食品工程原理课程设计

合集下载

食品工程原理教学设计

食品工程原理教学设计

食品工程原理教学设计简介食品工程原理是食品科学与工程专业的重要课程之一,涉及食品的物理、化学和工程学知识。

在该课程中,学生需要学习食品的制造、加工和贮存方法,掌握食品加工原理和技术,以及对工业生产设备和工艺参数进行优化和调整等。

因此,在教学设计中,需要注重理论与实践相结合,以提高学生的综合能力和实践操作能力为目标。

教学目标1.理解食品工程原理的基础知识和工程学原理。

2.掌握食品制造、加工和贮存等基本工艺方法。

3.熟悉食品加工原理和技术,对工业生产设备和工艺参数进行优化和调整。

4.培养学生的实践操作能力和创新意识。

教学内容理论知识1.食品工程原理概述2.食品结构与成分分析3.食品加工原理与技术4.食品物流和贮存5.食品安全与检测实践操作1.食品成分分析实验2.食品加工实验3.食品生产流程优化实验4.食品安全检测实验教学方法1.讲授教学:通过课堂讲授掌握食品工程原理的基础知识和工程学原理。

2.实验教学:通过实践操作加深学生对相关理论知识和技术的理解。

3.课堂讨论:通过课堂互动交流,拓展学生的思维和实践应用能力。

4.课外作业:对学生进行独立思考和学习掌握的巩固。

教学评估1.考试评估:主要通过期末考试(笔试、实验、综合考试等)对学生的知识掌握和应用能力进行测评。

2.学生评议:通过学生调查问卷,了解学生对于教学内容、教学方法和教师授课效果等的反馈和意见,为改进教学提供参考依据。

教学资源1.教材:《食品工程原理》(第八版)2.实验仪器和设备:分析天平、烘箱、深冷冰箱、高速离心机等3.实验材料:牛奶、鸡蛋、苹果、葡萄等食材4.教学平台:课堂教学、实验室教学、在线学习平台等教学考虑1.确保教学内容和实践操作的紧密结合。

2.强调问题意识和创新能力的培养。

3.适当引导学生深入探究相关知识和技术,激发学生自主学习的兴趣和能力。

4.关注学生的反馈和意见,及时改进和优化教学。

总结食品工程原理的教学涉及理论知识和实践操作等多个方面,要注重理论与实践相结合,以培养学生的综合能力和实践操作能力为目标。

食品工程原理教学设计

食品工程原理教学设计

1.3.3 水力直径(参赛内容)
一、教学目的 了解异形管道水力直径的概念和计算
按图讲解,举例套管环隙 管道和矩形管道的计算
二、教学思路
(1)异形管道水力直径的定义
(2)利用水力直径代替雷诺数公式里的物理量——直径
(3)举例进行水力直径的计算
1.3.4 圆管中的层流 一、教学目的 (1)掌握圆管层流的平均速度、最大速度的计算;等径 圆管沿程水头损失公式,层流沿程阻力系数的计算 (2)了解圆管层流哈根-泊肃叶定律,圆管层流切应力 和总摩擦力的计算 (3)熟悉黏性底层、水力光滑管与水力粗糙管的相关概 念 二、教学思路 1.3.4.1 速度分布与流量
按图讲解
(2)绝对粗糙度的概念及产生的原因
(3)水力光滑管与水力粗糙管的概念及相关性质
强调水力光滑和水力粗
糙是相对多变的。
<课堂小结>
1、稳定流动连续性方程
2、雷诺数的计算和管内液体流态的判断标准
重点公式小结
3、圆管层流平均速度和最大速度的计算
4、达西公式和层流沿程阻力系数
按图讲解,并结合上节课 所学的质量守恒定律、流
(2)根据不可压缩流体密度不变的性质,推导出不可压 量计算公式讲解
缩流体稳定流动连续性方程
★ 记忆:稳定流动连续
(3)根据不可压缩流体稳定流动连续性方程推导出不可
性方程
压缩流体平均流速的性质
1.3.2 雷诺实验与雷诺数(参赛内容)
一、教学目的
(1)掌握雷诺数的概念及其计算
按图讲解
(2)等径层流管路的水头损失就是管路两端压强之差, 根据上节课所学的 稳定
由此推导等径圆管沿程水头损失公式
流动能量平衡方程 推导
(3)达西公式(层流、紊流均适用)

《食品工程原理》课程设计教学大纲

《食品工程原理》课程设计教学大纲

《食品工程原理》课程设计教学大纲一、课程说明1.课程性质:《食品工程原理的课程设计》是食品工程原理课程教学的总结性教学实践环节,是利用食品工程原理、食品工程制图和机械设计等的基本理论和技术,设计一些简单的食品加工过程或食品加工设备,培养学生理论联系实际、灵活运用所学知识解决实际问题的能力,达到增强学生实践与创新能力的目的。

2.课程的目的和任务:《食品工程原理的课程设计》主要目的是培养学生综合运用本门课程及有关先修课程的基本知识去解决某一设计任务的一次训练,在整个教学计划中它也起着培养学生独立工作能力的重要作用,通过课程设计就以下几个方面要求学生加强锻炼: 1)查阅资料选用公式和搜集数据的能力;2)树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想指导下去分析和解决实际问题的能力;3)迅速准确地进行工程计算的能力;4)用简洁的文字清晰的图表来表达自己设计思想的能力。

3.适应专业:适用于食品质量与安全专业的《食品工程原理课程设计》课程教学。

4.学时与学分:《食品工程原理课程设计》课程教学总学时一周,共1学分。

5.先修课程:1)高等数学2)大学物理3)物理化学4)食品工程机械基础5)食品工程原理6.推荐教材:《化工原理课程设计》,天津大学化工原理教研室编写,由天津科学技术出版社出版,2003,9建议参考书目:①《化学工程手册》编辑委员会,化学工程手册(2~5卷),化学工业出版社;②《化工设备机械基础》编写组编.化工设备机械基础(第3册),1978;③姚玉英主编,《化工原理》(新版)(上、下册),天津大学出版社.2003,7④杨同舟.《食品工程原理》,中国农业出版社,2001,3;⑤蒋维钧,戴献元等.化工原理(上、下),清华大学出版社,1998;⑥谭天恩,麦本熙等.化工原理(上、下),化学工业出版社,1990,6。

⑦无锡轻工业学院等,食品工厂机械与设备,轻工业出版社,1981,27.主要教学方法与手段:本课程采用以学生查询大量资料并计算设计为主,教师指导为副的方法。

食品工程原理课程设计食品科学与工程专业

食品工程原理课程设计食品科学与工程专业

食品工程原理课程设计食品科学与工程专业食品工程原理是食品科学与工程专业的核心课程之一,是培养食品科学与工程人才的必修课程。

本文将围绕食品工程原理课程设计进行阐述,旨在探讨如何通过课程设计提高学生的综合素质和实际能力,使得学生能够在食品工程领域有所建树。

一、课程设计的目标和要求食品工程原理课程设计的主要目标是培养学生的实际能力和综合素质,具体要求包括:1、熟练掌握食品化学、物理学和微生物学等基础理论知识,以及食品加工和生产的工艺流程、设备和操作规范等实际技能;2、具备分析解决问题的能力,能够针对食品加工中的实际问题进行分析、解决和优化;3、具备团队协作和沟通能力,能够有效地与团队成员和企业管理者沟通合作,实现共同目标。

二、课程设计的内容和方法食品工程原理课程设计的内容通常包括两个方面:实验和论文。

实验部分主要包括食品加工和生产的操作实验,包括食品配方设计、工艺流程设计、设备操作和生产管理等;论文部分主要包括针对实际问题的研究,包括原料性质和质量控制、加工过程和工艺优化、产品品质保证和营养分析等。

针对以上内容,可以采用以下方法进行课程设计:1、理论教学与实践相结合,通过理论知识的讲解和实际操作的演示,深入学生对于食品工程原理的理解和实践应用;2、考虑项目的可行性和实操性,增加食品工程实验的内容并进行充分讲解;3、注重培养团队合作和沟通能力,安排多人分组进行课程设计;4、强调个人的分析设计能力,让学生针对食品工程问题进行独立思考和解决方案的提出。

三、课程设计的评估和改进为了确保食品工程原理课程的质量和效果,评估和改进是必不可少的环节。

针对课程设计的评估和改进,可以从以下几个方面进行:1、评价课程的教学质量和效果,以学生学习成绩、课程反馈和企业反馈为主要依据;2、优化实验内容和教学方法,确保实验的可行性和实操性,让学生能够真正掌握实际操作技能;3、给予充分的团队和个人评价,分别对团队合作和个人分析设计能力进行评价;4、不断引入前沿的食品工程理论和技术,扩充和更新课程教学内容。

食品工程原理课程设计

食品工程原理课程设计

食品工程原理课程设计食品工程原理是食品科学与工程专业的重要课程之一,它主要介绍食品加工过程及相关理论知识。

在学习过程中,并不仅限于理论,而是需要将所学知识应用到实际中。

为了充分发挥该课的教学效果,教师需要设计实际应用案例以促进学生的学习和进一步加深相关领域的实践经验。

本次食品工程原理课程设计旨在引导学生通过对实际加工工程的模拟实验,进一步了解食品加工过程及其原理,掌握将理论应用到实践中的技能。

以下将进一步介绍课程设计的具体内容。

一、实验准备在授课前需要进行实验准备,首先是实验装置的布局。

整个实验过程需要用到水槽、电动搅拌器、冷却水循环系统、制冰机等多个设备,因此需要将各个设备进行合理布局,使实验效果更加良好。

另外,对各个设备及试剂物料进行检查,确保其完好无损,以免影响实验的效果。

二、实验内容该实验旨在通过模拟红枣酱的加工过程,让学生深入了解食品加工过程中的理论知识,并掌握一些基础的加工技能。

实验步骤:1、准备材料:新鲜的红枣、糖、白醋。

2、对红枣进行清洗、切片去核。

3、加入适量糖和白醋,按照一定的配方要求进行混合。

4、将混合物放入电动搅拌器中进行搅拌,同时控制搅拌器的转速。

5、将搅拌至一定时间,然后加入制冰机冷却,使其达到降温效果。

6、对制成的红枣酱进行质量检测,观察其颜色、口感和细度等指标是否符合要求。

通过以上的实验过程,可以让学生通过模拟真实加工环境进行理论知识的实践,进一步加深对食品加工过程的了解,同时也能够掌握一定的加工技能。

三、实验意义食品工程原理课程设计的内核在于掌握基础的加工技能与探究理论知识。

通过编制并完成实验,将更好地理解理论知识,并应用于实践应用之中,使学生在课堂外获得了更多的技能及经验。

此外,还将有机会进行实验或工作的交流与思考,培养出解决复杂实际问题的能力。

课程设计同时也是课程改革的体现,其关注的不仅是学生的学术科学能力,更注重其实际能力和应用能力的发展,如培养学生创新思维、交流协作、实践操作技能等,使学生的学习更具丰富性和实践性,更能展示专业本质和应用价值。

食品工程原理第三版课程设计

食品工程原理第三版课程设计

食品工程原理第三版课程设计1. 课程设计介绍本课程设计是针对食品工程原理第三版的课程要求所设计的,旨在通过具体案例的分析与实践,加深学生对于食品工程原理的理解和应用。

本课程设计分为两部分,第一部分为课堂理论学习,通过阅读教材和讲解掌握工程原理知识,第二部分为实践设计,结合实际案例进行仿真模拟和实验操作,提高学生实践能力和解决实际问题的能力。

2. 课程设计过程2.1 课堂理论学习本课程理论学习主要包括以下内容:1.食品工程原理概述2.食品化学与营养学基础3.生物与微生物基础4.食品传热传质与反应工程5.食品加工及贮藏工程6.食品安全与卫生学生应通过阅读教材和课堂讲解,熟练掌握以上内容,并在理论学习的基础上,积极思考和发现实际问题,为后续的实践设计做好准备。

2.2 实践设计本课程设计实践部分主要涵盖以下内容:1.食品加工工艺流程仿真设计2.食品加工过程参数优化3.食品质量控制技术应用4.食品安全控制技术应用2.2.1 食品加工工艺流程仿真设计在课堂学习中,学生应先了解食品加工工艺流程的基本原理和流程,并掌握工艺参数的选择和流程图的绘制方法。

然后,学生应结合实际情况,使用工艺仿真软件完成食品加工工艺流程的仿真设计。

仿真设计应包括工艺流程的选择和参数优化,以达到最佳食品加工质量。

2.2.2 食品加工过程参数优化在仿真设计基础之上,结合实验室实际操作,学生应选取具有代表性的食品品种和加工工艺,对加工过程中关键参数进行优化,提高食品加工的效率和质量。

学生应选择适当的论证方法,对优化前后的加工质量进行比较分析。

2.2.3 食品质量控制技术应用在食品加工过程中,学生应结合国内外相关标准和规范,对所加工的食品产品进行质量控制。

学生应掌握常用的检测方法、设备和技术,针对性地制定和实施质量控制措施,确保加工产品的质量符合标准要求。

2.2.4 食品安全控制技术应用在食品生产过程中,食品安全问题是重中之重。

学生应结合国内外相关安全标准和规范,对所加工的食品产品进行安全控制。

哈尔滨食品工程原理课程设计

哈尔滨食品工程原理课程设计

哈尔滨食品工程原理课程设计一、课程目标知识目标:1. 让学生掌握食品工程基本原理,理解食品加工过程中的关键因素;2. 使学生了解哈尔滨食品工程领域的现状与发展趋势;3. 帮助学生掌握食品质量与安全的基本知识,提高对食品工程问题的分析能力。

技能目标:1. 培养学生运用食品工程原理解决实际问题的能力;2. 提高学生进行食品工艺设计和优化方案的能力;3. 培养学生运用现代食品工程技术进行创新实践的能力。

情感态度价值观目标:1. 培养学生对食品工程学科的兴趣,激发学生探索精神和创新意识;2. 引导学生关注食品安全与营养健康,提高社会责任感和职业道德;3. 培养学生团队合作精神,提高沟通与协作能力。

本课程针对高中年级学生,结合学科特点和教学要求,以实用性为导向,旨在使学生在掌握食品工程基本原理的基础上,提高实践操作能力和创新意识。

通过本课程的学习,使学生具备分析解决食品工程问题的能力,同时培养他们的食品安全意识和职业道德。

课程目标具体、可衡量,以便于教学设计和评估。

二、教学内容1. 食品工程原理概述:介绍食品工程的概念、发展历程和基本原理,让学生对食品工程有整体的认识。

教材章节:《食品工程原理》第一章内容列举:食品工程定义、发展简史、食品加工基本原理。

2. 食品加工技术:讲解常见的食品加工技术及其原理,包括腌制、烘焙、发酵、冷冻等。

教材章节:《食品工程原理》第二章内容列举:腌制技术、烘焙技术、发酵技术、冷冻技术。

3. 食品质量与安全:介绍食品质量与安全的控制方法,使学生了解食品安全的重要性。

教材章节:《食品工程原理》第三章内容列举:食品质量控制、食品安全管理、食品检测技术。

4. 食品工程设计:讲解食品工艺设计的基本原则和方法,培养学生设计优化方案的能力。

教材章节:《食品工程原理》第四章内容列举:食品工艺设计原则、工艺流程设计、设备选型。

5. 哈尔滨食品工程现状与发展趋势:分析哈尔滨地区食品工程的现状及未来发展趋势。

大学食工原理课程设计

大学食工原理课程设计

大学食工原理课程设计一、课程目标知识目标:1. 理解并掌握食物加工的基本原理,包括食品的物性变化、加工过程中营养素的保留与损失。

2. 掌握食品加工中常见的工程技术及其应用,如干燥、冷藏、加热、无菌包装等。

3. 了解食品质量和安全的控制方法,以及食品标准与法规的基本知识。

技能目标:1. 能够运用食品加工的基本原理分析食品加工过程中的变化,并提出优化方案。

2. 能够设计简单的食品加工流程,结合理论知识解决实际问题。

3. 能够运用批判性思维评价食品加工相关的信息,对食品质量和安全问题进行初步判断。

情感态度价值观目标:1. 培养学生对食品工程学科的兴趣,激发其探索食品加工技术与创新的精神。

2. 增强学生的食品安全意识,使其认识到食品加工对公共健康的重要性。

3. 培养学生的团队协作能力和工程伦理观念,使其在实践中能够考虑社会责任和可持续发展。

本课程设计针对大学食品科学与工程专业高年级学生,结合课程性质、学生的前序知识基础以及未来职业发展的需求,设定了具体的知识、技能和情感态度价值观目标。

课程旨在通过理论讲授与实践操作相结合的教学方式,使学生不仅掌握食品加工的基本理论知识,而且能够将这些知识应用于实际问题的分析和解决中,同时培养其食品安全意识和社会责任感。

通过本课程的学习,学生将为从事食品科学与工程领域的相关工作打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 食品加工的基本原理:涉及食品物性变化、食品成分在加工过程中的变化规律、食品质构与感官评价等,对应教材第1章至第3章。

2. 常见食品加工技术:包括干燥、冷藏、加热、无菌包装、发酵等,对应教材第4章至第7章。

3. 食品质量控制与安全:涉及食品微生物学、食品卫生学、食品安全检测技术、食品质量控制体系等,对应教材第8章至第10章。

4. 食品标准与法规:介绍国内外食品标准、法规体系及其在食品加工中的应用,对应教材第11章。

教学内容的安排和进度如下:1. 前两周:重点讲解食品加工的基本原理,使学生了解食品在加工过程中的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

食品工程原理课程设计---管壳式冷凝器设计目录食品工程原理课程设计任务书 (2)流程示意图 (3)设计方案的确定 (4)冷凝器的造型计算 (6)核算安全系数 (8)管壳式冷凝器零部件的设计 (10)设计概要表 (12)主要符号表 (13)主体设备结构图 (14)设计评论及讨论 (14)参考文献 (15)(一)食品科学与工程设计任务书一、设计题目:管壳式冷凝器设计二、设计任务:将制冷压缩机压缩后制冷剂(如F-22、氨等)过热蒸汽冷却、冷凝为过冷液体,送去冷库蒸发器使用。

三、设计条件:1、冷库冷负荷Q0=1700KW;2、高温库,工作温度0~4℃,采用回热循环;3、冷凝器用河水为冷却剂,取进水温度为26~28℃;4、传热面积安全系数5~15%。

四、设计要求:1.对确定的设计方案进行简要论述;2.物料衡算、热量衡算;3.确定列管壳式冷却器的主要结构尺寸;4.计算阻力;5. 编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。

)6.绘制工艺流程图、管壳式冷凝器的的结构(3号图纸)、花板布置图(3号或4号图纸)。

(二)流程示意图流程图说明:本制冷循环选用卧式管壳式冷凝器,选用氨作制冷剂,采用回热循环,共分为4个阶段,分别是压缩、冷凝、膨胀、蒸发。

1 2 由蒸发器内所产生的低压低温蒸汽被压缩机吸入压缩机气缸,经压缩后温度升高;2 3 高温高压的F—22蒸汽进入冷凝器;F—22蒸汽在冷凝器中受冷却水的冷却,放出热量后由气体变成液态氨。

4 4’ 液态F—22不断贮存在贮氨器中;4’ 5 使用时F—22液经膨胀阀作用后其压力、温度降低,并进入蒸发器;5 1 低压的F—22蒸汽在蒸发器中不断的吸收周围的热量而汽化,然后又被压缩机吸入,从而形成一个循环。

5’1是一个回热循环。

本实验采用卧式壳管式冷凝器,其具有结构紧凑,传热效果好等特点。

所设计的卧式管壳式冷凝器采用管内多程式结构,冷却水走管程,F—22蒸汽走壳程。

采用多管程排列,加大传热膜系数,增大进,出口水的温差,减少冷却水的用量。

(三)设计方案的确定设计方案的确定包括制冷剂的选择、冷凝器型式的选择、流体流入冷凝器空间的选择、冷却剂的选择及其进出口温度的确定等。

一、冷凝器造型与冷凝剂的选择本次设计是以河水为冷却剂,本人选择氨高效卧式冷凝器为设计对象。

此冷却系统的原理是将压缩机排出的高温、高压氨气等压冷凝成液体,在冷库中蒸发,带走待冷物料的热量,起到冷却物料的效果。

Cl,名称为二氟一氯甲本方案采用F—22为制冷剂,F—22化学式为CHF2烷,标准沸点为—40.8℃,凝固温度为—160℃,不燃烧,不爆炸,无色,无味。

冷凝器型式的选择:本方案采用卧式壳管式冷凝器。

卧式管壳式水冷凝器的优点是:1、结构紧凑,体积比立式壳管式的小;2、传热系数比立式壳管式的大;3、冷却水进、出口温差大,耗水量少;4、为增加其传热面积,F-22所用的管道采用低肋管;5、室内布置,操作较为方便。

二、流体流入空间选择由于冷却剂为河水,根据不洁净或易结垢的物料应当流经易清洗的一侧,饱和蒸汽一般应通入壳程,以便排出冷凝液,被冷却物料一般走壳程,便于散热和减少冷却剂用量,所以确定冷却水走管程,冷凝剂(F22)走壳程。

三、流速选择 查得列管换热器管内水的流速,管程为0.5~3m/s ,壳程0.2~1.5m/s[2];根据本设计制冷剂和冷却剂的性质,综合考虑冷却效率和操作费用,本方案选择流速为1.5m/s 。

四、冷却剂适宜出口温度的确定任务书要求进水温度为26~28℃,选择进口温度=26°C 。

卧式冷凝器的端部最大温差(t k -t 1)可取7~14°C ,冷却水进口温差为4~10°C 。

提高冷凝器的传热平均温差△2k 1k 12t -t t -t ln t -t t =可以冷凝器的传热面积q Q t K Q F LL =∆=,从而减少传热面积、降低成本。

前提是出口水温度不能高于冷凝剂的冷凝温度t k ,跨程温差小于28°C 。

所以确定出口水温度=32°C ,冷凝剂(F22)的冷凝温度t k =35°C 。

五、冷凝剂的蒸发温度和过冷温度确定冷凝器的热负荷0Q Q L Φ=,减少系数φ可以有效降低热负荷。

其中热负荷系数φ受冷凝温度和蒸发温度影响,蒸发温度t 0提高,可以降低热负荷系数φ。

由于冷凝剂的蒸发温度要比工作温度低8~10℃,已知工作温度为0~4℃,即t 0取值-8~-4℃。

综上所述,确定蒸发温度t 0=-10℃。

冷凝器内过冷一般不小于1℃,取过冷温度t g =32℃。

六、管体材料及管型的选择选取规格为38×2.5的换热器用普通无缝钢管,则d 0=38mm ,d i =33mm ,δp=2.5mm(四)冷凝器的造型计算冷凝器的任务是将压缩机排出的高温高压气态制冷剂冷却使之液化。

一、冷凝器的热负荷0Q Q L Φ=式中:QL――冷凝器的热负荷;Kw0Q ――制冷量;0Q =1700kw 。

φ――系数,与蒸发温度t 0、冷凝温度t K 、气缸冷却方式以及制冷剂种类有关。

蒸发温度t 0=-10℃,冷凝剂(F22)的冷凝温度t k =35℃,得系数φ=1.19。

Q L 总=1.19×1700kw= 2023kw 。

二、预算冷凝器的传热面积 在水冷式冷凝器中,卧式管壳冷凝器的制冷剂在管外冷凝,冷却水在管内流动。

q Q t K Q F L L =∆=式中:F――冷凝器的传热面积,m 2;K――传热系数,w/(m 2·K );Δt――传热平均温度差,℃;q――单位面积热负荷,w/ m 2。

,卧式管壳式(氟利昂)冷凝器的传热系数K =800w/(m 2·K )。

△t t t t t t k kt 2112ln ---==323526-35ln 2632--=5.45℃ m F 299.46345.5*8001000*2023==三、冷凝器冷却水用量计算水冷式冷凝器的冷却水用量可以用下式求得:()h Kw t t C Q M P L /360012⨯-= 式中:QL――冷凝器的热负荷,Kw ;CP――冷却水的定压比热,KJ/(kg·K ),淡水取4.186;t 1、t 2――冷却水进、出冷凝器的温度,K 或℃。

则:体积流量3600)2632(186.42023⨯-⨯=M =289966.56g/s 。

冷却水体积V=081.03600*=ρM m 3/s (ρ=998 kg/m 3)四、管数、管程数1.管数 由下式求得单程管子总数nud Vn 24π=式中:V ——管内流体的体积流量,m 3 /s; d ——管子内直径,m ;u ——流体流速, m/s ;查“热交换器用普通无缝钢管”表[1],选取规格为38×2.5的热交换用普通无缝钢管,其内径d =33mm 。

而流体的流速u =1.5 m/s 。

则:17.635.1033.04081.02=⨯⨯=πn ,取整n=64 . 取整后的实际流速s m nd V u /48.1033.06414.3081.04422=⨯⨯⨯==π 2.管程数 按单程冷凝器计算,管速长度为L ,则式中:F ――传热面积,m 2;A 取预算传热面积;其他符号同前,97.69033.014.364=⨯⨯=F L m ,则:管程数为ml L m =式中:L――按单程计算的管长,m ;l――选定的每程管长,m ;按管材一般出厂规格为6m ,则l 可取1、1.5、2、3、6m 等,取l =6m 。

m=69.97/6=11.66,取整m=12采用6管程后,冷凝器的总管数NT 为:NT=n ·m=768根(五)核算安全系数一、雷诺数计算及流型判断 冷凝器冷却水用量:s kg t t C Q M p L /55.80)2632(186.42023)(12=-⨯=-= nd A L 14.3=实际流速:s u /m 48.1= 雷诺数:65.608361012.8099848.1033.0Re 5=⨯⨯⨯==-μρdu > 104 所以流型为湍流。

二、阻力的计算冷凝器的阻力计算只需计算管层冷却水的阻力,壳程为制冷剂蒸汽冷凝过程,可不计算流动阻力。

冷却水的阻力可按下式计算:∑+=gu Z g u d L H f 222ελ 式中:λ——— 管道摩擦阻力系数,湍流状态下,钢管λ=0.22Re-0.2;Z ——— 冷却水流程数;L ——— 每根管子的有效长度,m ;d ——— 管子内直径, m ;u ——— 冷却水在管内流速,m/s ;g ——— 重力加速度,m/s 2;∑ε—— 局部阻力系数,可近似取为Σε=4Z 。

水柱m g u Z g u d L H f 01.88.9248.1124128.92033.048.14027.02222=⨯⨯⨯+⨯⨯⨯⨯⨯=+=∑ελ三、安全系数1.管外总传热面积:1A =N T πd 0l =768×3.14×0.038×6=549.832m2.管内总传热面积:2A =N T πdl =768×3.14×0.033×6=477.482m3.实际总传热面积:A =(1A +2A )/2=(549.83+477.48)/2=513.662m4.理论总传热面积: 'A =L Q /(K ·△t)=463.992m5.安全系数:ε==-AA A理理实际(513.66-463.99)/463.99×100%=10.7%一般要求安全系数为3%~15%(0.03~0.15),故本设计合符要求。

(六)管壳式冷凝器零部件的设计一.冷凝器阻力的计算冷凝器的阻力计算只需计算管程冷却水的阻力,壳程为制冷剂蒸汽冷凝过程,可不计算流动阻力。

g u Z g u d L H f 2222ελ∑+⋅⋅⋅=式中:λ——管道的磨擦阻力系数:在湍流状态下,钢管λ=0.22Re -0.2;本设计所用为钢管则: λ=0.22Re -0.2=0.22×28065.6-0.2=0.02837; Z ——冷却水流程数; Z=管程m=6; L ——每根管子的有效长度,m ; L=6m ; d ——管子内直径,m ; d i =0.02m ; u ——冷却水在管内的流速,m/s ; u i =1.412 m/s ; g ——重力加速度,m/s2∑ε——局部阻力系数,可近似取为:∑ε=4Z =4×6=24。

相关文档
最新文档