运筹学-第16章-决策分析
运筹学知识点

运筹学知识点运筹学是一门综合运用数学、逻辑、计算机科学等方法与技巧来解决现实世界中最优化问题的学科。
它涉及决策分析、优化模型、算法设计等多个方面的知识点。
在本文中,我将介绍一些运筹学的重要知识点,并探讨其在实际生活和工作中的应用。
首先,决策分析是运筹学的核心方向之一。
决策分析旨在帮助决策者做出理性和最佳的决策。
它涉及问题定义、信息收集、模型构建、方案评估等多个步骤。
决策分析的一个重要工具是决策树,它通过图形化地表示决策的各个阶段和可能的结果,帮助决策者清晰地分析决策过程中的风险和潜在回报。
举个例子,假设我们要决定是乘坐公共交通还是开车去上班。
我们可以构建一个决策树,考虑到可能的交通状况、费用、时间等因素,帮助我们做出最佳的选择。
其次,优化模型是运筹学的另一个重要知识点。
优化模型通过数学公式和约束条件来描述一个问题,并寻找满足目标的最优解。
常见的优化模型包括线性规划、整数规划、非线性规划等。
线性规划是一种最常用的优化模型,它适用于一些具有线性关系的问题。
整数规划则适用于需要整数解的问题。
非线性规划则考虑了更为复杂的问题情况,可以通过各种算法进行求解。
优化模型在很多领域有着广泛的应用,如生产调度、物流运输、资源分配等。
举个例子,假设我们是一家制造商,我们希望通过优化生产调度来最大化利润。
我们可以使用线性规划模型来考虑各个产品的生产时间、产能、销售量、成本等因素,并寻找到一个最优的生产计划。
此外,算法设计也是运筹学的重要内容之一。
算法是为解决特定问题而设计的一系列步骤和操作。
在运筹学中,算法设计通常与优化模型紧密相关。
例如,针对某个优化模型,我们可以设计一种有效的求解算法,以找到最优解。
常见的算法包括贪心算法、动态规划、启发式算法等。
这些算法都有各自的特点和适用范围。
举个例子,假设我们需要在一个迷宫中找到一条最短的路径。
我们可以使用动态规划算法来计算每个位置到终点的最短距离,并依次进行路径选择,直到找到一条最短路径。
运筹学中的决策分析与风险管理

运筹学中的决策分析与风险管理运筹学是一门综合应用数学的学科,通过运用数学模型和方法来解决实际问题。
在这个领域中,决策分析和风险管理是非常重要的内容。
本文将介绍运筹学中的决策分析和风险管理,并探讨它们在实际中的应用和重要性。
一、决策分析决策分析是一种科学的方法,旨在帮助决策者在面对复杂问题时做出最佳决策。
在决策分析中,决策者需要收集和分析相关数据,应用数学模型和技术来评估各种不同决策方案的风险和回报。
通过这种方法,决策者可以更好地理解决策问题的各种潜在结果,并选择最优的决策方案。
决策分析通常包括以下几个步骤:1. 问题定义:明确问题的目标和约束条件,并确定决策的范围。
2. 数据收集与分析:收集相关数据,并利用数学模型和统计方法对数据进行分析。
3. 模型建立:根据问题的特点和决策者的需求,选择合适的数学模型,并将问题转化为数学模型。
4. 解决方案评估:评估各种决策方案的风险和回报,并对它们进行比较和优化。
5. 决策实施:根据评估结果选择最佳决策方案,并付诸实施。
在实际应用中,决策分析可以帮助企业管理者制定营销策略、生产计划和供应链管理方案等,从而提高业绩和效益。
二、风险管理风险管理是指通过识别、分析和评估风险,并采取相应的措施来降低和控制风险,并在必要时应对可能出现的风险事件。
在运筹学中,风险管理可以帮助决策者更好地处理不确定性,并最大程度地保护企业的利益。
风险管理通常包括以下几个方面:1. 风险识别:根据问题的特点和环境的变化,识别可能出现的各种风险。
2. 风险分析和评估:对已识别的风险进行定量或定性的分析和评估,确定其发生的概率和影响程度。
3. 风险应对:根据分析和评估的结果,制定相应的风险应对策略,并制定相应的预案和措施。
4. 风险监控与控制:建立有效的监控和控制体系,及时发现和处理风险,并防止风险事件的扩散和蔓延。
通过风险管理,企业可以更好地预测和应对不确定性,减少潜在的损失,并提高业务的可持续发展能力。
运筹学2013年复习

0.1
0.14
0.12
0.26
0.14
0.4
0.16
0.56
0.2
0.76
0.14
0.9
0.1
1
0.04
运筹学:库存决策
E ( y ) (60 * 0.15 110 * 0.25) * 0.04 + (100 * 0.15 70 * 0.25) * 0.1 + (140 * 0.15 30 * 0.25) * 0.12 + 170 * 0.15 * 0.74 19.5 售报员每天的收益期望 为19.5元,一个月的收益期望 为585 元
可以开发
0.9 0.5 0.1
不可开发
0.1 0.5 0.9
运筹学:决策分析
解:
(1)先验分析,由设,利润与概率表为
P( )
i
d
i
j
d1d
1
d2
2
0.2 0.6 0.2
1
80
30 -20
20
20 20
2
3
E (d1 )=80×0.2+30×0.6+(-20) ×0.2=30万元;
E (d2 )=20万元。
运筹学:库存决策
Q
*
2C 3 R P ( ) C1 P R
2 * 1350* 260000* 600000 33868 45 * 0.24 * 340000
运筹学:库存决策
<习题4>
某报社为了扩大销售量,招聘了一大批固定零售售报员,为 了鼓励他们多卖报纸,报社采取的销售策略是:售报员每天 早上从报社设置的售报点以现金买进,每份0.35元,零售价 每份0.5元,利润归售报人所有,如果当天没有售完第二天早 上退还报社,报社按每份报纸0.1元退款,如果某人一个月 (按30天计算)累计订购了7000份,将获得150元的奖金。 某人应聘为售报员,开始他不知道每天应买进多少份报纸, 更不知道能否拿到奖金,报社发行部告诉他一个售报员以前 500天的售报统计数据如表: 问:(1)售报员每天应准备多少份报纸最佳,一个月的收益 的期望值多少? (2)他能否得到奖金,如果一定要得到奖金,一个月的收益 期望值是多少?
韩伯棠管理运筹学(第三版)第十六章层次分析法课件

层次分析法(Analytic Hierarchy Process,AHP):一种定性与定量相结合 的多准则决策方法,主要用于解决结构较为复杂、决策准则较多且不易量化的 决策问题。
02
它通过建立递阶层次结构,将决策问题分解为不同的组成因素,并根据因素间 的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次 的分析结构模型。
无法处理因素间的交互作用
层次分析法在处理因素间的交互作用方面存在局限性,难以全面考虑 复杂因素之间的相互影响。
对数据要求较高
层次分析法需要较为准确和全面的数据和信息作为决策依据,但在某 些情况下可能难以获取足够的数据和信息。
01
层次分析法的改进 与发展
对判断矩阵一致性的改进
判断矩阵一致性的概念
在层次分析法中,判断矩阵的一致性是指各 因素之间的相对重要性比较是否符合逻辑。 如果判断矩阵偏离一致性,就需要对其进行 调整。
在递阶层次结构中,根据因素间的相互关联影响以及隶属 关系将因素按不同的层次聚集组合,形成一个多层次的分 析结构模型。
层次分析法的应用场景
多目标决策
当决策问题包含多个相互矛盾的 目标时,层次分析法可以帮助决 策者确定各目标的优先级或对不 同目标进行权衡。
资源分配
在资源有限的情况下,层次分析 法可以用于确定不同任务或项目 的优先级,以实现资源的合理分 配。
灵活性高
层次分析法可以根据实际情况调整因素层次和权 重,具有较强的灵活性,能够适应不同的决策问 题。
缺点
主观性强
层次分析法中的权重赋值和判断矩阵的构造主要基于决策者的主观判 断,这可能导致结果受到决策者个人经验和知识水平的限制。
一致性检验繁琐
为了保证判断矩阵的一致性,需要进行繁琐的计算和检验,增加了决 策过程的复杂性和工作量。
运筹学优化问题和决策分析的方法

运筹学优化问题和决策分析的方法运筹学是一门应用数学学科,旨在通过建立数学模型来解决决策问题,并运用优化算法寻找最优解。
在现代社会中,运筹学的应用已经渗透到各个领域,包括供应链管理、物流规划、生产调度等。
本文将介绍运筹学中的优化问题和决策分析的方法。
一、优化问题的基本概念在运筹学中,优化问题是指在一定的约束条件下,寻找某个指标的最优解。
优化问题可以分为线性优化问题和非线性优化问题。
线性优化问题的目标函数和约束条件都是线性的,而非线性优化问题的目标函数和约束条件涉及非线性关系。
在解决优化问题时,通常会使用数学建模的方法。
首先,将实际问题抽象为数学模型,然后建立数学模型的目标函数和约束条件。
接下来,运用优化算法求解模型,得到最优解。
二、常用的优化算法1. 线性规划线性规划是指优化问题的目标函数和约束条件都是线性的情况。
线性规划常常可以用单纯形法来求解,该方法通过迭代计算,逐步逼近最优解。
2. 非线性规划非线性规划是指优化问题的目标函数和约束条件涉及非线性关系的情况。
在求解非线性规划问题时,可以使用梯度下降法、牛顿法等方法。
3. 整数规划整数规划是指优化问题的变量需要取整数值的情况。
整数规划问题通常更加复杂,可以使用分支定界法、割平面法等算法求解。
三、决策分析的方法决策分析是指运用数学建模和分析方法来帮助决策者做出最佳决策。
决策分析的方法包括多属性决策分析、决策树分析、动态规划等。
1. 多属性决策分析多属性决策分析是指在考虑多个决策指标的情况下,综合分析各个指标的权重和价值,从而做出最佳决策。
常用的多属性决策分析方法包括层次分析法、模糊综合评判法等。
2. 决策树分析决策树分析是一种通过构建决策树来辅助决策的方法。
决策树是一种具有树状结构的决策模型,通过分析各个决策路径上的概率和收益来进行决策。
3. 动态规划动态规划是一种递推和状态转移的方法,常用于求解多阶段决策问题。
动态规划将决策问题分解为一系列子问题,并通过逐步求解子问题来求解原问题的最优解。
运筹学决策分析

运筹学决策分析
决策分析的过程有以下3个阶段。 1. 画决策树 2. 网络计算 3. 检查最优路径与风险特征
PPT文档演模板
运筹学决策分析
1. 画决策树
E1
推出
D1
有利
推出
A 试验 C 0.5
放弃
20
0.5 D2
放弃
不利
推出
E2
PPT文档演模板
0.4 需求大 200 B 0.4 需求小 50
0.2 无需求 -150 0.72 需求大 200 0.24 需求小 50 0.04 无需求 -150
PPT文档演模板
运筹学决策分析
(决策) (事件) 需求数量
订购量
6 7 8 9 10 max
6 * 300 350 3100 1305 2300 20 7 * 2100 305 355 1350 1355 20
8
-4100 2150 400 450 1400 40
9
-6300 4-05 2200 405 455 60
PPT文档演模板
运筹学决策分析
与该产品相关的财务和概率数据显示在下表 中:
需求
损益
概率
(数量) 需求大 需求小 无市场
(万元) 200 50
-150
不试验 有利 不利 0.40 0.72 0.08 0.40 0.24 0.56 0.20 0.04 0.36
市场试验成本 = 20万元
PPT文档演模板
放弃 推出
E2
0
0 0.08 需求大 200 0.56 需求小 50 0.36 无需求
-150
0
运筹学决策分析
3. 检查最优路径与风险特征
风险特征可以汇总为表, 列出可能发生的全 部结果, 指出盈利与亏损的各种可能性, 检 查在EMV值后面是否隐藏着较大的亏损值:
运筹学课件决策分析

决策者从最不利的角度考虑问题,再从中选择其中最好的。
先选出每个方案在不同自然状态的最小收益值; 从最小收益值中选取一个最大值,对应方案为最优方案。
例1:P371 例2:某决策相关的决策收益表如下,用最大最小准则进行决策。
例1:某公司现需对某新产品生产批量作出决策,现有三种备选方案。S1:大批量生产;S2:中批量生产;S3:小批量生产。未来市场对这种产品的需求情况有两种可能发生的自然状态:N1:需求量大;N2:需求量小。经估计,采用某一行动方案而实际发生某一自然状态时,公司的收益如下表所示,请用最大最小准则作出决策。
S1
4 5 6 7
S2
2 4 6 9
S3
5 7 3 5
S4
3 5 6 8
S5
3 5 5 5
举例:
01
例1:P373 例2:某决策相关的决策收益表如下,用乐观系数准则进行决策。
01
Nj SijSi
自然状态
max
N1 N2 N3 N4
S1
4 5 6 7
6.4
S2
2 4 6 9
Nj SijSi
自然状态
期望值
N1 N2 N3 N4
S1
4 5 6 7
5.50
S2
2 4 6 9
5.25
S3
5 7 3 5
S5
3 5 5 5
Nj SijSi
自然状态
min
N1 N2 N3 N4
S1
4 5 6 7
S2
2 4 6 9
S3
OK
7
9
7
8
5
3.等可能性准则
决策者认为各自然状态发生的概率相等。
运筹学多属性决策分析

极大-极大型(maximax)
• 该方法只考虑每个方案中最好的属性值 ,然后选出好中之好者对应的方案作为 决策的结果,它反映了某些特定的决策 情形,譬如运动员的选拔问题在许多情 况下只关注运动员成绩最好的某个单项 技能而不在乎运动员在其它项目中的表 现和水准。为了体现这一思想,乐观型 决策的优先解由以下公式确定:
nw
m m
m
n
n
1 2
n
• 如果判断矩阵见是相容矩阵,由矩阵理 论可知,n是R的惟一非零的也是最大的 特征根,记为 ,而w是n所对应的特征 向量。如果判断矩阵正不完全具有相容 性,则上面的等式并不成立.但矩阵R 元素的微小变动则意味着根的微小变动 .故可先求解R最大特怔根 ,即求解以 下用行列式形式表示的方程组的最大解 且;
j
1, 2.....n?
• 折衷解(Compromise Solution):距离 理想解最近或距离反理想解最远或以某 种方式将二者结合在一起的可行解被称 为折衷解。
属性指标的量化与转换
1 语言类属性指标的量化 在多属性决策问题中,方案的属性值通常有定量和定性两种不同的表示形式。 为了便于对属性值进行必要的数学处理,普遍采用 MacCrimimon 提出的双向比例标 尺(Bipolar Scaling)将定性指标转换为定量指标。其标尺形式见 10-1
1 3 5 7 9 2,4,6,8 倒数
含义
属性 i 与属性 j 具有相等的重要程度 属性 i 比属性 j 略重要一些 属性 i 比属性 j 明显重要 属性 i 比属性 j 重要的多 属性 i 的重要性完全压倒属性 j 的重要性
介于以上比较之间 相反方向的比较值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j 1
k 1 , 2 (, ).
再用贝叶斯公式计算
P ( N I ) j k P ( N I ) j 1 , 2 , m , k 1 , 2 . j k P ( I ) k P (AB ) 乘法公式 条件概率的定义: P (BA ) P ( AB ) P ( A ) P ( B A ) P (A )
N 2
-6 -2 5
p = 1/2
p = 1/2
收 益 期 望 值 E(Si)
12(m ax) 9 7.5
8
§1 不确定情况下的决策
四、乐观系数(折衷)准则(Hurwicz胡魏兹准则)
决策者取乐观准则和悲观准则的折衷:
先确定一个乐观系数 (01),然后计算: CVi = 案。 max [(Si, Nj)] 取 = 0.7 +(1- )min [(Si, Nj)]
自然状态 行动方案
N1(需求量大) N2(需求量小)
S1(大批量生产) S2(中批量生产) S3(小批量生产)
30 20 10
-6 -2 5
5
§1 不确定情况下的决策
一、最大最小准则(悲观准则)
• 决策者从最不利的角度去考虑问题:
先选出每个方案在不同自然状态下的最小收益值(最保险), 然后从这些最小收益值中取最大的,从而确定行动方案。 用(Si, Nj)表示收益值
从这些折衷标准收益值CVi中选取最大的,从而确定行动方
自 然 状态 行 动 方 案
S ( 大 批 量 生 产 ) 1 S ( 中 批 量 生 产 ) 2 S ( 小 批 量 生 产 ) 3
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
3 0 2 0 1 0
N 2
-6 -2 5
C V i
1 9 .2 (m a x ) 1 3 .4 8 .5
自 然 状态 行 动 方 案
S ( 大 批 量 生 产 ) 1 S ( 中 批 量 生 产 ) 2 S ( 小 批 量 生 产 ) 3
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
3 0 2 0 1 0
N 2
-6 -2 5
1j 2
M in[ (S i,N j)]
-6 -2 5 (m a x )
EVWPI = 0.3*30 + 0.7*5 = 12.5万
那么, EVPI = EVWPI - EVW0PI = 12.5 - 6.5 = 6万 即这个全情报价值为6万。当获得这个全情报需要的成本小于6
万时,决策者应该对取得全情报投资,否则不应投资。
注:一般“全”情报仍然存在可靠性问题。 17
§2 风险型情况下的决策
二、期望值准则 • 根据各自然状态发生的概率,求不同方案的期望收益值,取其 中最大者为选择的方案。 E(Si) = P(Nj) (Si,Nj)
自 然 状态 行 动 方 案
S1( 大 批 量 生 产 ) S2( 中 批 量 生 产 ) S3( 小 批 量 生 产 )
( 需 求 量 大 ) ( 需 求 量 小 )
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
3 0 2 0 1 0
N 2
-6 -2 5
M a x[ (S i,N j)]
1j 2
3 0 (m a x ) 2 0 1 0
7
§1 不确定情况下的决策
三、等可能性准则 ( Laplace准则 ) 决策者把各自然状态发生的机会看成是等可能的:
16
§2 风险型情况下的决策
五、全情报的价值(EVPI)
•全情报:关于自然状况的确切消息。
在前例,当我们不掌握全情报时得到 S3 是最优方案,数学期 望最大值为 0.3*10 + 0.7*5 = 6.5万 记为 EVW0PI。
若得到全情报:当知道自然状态为N1时,决策者必采取方案S1,
可获得收益30万,概率0.3;当知道自然状态为N2时,决策者必采 取方案S3,可获得收益5万, 概率0.7。于是,全情报的期望收益为
自 然 状态 行 动 方 案
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
N 2
1j 2
M a x a ij'
1 1 1 0(m in ) 2 0
10
想 值 ) S ( 大 批 量 生 产 ) 0(30,理 1 0(30-20) S ( 中 批 量 生 产 ) 1 2 0(30-10) S ( 小 批 量 生 产 ) 2 3
设每个自然状态发生的概率为 1/事件数 ,然后计算各行动方
案的收益期望值。 用 E(Si )表示第I方案的收益期望值
自 然 状态 行 动 方 案
S 大 批 量 生 产 ) 1( S 中 批 量 生 产 ) 2( S 小 批 量 生 产 ) 3(
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
30 20 10
风 险 型 决 策 问 题
• 在决策环境不确定的条件下进行,决策者对各自然状态发生的概率 可以预先估计或计算出来。
3
第十六章 决策分析
构成决策问题的四个要素: 决策目标、行动方案、自然状态、效益值 行动方案集: A = { s1, s2, 自然状态集: N = { n1, n2, 效益(函数)值:v = ( si, 自然状态发生的概率P=P(sj) …, sm } …, nk } nj ) j =1, 2, …, m
9
§1 不确定情况下的决策
五、后悔值准则(Savage 沙万奇准则) • 决策者从后悔的角度去考虑问题:
把在不同自然状态下的最大收益值作为理想目标,把各方案的
收益值与这个最大收益值的差称为未达到理想目标的后悔值,然后 从各方案最大后悔值中取最小者,从而确定行动方案。 用aij’表示后悔值,构造后悔值矩阵:
S1( 大 批 量 生 产 ) S2( 中 批 量 生 产 ) S3( 小 批 量 生 产 )
( 需 求 量 大 ) ( 需 求 量 小 )
N1
30 20 10
N2
-6 -2 5
概 率 最 大 的 自 然 状 态N 2
-6 -2 5 (m ax)
11
p(N1) = 0.3 p(N2) = 0.7
§2 风险型情况下的决策
6
§1 不确定情况下的决策
二、最大最大准则(乐观准则) • 决策者从最有利的角度去考虑问题:
先选出每个方案在不同自然状态下的最大收益值(最乐观),
然后从这些最大收益值中取最大的,从而确定行动方案。 用(Si, Nj)表示收益值
自 然 状态 行 动 方 案
S ( 大 批 量 生 产 ) 1 S ( 中 批 量 生 产 ) 2 S ( 小 批 量 生 产 ) 3
13
§2 风险型情况下的决策
前例 根据下图说明S3是最优方案,收益期望值为6.5。
4.8
大批量生产 N1( 需求量大 );P(N1) = 0.3 N2( 需求量小 );P(N2) = 0.7 N1( 需求量大 );P(N1) = 0.3 N2( 需求量小 );P(N2) = 0.7 N1( 需求量大 );P(N1) = 0.3 N2( 需求量小 );P(N2) = 0.7
1 1[5-(-6)] 7[5-(-2)] 0(5,理 想 值 )
§2 风险型情况下的决策
特征:1、自然状态已知;2、各方案在不同自然状态下的收益 值已知;3、自然状态发生的概率分布已知。
一、最大可能准则
在一次或极少数几次的决策中,取概率最大的自然状态,按照 确定型问题进行讨论。
自 然 状态 行 动 方 案
取 S3 取 S1
E(S1) E(S2) E(S3)
0
0.35
1
p
15
§2 风险型情况下的决策
在实际工作中,如果状态概率、收益值在其可
能发生的变化的范围内变化时,最优方案保持不变,
则这个方案是比较稳定的。反之如果参数稍有变化 时,最优方案就有变化,则这个方案就不稳定的, 需要我们作进一步的分析。就自然状态N1的概率而 言,当其概率值越远离转折概率,则其相应的最优 方案就越稳定;反之,就越不稳定。
N2 -6 -2 5
I2 P(I2 /N1)=0.2 P(I2 /N2)=0.9
我们该如何用样本情报进行决策呢? 如果样本情报要价3万元,决策是否要使 用这样的情报呢?
19
§2 风险型情况下的决策
N1:市场需求大;P(N1/I1)
S1:大批量
△ 30 △ -6 △ 20 △ -2 △ 10 △ 5
18
§2 风险型情况下的决策
现在该公司欲委托一个咨询公司作 某公司现有三种备选行动方案。S1: 市场调查。咨询公司调查的结果也有两 大批量生产; S2 :中批量生产; S3 : 种, I1 :需求量大; I2 :需求量小。并 小批量生产。未来市场对这种产品需求 且根据该咨询公司积累的资料统计得知, 情况有两种可能发生的自然状态。N1 : 当市场需求量已知时,咨询公司调查结 需求量大; N :需求量小,且N 的发 论的条件概率如下表所示:
2
第十六章 决策分析
决策的分类:
• • • • 按决策问题的重要性分类 按决策问题出现的重复程度分类 按决策问题的定量分析和定性分析分类 按决策问题的自然状态发生分类:
确 定 型 决 策 问 题
• 在决策环境完全确定的条件下进行。
不 确 定 型 决 策 问 题
• 在决策环境不确定的条件下进行,决策者对各自然状态发生的概率 一无所知。
4
N2:市场需求小;P(N2/I1) N1:市场需求大;P(N1/I1)
当用决策树求解该 问题时,首先将该问题 的决策树绘制出来,如 图16-3。 为了利用决策树求 解,由决策树可知,我 们需要知道咨询公司调 查结论的概率和在咨询 公司调查结论已知时,作 为自然状态的市场需求 量的条件概率。