放出某种粒子而转化为新核的变化.②衰变规律a.α衰变:A X→A-4Y+4He,实质:21H+21n→4He.b.β衰变:A X→A+1Y+-0e,实质:1n→1H+-0e.③半衰期a.定义:放射性元素衰变有一定的速率,我们把放射性元素的原子核有半数发生衰变需要的时间叫半衰期,用τ表示.1tb.公式:m=m(2).c.特点:半衰期τ由该元素的原子核内部本身的因素决定,跟原子所处的物理状态(如压强、温度等)或化学状态(如单质、化合物等)无关.另外,半衰期仅是对大量原子核的统计规律.比如研究200个铀的原子核经过一个半衰期后还剩多少个铀的原子核是没有意义的.4.核能(1)核力核子间的作用力.核力是短程强力,作用范围在1.5×10-15m之内,只在__相邻__的核子间发生作用.(2)核能__核子__结合为原子核时释放的能量或原子核分解为核子时吸收的能量,叫做原子核的__结合__能,亦称核能.(3)质能方程、质量亏损爱因斯坦质能方程E=__mc2__,原子核的质量必然比组成它的核子的质量和要小,这就是质量亏损Δm.由质量亏损可求出释放的核能ΔE=__Δmc2__.(4)重核的裂变与轻核的聚变①裂变重核分裂成质量较小的核的反应.如:235U+1n→136Xe+90Sr+101n.②聚变轻核结合成质量较大的核的反应.如:2H+3H→4He+1n.1.判断正误(1)卢瑟福做α粒子散射实验时发现α粒子绝大多数穿过只有少数发生大角度偏转.(√)(2)氢原子发射光谱是由一条一条亮线组成的.(√)(3)氢原子由能量为En的定态向低能级跃迁时,氢原子辐射的光子能量为hν=En.(×)(4)氢原子吸收光子后,将从高能级向低能级跃迁.(×)(5)目前核电站多数是采用核聚变反应发电.(×)ΔE E高-E低光子的频率ν==.(6)核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒.(√)(7)爱因斯坦质能方程反映了物体的质量就是能量,它们之间可以相互转化.(×)(8)如某放射性元素的半衰期是5天,那么100个该元素的原子核经过10天还剩下25个.(×)一能级图与氢原子的跃迁1.能级图中相关量意义的说明相关量能级图中的横线横线左端的数字“1,2,3…”横线右端的数字“-13.6,-3.4…”相邻横线间的距离带箭头的竖线氢原子的能级图如图所示.意义表示氢原子可能的能量状态——定态表示量子数表示氢原子的能量表示相邻的能量差,量子数越大相邻的能量差越小,距离越小表示原子由较高能级向较低能级跃迁,原子跃迁的条件为hν=Em-En2.两类能级跃迁(1)自发跃迁:高能级→低能级,释放能量,发出光子.h h(2)受激跃迁:低能级→高能级,吸收能量.①光照(吸收光子):光子的能量必须恰等于能级差hν=ΔE;②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E外≥ΔE;③大于电离能的光子被吸收,将原子电离.谱线条数的确定方法(1)一个氢原子跃迁发出可能的光谱线条数最多为(n-1).2n级值为En=n2解析(1)核外电子绕核做匀速圆周运动,静电引力提供向心力,则2=,又知Ek=mv2,故电子Ek==2r12×0.528×10-10(2)当n=1时,能级值为E1=12当n=2时,能级值为E2=22当n=3时,能级值为E3=32E3-E112.09×1.6×10-19(2)一群氢原子跃迁发出可能的光谱线条数的两种求解方法.①用数学中的组合知识求解:N=C2=n(n-1);②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加.[例1](2017·江苏南京质检)已知氢原子基态的电子轨道半径为r1=0.528×10-10m,量子数为n的能-13.6eV.(1)求电子在基态轨道上运动的动能;(2)有一群氢原子处于量子数n=3的激发态,画一张能级图,在图上用箭头标明这些氢原子能发出哪几种光谱线?(3)计算这几种光谱线中波长最短的波长.(静力电常量k=9×109N·m2/C2,电子电荷量e=1.6×10-19C,普朗克常量h=6.63×10-34J·s,真空中光速c=3.00×108m/s)ke2mv21r1r12在基态轨道的动能为ke29×109×(1.6×10-19)2J=2.18×10-18J=13.6eV.-13.6eV=-13.6eV.-13.6eV=-3.4eV.-13.6eV=-1.51eV.能发出的光谱线分别为3→2,2→1,3→1共3种,能级图如图所示.(3)由E3向E1跃迁时发出的光子频率最大,波长最短.chν=E3-E1,又知ν=λ,则有hc 6.63×10-34×3×108λ==m=1.03×10-7m.答案(1)13.6eV(2)见解析(3)1.03×10-7m.二原子核的衰变半衰期1.α衰变、β衰变的比较Z 22A1 0 214 2 A ZZZZ21,m 余=m 原( ( 92218253153154衰变类型α 衰变β 衰变衰变方程A ZX ―→A -4Y +4HeA ZX →Z +1Y +-0e2 个质子和 2 个中子结合成衰变实质一个整体射出1 个中子转化为 1 个质子和 1个电子21H +21n ―→4He 1n ―→1H +-0e匀强磁场中轨迹形状衰变规律电荷数守恒、质量数守恒、动量守恒2.确定 α 、β 衰变次数的两种方法方法 1:确定衰变次数的方法是依据两个守恒规律,设放射性元素 X 经过 n 次 α 衰变和 m 次 β 衰变后,变成稳定的新元素A ′Y ,则表示该核反应的方程为:A X ―→A ′Y +n 4He +m -0e .根据质量数守恒和电荷数守恒可列方程A =A ′+4n ,Z =Z ′+2n -m由以上两式联立解得A -A ′ A -A ′ n = ,m = +Z ′-Z由此可见,确定衰变次数可归结为求解一个二元一次方程组.方法 2:因为 β 衰变对质量数无影响,可先由质量数的改变确定 α 衰变的次数,然后再根据衰变规律确定 β 衰变的次数.3.半衰期1 t 1 t(1)公式:N 余=N原(2)τ 2)τ .(2)影响因素:放射性元素衰变的快慢是由原子核内部自身因素决定的,跟原子所处的物理状态 如温度、压强)或化学状态(如单质、化合物)无关.[例 2](2017·宁夏银川质检)235U 经过 m 次 α 衰变和 n 次 β 衰变,变成207Pb ,则( B )9282A .m =7,n =3C .m =14,n =9B .m =7,n =4D .m =14,n =18解析 根据题意知核反应方程235U →207Pb +m 4He +n -0e ,根据电荷数守恒和质量数守恒可得 235=207+4m,92=82+2m -n.联立解得 m =7,n =4,选项 B 正确.[例 3](2018·四川宜宾模拟)碘 131 核不稳定,会发生 β 衰变,其半衰期为 8 天.(1)碘 131 核的衰变方程:131I →__13154X +-0e__.(衰变后的元素用 X 表示)(2)经过__16__天有 75%的碘 131 核发生了衰变.解析 (1)根据质量数和电荷数守恒可知衰变方程为131I →131X +-0e .4 U ―→234Th +42He91 1 He +94Be ―→126 C +10n Al +42He ―→3015P +10n2 8 141U +10n ―→14456Ba +8936Kr +310n U +10n ―→13654Xe +9038Sr +1010n1 221 1 1 1 72 8112 132159238 541(2)每经 1 个半衰期,有半数原子核发生衰变,经 2 个半衰期将剩余 的原子核,即有 75%的碘 131 核发生衰变,故经过的时间为 16 天.三 核反应类型与核反应方程1.核反应的四种类型衰类型α 衰变 可控性自发238 92 90 核反应方程 变β 衰变自发234 90Th →234Pa +-0e人工转人工 N +4He ―→17O +1H 14 7(卢瑟福发现质子)42(查德威克发现中子)2713变 控 30 15P ―→30Si +0e制(约里奥·居里夫妇发现放射性同位素,同时发现正电子)重核裂变235 92235 92轻核聚变很难控制 2 1H +3H ―→4He +1n2.核反应方程式的书写(1)熟记常见基本粒子的符号是正确书写核反应方程的基础.如质子(1H)、中子(1n)、α 粒子(4He)、β 粒子(-0e)、正电子(0e)、氘核(2H)、氚核(3H)等.(2)核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头连接并表示反应方向,不能用等号连接.(3)核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒规律杜撰出生成物来写核反应方程.(4)核反应过程中质量数守恒,核电荷数守恒.[例 4]在下列四个核反应中,x 表示中子的是哪些?__BCD__.在以下核反应中哪些属于原子核的人工转变?__AB__.A .14N +4He →17O +xC .2H +3H →4He +xB .27Al +4He →30P +xD .235U +x →90Sr +136Xe +10x解析 不管什么类型的核反应,都遵守电荷数守恒和质量数守恒,由以上两个守恒规则,可以分别计 算出 A 、B 、C 、D 中 x 的质量数和电荷数,分别为 A 中1x ,B 中1x ,C 中1x ,D 中1x ,所以 x 表示中子的是 B 、C 、D ;关于人工转变问题,首先应明确核反应的特点:有粒子作“炮弹”轰击作为“靶”的原子核,并且p Th -p α =0,E kTh = ,E k α = ,E kTh +E k α =Δ E ;m α 4 m α+m Th 4+228 22 2 92290能在实验室中进行,因此人工核转变的有 A 、B ,C 叫轻核聚变,D 叫重核裂变.四 核能的计算1.质能方程的理解(1)一定的能量和一定的质量相联系,物体的总能量和它的质量成正比,即 E =mc 2.方程的含义是:物体具有的能量与它的质量之间存在简单的正比关系,物体的能量增大,质量也增大;物体的能量减少,质量也减少.(2)核子在结合成原子核时出现质量亏损 Δ m ,释放的能量为 Δ E =Δ mc 2.(3)原子核分解成核子时要吸收一定的能量,相应的质量增加 Δ m ,吸收的能量为 Δ E =Δ mc 2.2.核能释放的两种途径的理解中等大小的原子核的比结合能最大,这些核最稳定.(1)使较重的核分裂成中等大小的核.(2)较小的核结合成中等大小的核,核子的比结合能都会增加,都可以释放能量.3.计算核能的几种方法(1)根据 Δ E =Δ mc 2 计算,计算时 Δ m 的单位是“kg”,c 的单位是“m/s”,Δ E 的单位是“J”.(2)根据 Δ E =Δ m ×931.5MeV 计算.因 1 原子质量单位“u”相当于 931.5MeV 的能量,所以计算时 Δ m的单位是“u”,Δ E 的单位是“MeV”.(3)根据核子比结合能来计算核能原子核的结合能=核子比结合能×核子数.[例 5]一个静止的铀核232U(原子质量为 232.0372u)放出一个 α 粒子(原子质量为 4.0026u)后衰变成钍92核228Th(原子质量为 228.0287u).(已知:原子质量单位 1u =1.67×10-27kg,1u 相当于 931.5MeV)92(1)写出核衰变反应方程;(2)算出该核衰变反应中释放出的核能;(3)假设反应中释放出的核能全部转化为钍核和 α 粒子的动能,则钍核获得的动能有多大?解析 (1)23292U →22890Th +4He .(2)质量亏损 Δ m =m U -m Th -m α =0.0059u , Δ E =Δ mc 2=0.0059×931.5MeV =5.496MeV .(3)系统动量守恒,钍核和 α 粒子的动量大小相等,即p Th p α2m Th 2m α所以钍核获得的动能 E kTh = ×Δ E = ×Δ E =0.095MeV答案 (1)232U →228Th +4He(2)5.496MeV (3)0.095MeVγ γ1 12 0213157 2 8923605621H 1 2 0 1 32 10 1.天然放射性元素放出的三种射线的穿透能力实验结果如图所示,由此可推知(D )A .②来自于原子核外的电子B .①的电离作用最强,是一种电磁波C .③的电离作用较强,是一种电磁波D .③的电离作用最弱,属于原子核内释放的光子解析 由题图可知,根据穿透本领可判断出①是 α 射线,②是 β 射线,③是 γ 射线.α 射线是氦核流,故选项 B 错误. 射线电离作用最弱,故选项 C 错误.β 射线来源于原子核内部,故选项 A 错误.射线伴随核反应释放出来,故选项 D 正确.2.(2017·天津卷)我国自主研发制造的国际热核聚变核心部件在国际上率先通过权威机构认证,这是我国对国际热核聚变项目的重大贡献.下列核反应方程中属于聚变反应的是(A )A .2H +3H →4He +1nC .4He +27Al →30P +1nB .14N +4He →17O +1HD .235U +1n →144Ba +89Kr +31n解析 选项 A 是质量小的核结合成质量较大的核,属于核聚变.选项B 是卢瑟福发现质子的人工转变方程.选项 C 是约里奥·居里夫妇发现人工放射性同位素的人工转变方程.选项D 是铀核在中子轰击下分裂为中等质量的核的过程,属于核裂变.选项 A 正确.3.(2018·江西九江模拟)用频率为 ν 0 的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为 ν 1、ν 2、ν 3 的三条谱线,且 ν 3>ν 2>ν 1,则!!! B ###.(填入正确选项前的字母)A .ν 0<ν1B .ν 3=ν 2+ν1C .ν 0=ν 1+ν 2+ν31 1 1 D . = +ν 1 ν 2 ν 3解析 因为仅发射出 3 种频率的光子,且 ν 3>ν 2>ν 1,所以 h ν 3=E 3-E 1,h ν 2=E 2-E 1,h ν 1=E 3 -E 2,故 h ν 3=h ν 2+h ν 1,即 ν 3=ν 2+ν 1,选项 B 正确,C 、D 错误.入射光子 h ν 0=h ν 3,所以 ν 0> ν 1,选项 A 错误.4.(2017·全国卷Ⅰ)大科学工程“人造太阳”主要是将氘核聚变反应释放时的能量用来发电.氘核聚变反应方程是: +2H →3He +1n.已知2H 的质量为 2.0136u ,He 的质量为 3.0150u ,n 的质量为 1.0087u,1u=931.5MeV/c 2.氘核聚变反应中释放的核能约为( B )A .3.7MeVC .2.7MeVB .3.3MeVD .0.93MeV解析 聚变反应中的质量亏损为 Δ m =(2×2.0136-3.0150-1.0087) u =0.0035u ,则释放的核能为1 12 0 11292 0 36 09238Δ E =Δ mc 2=0.0035×931.5MeV ≈3.3MeV ,选项 B 正确.[例 1](2017·山西太原质检·5 分)氢原子的能级如图所示,大量氢原子从 n =4 的能级向 n =2 的能级跃迁时辐射出可见光 a ,从 n =3 的能级向 n =2 的能级跃迁时辐射出可见光 b ,则()A .氢原子从高能级向低能级跃迁时可能会辐射出 γ 射线B .氢原子从 n =4 的能级向 n =3 的能级跃迁时会辐射出紫外线C .在水中传播时,a 光较 b 光的速度小D .氢原子在 n =2 的能级时可吸收任意频率的光而发生电离[答题送检]来自阅卷名师报告错误A 或BD致错原因审题不仔细,不会比较可见光 a 、紫外线、γ 射线能量间的关系,错选 A 或 B不清楚“跃迁”与“电离”的区别,不能根据 h ν =E m -E n 进行判断,错选 D分5扣-[规范答题][解析] 原子外层电子跃迁产生的只能是光波,γ 射线由核衰变获得,选项 A 错误;氢原子从 n =4能级向 n =3 能级跃迁时产生的光的频率比从 n =3 能级向 n =2 能级跃迁放出的光子频率还小,不可能是紫外线,选项 B 错误;a 光能量大,频率大,在水中的速度小,选项C 正确;n =2 能级的电离能为 3.4eV ,只有大于此能量的光子才能发生电离,选项 D 错误.[答案] C1.(多选)能源是社会发展的基础,发展核能是解决能源问题的途径之一,下列释放核能的反应方程,表述正确的有( AC )A .3H +2H →4He +1n 是核聚变反应B .3H +2H →4He +1n 是 β 反应C .235U +1n →14456Ba +89Kr +31n 是核裂变反应D .235U +1n →14054Xe +94Sr +21n 是 α 衰变292290解析 两个轻核结合成质量较大的核,反应为核聚变,选项 A 正确,B 错误;在选项 C 中铀核在被中子轰击后分裂成两个较轻原子核,反应为核裂变,选项 C 正确;α 衰变的本质为核内 2 个质子和 2 个中子结合成4He ,选项 D 错误.2.(多选)如图为氢原子的能级示意图,锌的逸出功是 3.34eV ,那么对氢原子在能级跃迁过程中发射或吸收光子的特征认识正确的是( BCE )A .用氢原子从高能级向基态跃迁时发射的光照射锌板一定不能产生光电效应现象B .一群处于 n =3 能级的氢原子向基态跃迁时,能放出 3 种不同频率的光C .一群处于 n =3 能级的氢原子向基态跃迁时,发出的光照射锌板,锌板表面所发出的光电子的最大初动能为 8.75eVD .用能量为 10.3eV 的光子照射,可使处于基态的氢原子跃迁到激发态E .用能量为 14.0eV 的光子照射,可使处于基态的氢原子电离解析 当氢原子从高能级向低能级跃迁时,辐射出光子的能量有可能大于 3.34eV ,锌板有可能产生光电效应,选项 A 错误;由跃迁关系可知,选项 B 正确;从 n =3 能级向基态跃迁时发出的光子最大能量为12.09eV ,由光电效应方程可知,发出光电子的最大初动能为 8.75eV ,选项 C 正确;氢原子在吸收光子能量时需满足两能级间的能量差,因此选项 D 错误;14.0eV>13.6eV ,因此可以使处于基态的氢原子电离,选项 E 正确.3.(2017·全国卷Ⅱ)一静止的铀核放出一个 α 粒子衰变成钍核,衰变方程为238U →234Th +4He.下列说法正确的是( B )A .衰变后钍核的动能等于 α 粒子的动能B .衰变后钍核的动量大小等于 α 粒子的动量大小C .铀核的半衰期等于其放出一个 α 粒子所经历的时间D .衰变后 α 粒子与钍核的质量之和等于衰变前铀核的质量解析 静止的原子核在衰变前后动量守恒,由动量守恒定律得0=m 1v 1+m 2v 2,可知 m 1v 1=-m 2v 2,故衰p 2变后钍核的动量大小等于 α 粒子的动量大小,选项 B 正确;而动能 E k =2m ,由于钍核的质量(m 1)大于 α粒子的质量(m 2),故其动能不等,选项 A 错误;铀核的半衰期是大量的铀核半数发生衰变所用的时间,而不是放出一个 α 粒子所经历的时间,选项 C 错误;原子核衰变前后质量数守恒,衰变时放出核能,质量亏损,选项 D 错误.4.(多选)关于原子核的结合能,下列说法正确的是(ABC )A .原子核的结合能等于使其完全分解成自由核子所需的最小能量56 361313 14B .一重原子核衰变成 α 粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能C .铯原子核(133Cs)的结合能小于铅原子核(20882Pb)的结合能55D .比结合能越大,原子核越不稳定E .自由核子组成原子核时,其质量亏损所对应的能量大于该原子核的结合能解析 由原子核的结合能定义可知,原子核分解成自由核子时所需的最小能量为原子核的结合能,选项 A 正确;重核衰变时释放能量,衰变产物更稳定,即衰变产物的比结合能更大.衰变前后核子数不变,因此原子核衰变产物的结合能之和一定大于衰变前的结合能,选项 B 正确;铯原子柱的核子数少,因此其结合能小,选项 C 正确;比结合能越大的原子核越稳定,选项 D 错误;自由核子组成原子核时,其质量亏损所对应的能量等于该原子核的结合能,选项 E 错误.5.(1)核电站利用原子核链式反应放出的巨大能量进行发电,235U 是核电站常用的核燃料.235U 受一个9292中子轰击后裂变成144Ba 和89Kr 两部分,并产生__3__个中子.要使链式反应发生,裂变物质的体积要__大于 __(选填“大于”或“小于”)它的临界体积.(2)取质子的质量 m p =1.6726×10-27kg ,中子的质量 m n =1.6749×10-27kg ,α 粒子的质量 m α =6.6467 ×10-27kg ,光速 c =3.0×108m/s.请计算 α 粒子的结合能.(计算结果保留两位有效数字)解析 (1)根据质量数守恒可得,产生中子的数目为 235+1-144-89=3;只有裂变物质的体积大于它的临界体积时才能发生裂变反应.(2)组成 α 粒子的核子与 α 粒子的质量差Δ m =2m p +2m n -m α ,结合能 Δ E =Δ mc 2,代入数据得 Δ E =4.3×10-12J .答案 (2)4.3×10-12J1.(多选)一静止的铝原子核27Al 俘获一速度为 1.0×107m/s 的质子 p 后,变为处于激发态的硅原子核28 14Si.下列说法正确的是( ABE )A .核反应方程为 p +27Al →28SiB .核反应过程中系统动量守恒C .核反应过程中系统能量不守恒D .核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E .硅原子核速度的数量级为 105m/s ,方向与质子初速度的方向一致解析 核反应方程满足质量数守恒和电荷数守恒,选项 A 正确;微观粒子相互作用过程中,满足动量守恒定律,选项 B 正确;题述核反应过程属于“二合一”形式的完全非弹性碰撞,机械能有损失,但对于封闭的系统,能量仍然守恒,选项 C 错误;核反应过程中的机械能有损失,故存在质量亏损现象,选项 D错误;硅原子质量约是质子质量的 28 倍,由动量守恒定律知,m 0v 0=28m 0v ,所以硅原子核速度数量级为105m/s ,方向与质子初速度的方向一致,选项 E 正确.4816322的含量m′=m()4=,选项C正确.32.图中曲线a、b、c、d为气泡室中某放射物发生衰变放出的部分粒子的径迹,气泡室中磁感应强度方向垂直于纸面向里.以下判断可能正确的是(D)A.a、b为β粒子的径迹C.c、d为α粒子的径迹B.a、b为γ粒子的径迹D.c、d为β粒子的径迹解析γ粒子是不带电的光子,在磁场中不偏转,选项B错误;α粒子为氦核带正电,由左手定则知向上偏转,选项A、C错误;β粒子是带负电的电子,应向下偏转,选项D正确.3.碘131的半衰期约为8天,若某药物含有质量为m的碘131,经过32天后,该药物中碘131的含量大约还有(C)mA.mC.mB.mD.1解析经过n个半衰期剩余碘131的含量m′=m()n.因32天为碘131的4个半衰期,故剩余碘131 1m2164.(多选)氢原子能级如图所示,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656nm.以下判断正确的是__CD__(选填正确答案标号).A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656nmB.用波长为325nm的光照射,可使氢原子从n=1跃迁到n=2的能级C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D.用波长为633nm的光照射,不能使氢原子从n=2跃迁到n=3的能级解析能级间跃迁辐射的光子能量等于两能级间的能级差,能级差越大,辐射的光子频率越大,波长越小,选项A错误;由Em-En=hν可知,选项B错误,D正确;根据C2=3可知,辐射的光子频率最多有3种,选项C正确.5.下列有关原子结构和原子核的认识,其中正确的是__B__.(选填正确答案标号)A.γ射线是高速运动的电子流2τ2671922909205438015161728112022312923622mB.氢原子辐射光子后,其绕核运动的电子动能增大C.太阳辐射能量的主要来源是太阳中发生的重核裂变D.210Bi的半衰期是5天,100克210Bi经过10天后还剩下50克8383解析β射线是高速电子流,而γ射线是一种电磁波,选项A错误;氢原子辐射光子后,绕核运动的电子距核更近,动能增大,选项B正确;太阳辐射能量的主要来源是太阳内部氢核的聚变,选项C错误;1t110天为两个半衰期,剩余的210Bi为100×()g=100×()2g=25g,选项D错误.836.在下列描述核变化过程的方程中,属于α衰变的是__C__,属于β衰变的是__AB__,属于裂变的是__E__,属于聚变的是__F__.(选填正确答案标号)A.14C→14N+-0eC.238U→234Th+4HeE.235U+1n→140Xe+94Sr+21nB.32P→32S+-0eD.14N+4He→17O+1HF.3H+2H→4He+1n解析一个原子核自发地放出一个α粒子,生成一个新核的过程是α衰变,因此选项C是α衰变;一个重核在一个粒子的轰击下,分裂成几个中等质量原子核的过程是重核的裂变,因此选项E是重核的裂变;两个较轻的原子核聚合成一个较大的原子核,并放出粒子的过程是轻核的聚变,因此选项F是轻核的聚变;另外,选项A、B是β衰变,选项D是原子核的人工转变.7.(2017·江苏卷)(1)原子核的比结合能曲线如图所示.根据该曲线,下列判断正确的有!!!BC ###.A.4He核的结合能约为14MeVB.4He核比6Li核更稳定C.两个2H核结合成4He核时释放能量D.235U核中核子的平均结合能比89Kr核中的大(2)质子(1H)和α粒子(4He)被加速到相同动能时,质子的动量__小于__(选填“大于”“小于”或“等于”)α粒子的动量,质子和α粒子的德布罗意波波长之比为__2∶1__.解析(1)由图象可知,4He的比结合能约为7MeV,其结合能应为28MeV,故选项A错误.比结合能较大的核较稳定,故选项B正确.比结合能较小的核结合成比结合能较大的核时释放能量,故选项C正确.比结合能就是平均结合能,故由图可知选项D错误.(2)由动量与动能的关系p=2mEk可知,Ek相同时,质量小的动量也较小,故质子的动量小于α粒子h1的动量.德布罗意波长λ=p,而p∝m,故λ∝,则λH∶λα=mα∶mH=2∶1.(2)设 α 粒子的速度大小为 v ,由 qvB =m ,T = ,得 α 粒子在磁场中运动周期 T = ,T 2π m R m M M 由 Δ mc 2= Mv ′2+ mv 2,得 Δ m = .2ZZ Z 2 28.(2017·北京卷)在磁感应强度为 B 的匀强磁场中,一个静止的放射性原子核发生了一次 α 衰变.放射出的 α 粒子(4He)在与磁场垂直的平面内做圆周运动,其轨道半径为 R .以 m 、q 分别表示 α 粒子的质量和电荷量.(1)放射性原子核用A X 表示,新核的元素符号用 Y 表示,写出该 α 衰变的核反应方程;(2)α 粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小;(3)设该衰变过程释放的核能都转化为 α 粒子和新核的动能,新核的质量为 M ,求衰变过程的质量亏损 Δ m .解析 (1)A X →A -4Y +4He .v 2 2π R 2π mR v qBq q 2B环形电流大小 I = = ,v 2 qBR(3)由 qvB =m ,得 v = .设衰变后新核 Y 的速度大小为 v ′,系统动量守恒,Mv ′-mv =0,mv qBRv ′= = ,1 12 2(M +m )(qBR )22mMc 2答案 见解析课时达标 第 33 讲[解密考纲]综合考查氢原子能级的跃迁、放射性元素的衰变、半衰期、核反应,以及质能方程、核反应方程的有关计算.1.在 α 粒子散射实验中,电子对 α 粒子运动的影响可以忽略.这是因为与 α 粒子相比,电子的(D )A .电量太小C .体积太小B .速度太小D .质量太小解析 α 粒子是氦核,是电子电量的 2 倍,质量是电子的 7600 倍,当 α 粒子碰到电子时,就像子弹碰到尘埃一样,故电子对 α 粒子运动的影响可以忽略是因为电子的质量相比 α 粒子太小,选项 D 项正确.2.氢原子能级示意图如图所示,不同色光的光子能量如下表所示.。
高考物理总复习第十二单元波粒二象性原子结构与原子核课时2原子结构原子核教师用书(含解析)新人教版

1.原子的核式结构模型(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,几乎被“撞”了回来。
(3)卢瑟福提出原子的核式结构模型:在原子中心有一个很小的核,原子几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.氢原子的能级结构(1)玻尔理论①定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
②跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。
(h是普朗克常量,h=6.626×10-34J·s)③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
(2)基态和激发态:原子能量最低的状态叫基态,其他能量较高的状态叫激发态。
3.原子核的组成(1)原子核由质子和中子组成,它们统称为核子。
(2)原子核的核电荷数=质子数,原子核的质量数=质子数+中子数。
(3)同位素:具有相同质子数、不同中子数的原子。
同位素在元素周期表中的位置相同。
4.天然放射现象(1)天然放射现象:元素自发地放出射线的现象,首先由贝可勒尔发现。
天然放射现象的发现,说明原子核还具有复杂的结构。
(2)三种射线放射性元素放射出的射线共有三种,分别是α射线、β射线、γ射线。
其中α射线是高速运动的氦核,β射线是高速运动的电子流,γ射线是光子。
(3)半衰期①定义:放射性元素的原子核有半数发生衰变所需的时间。
②影响因素:放射性元素衰变的快慢是由原子核内部因素决定的,跟原子所处的物理状态(如温度、压强)及化学状态(如单质、化合物)无关。
(4)α衰变和β衰变的实质α衰变:核内两个中子和两个质子作为一个整体从较大的原子核内抛射出来。
专题31 原子结构和波粒二象性——历年高考物理真题精选之黄金30题(原卷版)

历年高考物理真题精选之黄金30题专题31 原子结构和波粒二象性一、单选题1.(2021·浙江·高考真题)2020年12月我国科学家在量子计算领域取得了重大成果,构建了一台76个光子100个模式的量子计算机“九章”,它处理“高斯玻色取样”的速度比目前最快的超级计算机“富岳”快一百万亿倍。
关于量子,下列说法正确的是( )A .是计算机运算的一种程序B .表示运算速度的一个单位C .表示微观世界的不连续性观念D .类似于质子、中子的微观粒子2.(2021·辽宁·高考真题)赫兹在研究电磁波的实验中偶然发现,接收电路的电极如果受到光照,就更容易产生电火花。
此后许多物理学家相继证实了这一现象,即照射到金属表面的光,能使金属中的电子从表面逸出。
最初用量子观点对该现象给予合理解释的科学家是( )A .玻尔B .康普顿C .爱因斯坦D .德布罗意3.(2021·河北·高考真题)普朗克常量346.62610J s h -=⨯⋅,光速为c ,电子质量为e m ,则e hm c 在国际单位制下的单位是( )A .J/sB .mC .J m ⋅D .m/s4.(2021·海南·高考真题)某金属在一束单色光的照射下发生光电效应,光电子的最大初动能为k E ,已知该金属的逸出功为0W ,普朗克常量为h 。
根据爱因斯坦的光电效应理论,该单色光的频率ν为( )A .kE h B .0W h C .k 0E W h - D .k 0E W h +5.(2021·天津·高考真题)光刻机是制造芯片的核心装备,利用光源发出的紫外线,将精细图投影在硅片上,再经技术处理制成芯片。
为提高光刻机清晰投影最小图像的能力,在透镜组和硅片之间充有液体。
紫外线进入液体后与其在真空中相比( )A .波长变短B .光子能量增加C .频率降低D .传播速度增大6.(2020·天津·高考真题)在物理学发展的进程中,人们通过对某些重要物理实验的深入观察和研究,获得正确的理论认识。
2020届高三专题复习《原子结构与性质——元素性质的递变规律》

福建省泉州2019年秋高三专题复习--原子结构与性质—元素性质的递变规律—一、单选题(本大题共20小题)1.基态原子的核外电子排布为4d105s1的元素应在()A.s区、第五周期、IA族B.ds区、第五周期、IB族C.d区、第四周期、IB族D.ds区、第五周期、IA族2,某元素基态原子的外围电子排布为3d54s2,则下列说法错误的是()A.该元素为Mn元素B.该元素最高化合价为+7C.该元素属于d区元素D.该元素原子最外层共有7个电子3.根据下列五种元素的电离能数据(单位:kJ.molT),判断下列说法不正确的是()元素代号11h13:4 Q2080400061009400R500460069009500S7401500770010500T5801800270011600U420310044005900A.元素的电负性最大的可能是Q元素B.R和S均可能与U在同一主族C.U元素可能在元素周期表的S区D.原子的价电子排布为ns2npi的可能是T元素4,下列说法正确的是()A.元素周期表每一周期元素原子的最外层电子排布均是从ns】过渡到ns2np6B.所有的非金属元素都分布在p区C.原子核外电子排布式为Is】的原子与原子核外电子排布式为1s22s】的原子的化学性质相似D.元素周期表中第HIB族到第U B族的10个纵行的元素都是金属元素,统称过渡金属兀素5, 在元素周期表中,伯元素与铁元素同族,则祐元素位于。
A. s 区B. p 区C. d 区D. ds 区6, 第一电离能最小的金属、电负性最大的的非金属、常温下呈液态的金属(价电子排布为5d 106s 2)分别位于下面元素周期表中的()—. 11 1Illi Illi ___iill till . _ J . ■ 1. ■ .-i _ . ; . ■血i i i i i i 1 1 1 | 1 11 1■ ill • • i i 1 11::::::ds ;1::: J f 1 1 1 1 1 1------1 J 1 1 i 1 11i i i 1 i i DC i i i i i i ■ a • 1 e >11A. s 区、p 区、ds 区B. s 区、p 区、d 区C. f 区、p 区、ds 区D. s 区、f 区、ds 区7, 现有①、②、③三种元素的基态原子的电子排布式如下:①ls 22s 22p 63s 23p 4;②ls 22s 22p 63s 23p 3; (3)ls 22s 22p 5.则下列有关比较中正确的是( )A.第一电离能:③〉②>①B.原子半径:①'②〉③C.电负性:③ > ② > ①D.最高正化合价:③ > ① > ②8, 己知X 、Y 是主族元素,I 为电离能,单位是kJ-mol 1.根据如表所列数据判断,错误的是( )A. 元素X 的常见化合价是+1价B. 元素Y 是IIIA 族元素C. 若元素Y 处于第3周期,它的单质可与冷水剧烈反应D. 元素X 与氯元素形成化合物时,化学式可能是XC1元素II I 2【3I4X500460069009500Y 58018002700116009,某元素的第一电离能至第七电离能(kJ/mol )如下:II I2I 3I4I 5I 6I75781817274511575148301837623293该元素最有可能位于元素周期表的族是()第2页,共33页A.I A b.ha c. nA D.IVA10.下列说法中正确的是()①s p3杂化轨道是由同一个原子中能量最近的S轨道和P轨道混合起来形成的一组能量相同的新轨道②同一周期从左到右,元素的第一电离能、电负性都是越来越大③分子中键能越大,表示分子拥有的能量越高④所有的配合物都存在配位键⑤所有含极性键的分子都是极性分子⑥熔融状态下能导电的化合物一定是离子化合物⑦所有的原子晶体都不导电A.①②③B.①⑦C.④⑥⑦D.①④⑥11.下列叙述正确的个数是O①配位键在形成时,是由成键双方各提供一个电子形成共用电子对②s-s6键与s-p6键的电子云形状相同③Ge的核外电子排布式为:[Ar]4s24p2,属于P区元素④下列分子键角大小由大到小为:COS>BC13>CC14>H2O>P4⑤冰中存在极性共价键和氢键两种化学键的作用⑥C u(OH)2是一种蓝色的沉淀,既溶于硝酸、浓硫酸,也能溶于氨水中⑦中心原子采取sp3杂化的分子,其立体构型不一定是正四面体形⑧键长:C-H⑨第一电离能:SiA.1B.2C.3D.412.气态中性原子失去一个电子转化为气态正离子所需要的最低能量叫做第一电离能(11),气态正离子继续失去电子所需要的最低能量依次称为第二电离能(【2),第三电离能03)……右表是第3周期部分元素的电离能[单位:eV(电子伏特)擞据。
2019年高考物理真题和模拟题分项汇编(含解析)

2019年高考物理真题和模拟题分项汇编(含解析)专题目录专题01 ······物理常识单位制专题02 ······直线运动专题03 ······相互作用专题04 ······牛顿运动定律专题05 ······曲线运动专题06 ······万有引力与航天专题07 ······功和能专题08 ······动量专题09 ······静电场专题10 ······稳恒电流专题11 ······磁场专题12 ······电磁感应专题13 ······交流电专题14 ······原子结构、原子核和波粒二象性专题01 物理常识 单位制1.(2019·北京卷)国际单位制(缩写SI )定义了米(m )、秒(s )等7个基本单位,其他单位均可由物理关系导出。
例如,由m 和s 可以导出速度单位m·s –1。
历史上,曾用“米原器”定义米,用平均太阳日定义秒。
但是,以实物或其运动来定义基本单位会受到环境和测量方式等因素的影响,而采用物理常量来定义则可避免这种困扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子结构专题一、多选题1.如图为波尔为解释氢原子光谱画出的氢原子能级示意图,一群氢原子处于n=4的激发状态,当他们自发的跃到较低能级时,以下说法正确的有()。
A. 电子轨道半径减小,动能增大B. 可发出连续不断的光谱线C. 由n=4跃迁到n=1时发出光子的频率最高D. 由n=4跃迁到n=1时发出光子的波长最长【答案】AC【解析】(1)当氢原子中电子从高能级向低能级跃迁时,电子轨道半径变小,跃迁过程中,原子核对电子的库仑力做正功,根据动能定理,电子动能增大,A正确;(2)根据玻尔理论,原子能量是量子化的,故原子中电子跃迁时,能级差也是量子化的,只能是一些特定的数值,根据,发光频率也只能是一些特定的频率,故不能产生连续谱,而是线状谱,B错误;(3)电子由n=4跃迁到n=1时,能级差最大,根据,产生的光子频率最高,波长最短,C正确,D错误。
故本题选AC2.下列说法正确的是A. 卢瑟福通过α粒子散射实验,提出了原子的核式结构模型B. 大量处于n=3激发态的氢原子向基态跃迁时,最多能辐射2种频率的光子C. α粒子的穿透本领比β射线强D. 光照射金属时,只要光的频率大于金属的截止频率,无论光的强弱如何,都能发生光电效应【答案】AD【解析】卢瑟福通过α粒子散射实验,提出了原子的核式结构模型,选项A正确;大量处于n=3激发态的氢原子向基态跃迁时,最多能辐射种频率的光子,选项B错误;α粒子的穿透本领比β射线弱,选项C错误;光照射金属时,只要光的频率大于金属的截止频率,无论光的强弱如何,都能发生光电效应,选项D正确;故选AD.3.如图4为卢瑟福和他的同事们做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,关于观察到的现象,下述说法中正确的是A. 相同时间内放在A位置时观察到屏上的闪光次数最少B. 放在D位置时屏上仍能观察到一些闪光,但次数极少C. 相同时间内放在B位置时观察到屏上的闪光次数比放在A位置时稍少些D. 放在C、D位置时屏上观察不到闪光【答案】BC【解析】放在A位置时,相同时间内观察到屏上的闪光次数最多。
说明大多数射线基本不偏折,可知金箔原子内部很空旷。
故A错误;放在D位置时,屏上可以观察到闪光,只不过很少很少。
说明很少很少射线发生大角度的偏折。
故B正确;放在B位置时,相同时间内观察到屏上的闪光次数较少。
说明较少射线发生偏折,可知原子内部带正电的体积小。
故C正确;放在CD位置时,屏上仍能观察一些闪光,但次数极少。
说明极少数射线较大偏折,可知原子内部带正电的体积小且质量大。
故D错误。
故选BC。
4.关于α粒子散射实验和原子结构模型,下列说法正确的是A. α粒子散射实验完全否定了汤姆孙关于原子的“枣糕模型”B. 卢瑟福的“核式结构模型”很好地解释了α粒子散射实验C. 少数α粒子发生大角度散射是因为受到很强的引力作用D. 大多数α粒子不发生偏转的原因是正电荷均匀分布在原子内【答案】AB【解析】A:α粒子散射实验完全否定了汤姆孙关于原子的“枣糕模型”,故A项正确。
B:卢瑟福的“核式结构模型”很好地解释了α粒子散射实验,故B项正确。
C:原子核集中了原子的全部正电荷和几乎全部质量,少数α粒子运动过程中靠近原子核时会受到很强的库仑斥力作用发生大角度偏转。
故C项错误。
D:绝大多数的α粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变。
故D项错误。
5.氦原子被电离出一个核外电子,形成类氢结构的离子,其能能级示意图如图所示,当分别用能量均为的电子和光子作用于处在基态的氦离子时()A. 当用能量为光子作用于处在基态的氦离子时可能辐射能量为的光子B. 当用能量为光子作用于处在基态的氦离子时一定不能辐射能量为的光子C. 当用能量为电子作用于处在基态的氦离子时可能辐射能量为的光子D. 当用能量为电子作用于处在基态的氦离子时一定不能辐射能量为的光子【答案】BC【解析】AB、当用能量为光子作用于处在基态的氦离子时,能量为,不能跃迁,一定不能辐射能量为的光子,故A错误,B 正确;CD、当用能量为电子作用于处在基态的氦离子时,基态的氦离子吸收部分的电子能量,能跃迁到第二能级,可以辐射能量为的光子,故C正确,D错误;故选BC。
6.关于光谱,下列说法正确的是A. 发射光谱一定是连续谱B. 利用线状谱可以鉴别物质和确定物质的组成成分C. 各种原子的原子结构不同,所以各种原子的光谱也是不同的D. 太阳光谱中的暗线,说明太阳中缺少与这些暗线相对应的元索【答案】BC【解析】A项:发射光谱有两种类型:连续光谱和明线光谱,故A错误;B、C项:各种原子的发射光谱都是线状谱,都有一定的特征,也称特征谱线,是因原子结构不同,导致原子光谱也不相同,因而可以通过原子发光谱线来确定和鉴别物质,对此称为光谱分析,故B、C正确;D项:太阳光谱是吸收光谱,其中的暗线,说明太阳中存在与这些暗线相对应的元素,故D 错误。
点晴:原子的发射光谱都是线状谱,也叫特征谱线,各种不同的原子的光谱各不相同,是因原子中电子结合不同.因此可通过原子发光来确定物质的组成。
7.关于原子光谱,下列说法中正确的是A. 稀薄气体发光的光谱只有几条分立的亮线B. 稀薄气体发光的光谱是一条连续的彩带C. 不同原子的光谱线不同D. 利用光谱分析可以确定物质的化学成份【答案】ACD【解析】AB:稀薄气体发光的光谱只有几条分立的亮线,是明线光谱。
故A项正确,B项错误。
C:同一种原子的明线谱和吸收谱谱线位置相同,不同原子的光谱线不同。
故C项正确。
D:不同原子的光谱线不同,利用光谱分析可以确定物质的化学成份。
故D项正确。
点睛:炽热的固体、液体及高压气体发光产生的光谱一般是连续谱,稀薄气体发光产生的光谱多为明线光谱,白光通过某种温度较低的蒸气后将产生吸收光谱。
原子的发射光谱和吸收光谱都是线状谱,同一种原子,线状谱的位置相同。
8.处于基态的氢原子被某外来单色光激发后跃迁到能级,然后发出光线。
已知普朗克常量,则A. 该外来单色光的能量为B. 该氢原子发射的所有谱线中,最长的波长为C. 该氢原子发射的所有谱线中,最短波长的光子动量为D. 该氢原子发射的光照射逸出功为的金属锌,最大光电子动能约为【答案】BCD【解析】(1)根据跃迁理论,处于基态的氢原子被某外来单色光激发后跃迁到能级,需要吸收的能量为= -0.54-(-13.6)eV=13.06eV,A错误;(2)波长最长的谱线来自第5能级向第4能级的跃迁,根据,解得:,B正确;(3)波长最短的谱线来自第5能级向第1能级的跃迁,根据,解得:,又根据,代入解得:,C正确;(4)根据爱因斯坦光电效应方程,得:=9.72eV,D正确;故本题选BCD9.氢原子的能级如图所示,已如可见光的光子的能量范围为1.62~3.11eV,那么对氢原子在能级跃注的过程中辐射成吸收光子的特征认识正确的是A. 大量氢原子处于n=4能级时向低能级跃迁能发出6种领率的可见光B. 氧原子从高能级向n=3能级跃迁时,发出的光是不可见光C. 处于n=3能级的氢原子可以吸收任意频率的可见光,并发生电离D. 用能量为12.5eV的光子照射处与基态的氢原子,可以使氢原子跃迁到更高的能级【答案】BC【解析】大量氢原子处于n=4能级时向低能级跃迁能发出种频率的光,其中4→3放出光子的能量:(-0.85)-(-1.51)=0.66eV;其中3→2放出光子的能量:(-1.51)-(-3.4)=1.89eV;其中4→2放出光子的能量:(-0.85)-(-3.4)=2.55eV;则只有三种是可见光,选项A错误;氢原子从高能级向n=3能级跃迁时,发出的光的能量小于1.51 eV,则属于不可见光,选项B正确;处于n=3能级的氢原子电离需要的最小能量为1.51 eV,则处于n=3能级的氢原子可以吸收任意频率的可见光,并发生电离,选项C正确;12.5eV的光不等于任何能级差,则能量为12.5eV的光子照射处与基态的氢原子,不能被氢原子吸收,不可以使氢原子跃迁到更高的能级,选项D错误;故选BC.10.下列说法正确的是()A. 汤姆孙首先发现了电子,并最早测定了电子的电荷量B. 卢瑟福由粒子散射实验提出了原子的核式结构模型C. 光谱分析可在不破坏、不接触物体的情况下获取其内部的信息D. 氢原子中的电子离原子核越近,氢原子的能量越大【答案】BC【解析】A. 汤姆生通过研究阴极射线实验,发现了发现了电子,密立根最早测定了电子的电荷量,故A错误;B. 卢瑟福通过对α粒子散射实验的研究,提出了原子的核式结构学说,故B正确;C. 光谱分析是通过物体发出的光谱分析物体的组成的,可在不破坏、不接触物体的情况下获取其内部的信息,故C正确;D. 根据玻尔的原子结构模型,氢原子中的电子离原子核越远,氢原子的能量越大,故D错误。
故选:BC.11.物理学家的科学发现推动了人类历史的进步,关于物理学家的贡献,下列说法正确的是( )A. 牛顿发现万有引力定律,并通过实验比较准确地测出了引力常量B. 富兰克林把自然界的电荷分为两种,密立根首先测定了元电荷的值C. 法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D. 玻尔和助手们进行了粒子散射实验,并提出了原子的核式结构模型【答案】BC【解析】A、牛顿发现万有引力定律,卡文迪许通过实验比较准确地测出了引力常量,故A 错误;B、富兰克林把自然界的电荷分为两种,密立根首先测定了元电荷的值,故B正确;C、法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系,故C正确;D、卢瑟福进行了粒子散射实验,并提出了原子的核式结构模型,故D错误;故选BC。
12.下列叙述中符合物理学史的有()A. 汤姆孙通过研究阴极射线实验,发现了电子B. 卢瑟福通过对粒子散射实验现象的分析,证实了原子核是可以再分的C. 巴耳末根据对氢原子可见光区的谱线分析,总结出了氢原子光谱可见光区波长公式D. 玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构学说【答案】AC【解析】汤姆孙通过研究阴极射线实验,发现了电子的存在,A正确;卢瑟福通过对α粒子散射实验现象的分析,证实了原子是由原子核和核外电子组成的,B错误;巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式,C正确;玻尔在卢瑟福的原子核式结构学说的基础上,引入了量子理论,提出的原子模型,并没有完全否定卢瑟福的原子核式结构学说,D错误.13.氢原子光谱在可见光区域内有四条谱线Hα、Hβ、Hγ和Hδ,都是氢原子中电子从量子数n>2的能级跃迁到n=2的能级发出的光,它们在真空中的波长由长到短,可以判定A. Hα对应的前后能级之差最小B. 同一介质对Hα的折射率最大C. 同一介质中Hδ的传播速度最大D. 同一介质对Hα的临界角比Hβ的大【答案】AD【解析】A、根据可知,Hα对应的前后能级之差最小,故A正确;B、根据可知,Hα的频率最小,同一介质对Hα的折射率最小,故B错误;C、根据可知,同一介质对Hα的传播速度最大,同一介质中Hδ的传播速度最小,故C 错误;D、根据知,同一介质对Hα的临界角比Hβ的大,故D正确;故选AD。