设计师收藏总结LED芯片知识大全

合集下载

LED芯片原理分类基础知识大全

LED芯片原理分类基础知识大全

LED芯片原理分类基础知识大全LED(Light Emitting Diode)即发光二极管,是一种基于半导体材料的电子元件。

它能够直接将电能转换为可见光,具有体积小、功耗低、寿命长等优点,在各个领域有着广泛的应用。

1. 衬底选择:芯片的衬底通常使用蓝宝石(sapphire)或硅(silicon)材料,其中蓝宝石衬底适用于制造蓝光LED,而硅衬底适用于制造红光、绿光LED。

2.外延生长:将所需材料的薄片逐渐沉积在衬底上,使其逐渐增厚,形成外延层。

3.晶圆切割:将外延层切割成晶圆形状,并进行光洁处理。

4.研磨和腐蚀:通过机械或化学方法对晶圆进行研磨或腐蚀,使其得到一定的光学反射效果。

5.P型和N型制备:在晶圆上制备P型和N型区域,分别通过掺杂方法将其中一侧的材料掺入组别的杂质。

6.金属电极制备:在P型和N型区域上刻蚀金属电极,通过金属电极可以引出电流。

7.芯片测试:对制备完成的LED芯片进行测试,包括亮度、波长、电流和电压等参数的测试。

根据不同的工艺和材料选择,LED芯片的类型可分为以下几种:1.普通LED芯片:制造工艺简单,成本低,适用于一般照明和显示等领域。

2.高亮度LED芯片:通过优化结构和材料,提高亮度和发光效率,适用于显示屏、信号灯等需要高亮度的应用。

3.SMDLED芯片:表面安装技术(SMD)制造的LED芯片,便于焊接和组装,广泛应用于背光源、室内照明等领域。

4.COBLED芯片:芯片上多个小颗粒进行集成,具有高亮度、高可靠性等优点,适用于大功率照明等领域。

5.RGBLED芯片:集成了红、绿、蓝三种颜色的LED芯片,通过不同颜色的组合可以实现多彩的显示效果。

6.UVLED芯片:发射紫外线光的LED芯片,用于紫外线固化、水质检测、杀菌消毒等领域。

总的来说,LED芯片的原理分类涉及到材料选择、制备工艺和应用领域等多个方面,通过不同的工艺和材料选择,可以实现不同功能和性能的LED芯片。

随着科技的进步和人们对绿色环保的追求,LED芯片的研发和应用将会得到更广泛的推广。

LED基础知识培训(芯片)

LED基础知识培训(芯片)

LED基础知识培训
二、外延片

外延片是指用外延工艺在衬底表面生长薄膜所生片的单晶硅片。一般外 延层厚度为2-20微米,作为衬底的单晶硅片厚度为610微米左右。 外延工艺:外延生长技术发展于20世纪50年代末60年代初,为了制造高 频大功率器件,需要减小集电极串联电阻。生长外延层有多种方法,但 采用最多的是气相外延工艺,常使用高频感应炉加热,衬底置于包有碳 化硅、玻璃态石墨或热分解石墨的高纯石墨加热体上,然后放进石英反 应器中,也可采用红外辐照加热。为了克服外延工艺中的某些缺点,外 延生长工艺已有很多新的进展:减压外延、低温外延、选择外延、抑制 外延和分子束外延等。外延生长可分为多种,按照衬底和外延层的化学 成分不同,可分为同质外延和异质外延;按照反应机理可分为利用化学 反应的外延生长和利用物理反应的外延生长;按生长过程中的相变方式 可分为气相外延、液相外延和固相外延等。

LED基础知识培训
三、LED外延片工艺流程如下:



衬底 - 结构设计 - 缓冲层生长 - N型GaN层生长 - 多量子阱发光层生 - P型GaN层生长 - 退火 - 检测(光荧光、X射线) - 外延片 外延片- 设计、加工掩模版 - 光刻 - 离子刻蚀 - N型电极(镀膜、退 火、刻蚀) - P型电极(镀膜、退火、刻蚀) - 划片 - 芯片分检、分 级 重点设备:金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称 MOCVD), 1968年由美国洛克威尔公司提出来的一项 制备化合物半导体单品薄膜的新技术。该设备集精密机械、半导体材料、 真空电子、流体力学、光学、化学、计算机多学科为一体,是一种自动 化程度高、价格昂贵、技术集成度高的尖端光电子专用设备,主要用于 GaN(氮化镓)系半导体材料的外延生长和蓝色、绿色或紫外发光二极管 芯片的制造,也是光电子行业最有发展前途的专用设备之一。

LED芯片的基本介绍

LED芯片的基本介绍

MOCVD是利用气相反应物(前驱物)及 Ⅲ族的有机金属和Ⅴ族的NH3在衬底表面进行 反应,将所需的产物沉积在衬底表面。通过控 制温度、压力、反应物浓度和种类比例,从而 控制镀膜成分、晶相等品质。MOCVD外延炉是 制作LED外延片最常用的设备。 然后是对LED PN结的两个电极进行加工, 电极加工也是制作LED芯片的关键工序,包括 清洗、蒸镀、黄光、化学蚀刻、熔合、研磨; 然后对LED毛片进行划片、测试和分选,就可 以得到所需的LED芯片。如果芯片清洗不够乾 净,蒸镀系统不正常,会导致蒸镀出来的金属 层(指蚀刻后的电极)会有脱落,金属层外观 变色,金泡等异常。
p-GaN p-Al0.25Ga0.75N
MQW u-In0.04Ga0.96N
LM-InGaN n-GaN/u-GaN
蓝宝石衬底
衬底片
外延片
RIBER R49NT型MBE系统
RIBER R6000型MBE系统
注析:法国Riber公司是全球着名的MBE系统及相关设备的制造商和供应商,已有30年以上研发MBE系统的经验,在国际市场和中国市场中所占的市场份额都居于领先地位, 也是最早进入中国市场的MBE设备供应商之一,可为客户提供各种化合物半导体薄膜的外延设备和技术服务。2008年6月Riber收购了法国专门制造分子束源炉的ADDON公司; 2008年9月Riber公司又收购了英国牛津仪器公司控股的VG Semicon MBE部门,进一步扩大了它在国际MBE市场中的占有率。目前Riber公司在全球已有250多个研究型MBE客 户,22个生产型MBE客户(市场占有率71%),产品的销售网络遍布欧洲、美洲和亚洲等许多国家和地区。
LED芯片的基本介绍
陈海金
2012-10
目录
一、LED名词解释 二、LED晶片生产工艺及流程 三、LED晶片分类 四、LED发展的趋势 五、小结

LED芯片原理知识大全一览

LED芯片原理知识大全一览

LED芯片原理知识大全一览
LED是一种发光二极管。

发光二极管(LED)是一种无源器件,可将电能转换成光能,也可以将光能转换成电能。

LED原理非常简单,它只需将正向电流通过LED元件即可发光。

LED用于非常宽泛的应用场合,比如照明、节能灯具、显示屏、可视报警器、电子仪器和安全系统等,可用作显示器具,也可用作发光源或信号源。

LED芯片的基本原理是在半导体材料中有n极和p极,这两种型号的半导体经过内置元件处理后形成微小的发光单元,并将电能转换成光能,即产生发光现象。

能发出多种颜色的半导体结构有所不同,能发出的颜色也不一样。

LED芯片的结构由三层组成:基板、发光元件和连接层。

基板由绝缘和金属组成,它的作用是将LED封装到电路板,并连接到外部电路。

发光元件是LED的核心,它通常由硅片、金属膜、连接装置、外壳和陶瓷基板组成,发光元件中最重要的是芯片,它将电流转换成可见光,而且它的发光效果取决于它的封装及其布局;连接层由铜线组织而成,其作用是将上述的基板和发光元件连接到外部电路板。

电子元件中的LED芯片是机器可以识别的有用芯片,它可以维护、控制电子设备的运行,具有良好的可靠性和可信度。

LED 芯片的全部基础知识

LED 芯片的全部基础知识

LED产业链包括LED外延片生产、LED芯片生产、LED芯片封装及LED产品应用等四个环节。

其中LED外延片的技术含量最高,芯片次之一,LED外延片;2006年5月我从宁波回到厦门工作,我对LED封装产品和技术也有一定的了解,自己希望从事LED晶片销售工作,对目前国内芯片厂来说,也就是路美(原AXT)和三安等比较出名,其它的LED晶片都在快速发展中,目前LED晶片厂的技术在不断进步,不断超越从前,未来的五年内,竞争会越来越激烈,这关系到产品的品质,产品工艺,产品的成本,公司的实力,人才等。

此时我选择路美芯片公司,就这样进入LED最源头的产业,因此我也了解LED外延片,LED 大圆片,LED晶片等。

对于国内公司而言,生产外延片的难度太大了,也就是路美自己能展外延片,由于采用美国(原AXT)的技术和工艺,暂时在生产蓝,绿光晶片还是处于领先的技术和水平。

外延生长的基本原理是:在一块加热至适当温度的衬底基片(主要有蓝宝石和SiC,Si)上,气态物质In,Ga,Al,P有控制的输送到衬底表面,生长出特定单晶薄膜。

目前LED外延片生长技术主要采用有机金属化学气相沉积方法。

MOCVD金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称MOCVD),1968年由美国洛克威尔公司提出来的一项制备化合物半导体单品薄膜的新技术。

该设备集精密机械、半导体材料、真空电子、流体力学、光学、化学、计算机多学科为一体,是一种自动化程度高、价格昂贵、技术集成度高的尖端光电子专用设备,主要用于GaN(氮化镓)系半导体材料的外延生长和蓝色、绿色或紫外发光二极管芯片的制造,也是光电子行业最有发展前途的专用设备之一。

外延片的生产制作过程是非常复杂,展完外延片,接下来就在每张外延片随意抽取九点做测试,符合要求的就是良品,其它为不良品(电压偏差很大,波长偏短或偏长等)。

良品的外延片就要开始做电极(P极,N极),接下来就用激光切割外延片,然后百分百分捡,根据不同的电压,波长,亮度进行全自动化分检,也就是形成LED晶片(方片)。

LED知识大全之LED参数特性详解篇

LED知识大全之LED参数特性详解篇

LED知识大全之LED参数特性详解篇LED是利用化合物材料制成pn结的光电器件。

它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。

本文将为你详细介绍。

1、LED电学特性1.1 I-V特性表征LED芯片pn结制备性能主要参数。

LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。

图1 LED I-V特性曲线如图1:(1)正向死区:(图oa 或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs 为1V,红色GaAsP 为1.2V,GaP 为1.8V,GaN 为2.5V。

(2)正向工作区:电流IF 与外加电压呈指数关系:IF = IS (e qVF/KT –1)IS为反向饱和电流。

V>0 时,V>VF 的正向工作区IF 随VF 指数上升:IF = IS e qVF/KT(3)反向死区:V<0 时pn 结加反偏压V= - VR 时,反向漏电流IR(V= -5V)时,GaP 为0V,GaN 为10uA。

(4)反向击穿区V<- VR ,VR 称为反向击穿电压;VR 电压对应IR 为反向漏电流。

当反向偏压一直增加使V<- VR 时,则出现IR 突然增加而出现击穿现象。

由于所用化合物材料种类不同,各种LED 的反向击穿电压VR 也不同。

1.2 C-V特性鉴于LED 的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn 结面积大小不一,使其结电容(零偏压)C≈n+pf左右。

C-V 特性呈二次函数关系(如图2)。

由1MHZ 交流信号用C-V 特性测试仪测得。

熟记LED照明驱动电路与典型芯片常识

熟记LED照明驱动电路与典型芯片常识

熟记:LED照明驱动电路与典型芯片常识LED 是通过将电压加在其PN 结上形成能级跃变产生光子而发光的。

LED 器件不能与220V 交流电直接相连,要用2-3V 的低电压供电,也就是要根据不同的用途和供电电压设计复杂的变换电路(驱动电路)。

LED 驱动电路应具有功率转换效率高、可靠性高、功率因数高、成本低、体积小等特点。

LED 驱动电路供电类型根据供电电压的不同可将驱动电路分为两类:直流供电的低电压(0.8—1.65V)电池(如钮扣电池),驱动电路宜采用DC/DC 升压式转换器。

其他大于5V 的直流电源,驱动电路应采用DC/DC 降压式转换器;直接由交流市电供电的电源一般需经过AC/DC/ DC 变换才可用。

LED 照明驱动电路主要技术LED 照明电路按驱动方式也分为两类。

恒流驱动的输出电流不变,输出电压随负载阻值不同变化;恒压驱动的输出电压不变,输出电流随着负载阻值增减变化。

恒流驱动是比较理想的方式,实际使用的驱动电路一般均具有恒压、恒流功能。

LED 照明驱动电路按结构方式分为器件降压和PWM 开关电源两种。

其中器件降压又有阻容降压、电阻降压、变压器降压等方式。

PWM 开关电源是指调节主电路开关器件导通脉冲的宽度来保持输出电压或电流稳定的驱动方式。

改变占空比即可改变LED 的平均驱动电流,从而改变LED 的发光强度。

LED 照明驱动电路典型芯片LED 照明电路需要调节亮度时,其控制方式主要有线性调节LED 的电流(模拟调光)和利用PWM 设置占空比和工作周期(数字调光)两种。

面对国内外各电子公司上百种的L ED 驱动芯片,建议:一是尽量选用大品牌的产品,二是根据需要综合考虑质量与成本。

下面列出几种常用的典型驱动芯片型号。

(1)国外产品①美国美信-MAX168XX 系列。

MAX16818 工作电压范围4.75-28V,输出电流3 0A,通过PWM 信号可实现宽范围亮度调节。

MAX16819/MAX16820 输入电压范围4. 5-28V,驱动电流3A。

LED芯片知识

LED芯片知识

LED 収展叱


不第一种斱法比较,它效率较低而产生较多热(因为 StokesShift前者较大),但好处是光谱癿特性较佳,产生癿光 比较好看。而由亍紫外光癿LED功率较高,所以其效率虽比较 第一种斱法低,出来癿亮度却相若。 最新一种制造白光LED癿斱法没再用上磷光体。新癿做法 是在硒化锌(ZnSe)基板上生长硒化锌癿磊晶局。通申时其活跃 地带会収出蓝光而基板会収黄光,混合起来便是白色光。
LED癿封装




LED癿封装癿仸务 :是将外引线连接到LED芯片癿申枀上,同时 保护好LED芯片,幵丏起到提高光叏出效率癿作用.兲键工序有装 架、压焊、封装. 2.LED封装形式 :LED封装形式可以说是五花八门,主要根据丌同 癿应用场合采用相应癿外形尺寸,散热对策和出光效果.LED按封装 形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、 High-Power-LED等. 3.LED封装工艺流秳 1.芯片梱验 镜梱:杅料表面是否有机械损伤及麻点麻坑(lockhill)芯片尺寸 及申枀大小是否符合工艺要求申枀图案是否完整. 2.扩片 由亍LED芯片在划片后依然掋列紧密间距很小(约0.1mm),丌 利亍后工序癿操作。我们采用扩片机对黏结芯片癿膜迚行扩张,是 LED芯片癿间距拉伸到约0.6mm.也可以采用手工扩张,但很容易 造成芯片掉落浪贶等丌良问题.
50 年前人们已经了解半导体杅料可产生光线癿基本知识, 1962 年,通用申气公司癿尼 兊•何伦亚(NickHolonyakJr.) 开収出第一种实际应用癿可见光収光二枀管。LED 是英文 light emitting diode(収光二枀管)癿缩写,它癿基本结极 是一坑申致収光癿半导体杅料, 置亍一个有引线癿架子上,然 后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯 线癿作用,所以 LED 癿抗震性能好。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计师收藏总结LED芯片知识大全
摘要:50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克何伦亚克(NickHolonyakJr.)开发出第一种实际应用的可见光发光二极管。

LED 芯片知识
一、LED历史50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克何伦亚克(NickHolonyakJr.)开发出第一种实际应用的可见光发光二极管。

LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料, 置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。

最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。

以12英寸的红色交通信号灯为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白光。

经红色滤光片后,光损失90%,只剩下200流明的红光。

而在新设计的灯中,Lumileds 公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。

汽车信号灯也是LED光源应用的重要领域。

二、LED芯片的原理:LED(LightEmittingDiode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。

LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。

半导体晶片由两部分组成, 一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。

但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。

当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。

而光的波长也就是光的颜色,是由形成P-N结的材料决定的。

三、LED芯片的分类:
1.MB芯片定义与特点定义:MetalBonding(金属粘着)芯片;该芯片属于UEC的专利产品。

特点:(1)采用高散热系数的材料---Si作为衬底,散热容易。

ThermalConductivity GaAs:46W/m-K GaP:77W/m-K
Si:125~150W/m-K Cupper:300~400W/m-k SiC:490W/m-K (2)通过金属层来接合(waferbonding)磊晶层和衬底,同时反射光子,避免衬底的吸收。

(3)导电的Si衬底取代GaAs衬底,具备良好的热传导能力(导热系数相差3~4倍),更适应于高驱动电流领域。

(4)底部金属反射层,有利于光度的提升及散热。

(5)尺寸可加大,应用于Highpower领域,eg:42milMB。

2.GB芯片定义和特点定义:GlueBonding(粘着结合)芯片;该芯片属于UEC的专利产品。

特点:(1)透明的蓝宝石衬底取代吸光的GaAs衬底,其出光功率是传统AS(Absorbable structure) 芯片的2倍以上,蓝宝石衬底类似TS芯片的GaP衬底。

(2)芯片四面发光,具有出色的Pattern图。

(3)亮度方面,其整体亮度已超过TS芯片的水平(8.6mil)。

(4)双电极结构,其耐高电流方面要稍差于TS单电极芯片。

3.TS芯片定义和特点定义:transparentstructure(透明衬底)芯片,该芯片属于HP的专利产品。

特点: (1)芯片工艺制作复杂,远高于ASLED。

(2)信赖性卓越。

(3)透明的GaP衬底,不吸收光,亮度高。

(4)应用广泛。

4.AS芯片定义与特点定义:Absorbablestructure(吸收衬底)芯片;经过近四十年的发展努力,台湾LED光电业界对于该类型芯片的研发、生产、销售处于成熟的阶段,各大公司在此方面的研发水平基本处于同一水平,差距不大。

大陆芯片制造业起步较晚,其亮度及可靠度与台湾业界还有一定的差距,在这里我们所谈
的AS芯片,特指UEC的AS芯片,eg:712SOL-VR,709SOL-VR, 712SYM-VR,709SYM-VR等。

特点:(1)四元芯片,采用MOVPE工艺制备,亮度相对于常规芯片要亮。

(2)信赖性优良。

(3)应用广泛。

四、发光二极管芯片材料磊晶种类 1.LPE:LiquidPhaseEpitaxy(液相磊晶法)GaP/GaP 2.VPE:VaporPhaseEpitaxy(气相磊晶法)GaAsP/GaAs 3.MOVPE:MetalOrganicVaporPhaseEpitaxy(有机金属气相磊晶法)AlGaInP、GaN 4.SH:GaAlAs/GaAsSingleHeterostructure(单异型结构)GaAlAs/GaAs 5.DH:
GaAlAs/GaAsDoubleHeterostructure(双异型结构)GaAlAs/GaAs 6.DDH:
GaAlAs/GaAlAsDoubleHeterostructure(双异型结构)GaAlAs/GaAlAs
五、LED芯片组成及发光LED晶片的组成:主要有砷(AS)铝(AL)镓(Ga)铟(IN)磷(P)氮(N)锶(Si)这几种元素中的若干种组成。

LED晶片的分类:1、按发光亮度分:A、一般亮度:R、H、G、Y、E等B、高亮度:VG、VY、SR等C、超高亮度:UG、UY、UR、UYS、URF、UE等D、不可见光(红外线):R、SIR、VIR、HIR E、红外线接收管:PT F、光电管:PD
2、按组成元素分:A、二元晶片(磷、镓):H、G等B、三元晶片(磷、镓、砷):SR、HR、UR等C、四元晶片(磷、铝、镓、铟):SRF、HRF、URF、VY、HY、UY、UYS、UE、HE、UG
3.LED晶片特性表:LED晶片型号发光颜色组成元素波长(nm) SBI蓝色lnGaN/sic430HY超亮黄色AlGalnP595 SBK较亮蓝色lnGaN/sic468SE高亮桔色GaAsP/GaP610 DBK较亮蓝色GaunN/Gan470HE超亮桔色AlGalnP620 SGL青绿色lnGaN/sic502UE最亮桔色AlGalnP620 DGL较亮青绿色LnGaN/GaN505URF 最亮红色AlGalnP630 DGM较亮青绿色lnGaN523E桔色GaAsP/GaP635 PG纯绿GaP555R红色GAaAsP655 SG标准绿GaP560SR较亮红色GaA/AS660 G绿色GaP565HR超亮红色GaAlAs660 VG较亮绿色GaP565UR 最亮红色GaAlAs660 UG最亮绿色AIGalnP574H高红GaP697 Y黄色GaAsP/GaP585HIR红外线GaAlAs850 VY较亮黄色GaAsP/GaP585SIR红外线GaAlAs880 UYS最亮黄色AlGalnP587VIR红外线GaAlAs940 UY 最亮黄色AlGalnP595IR红外线GaAs940。

相关文档
最新文档