《电力电子技术》电子课件(高职高专第5版) 5.3 交流电力电子开关

合集下载

电力电子技术说课稿PPT课件精选全文

电力电子技术说课稿PPT课件精选全文
《电力电子技术》说课
说课内容
1 课程性质与作用
2 课程整体设计
3
教学内容
4 教学方法与手段
2
课程性质与作用
课程性质
自动化专业基 础课
针对岗位
企业生产第一线 产品装配、调试、 检验、维修、生 产管理、产品后 服务岗位
能力培养
识别电力电子器件 能力 掌握器件使用与保 护技术 相控整流电路分析 能力 单相相控整流电路 设计安装能力 故障排除能力
24
教学内容
教材
❖ 主教材:《电力电子技术》黄家善主编
机械工业出版社, 2005年1月第二版;
❖ 教学辅助教材:《电力电子器件及其应用》,李序葆.赵永健编, 机械工业出版社,2004年6月
动化系编
《可控整流装置》北京电机修理厂、清华大学自
科学出版社, 1971年6月
25
教学方法与手段
多媒体教学
课堂板书讲解
9
课程整体设计
课程教学实施思路: ❖ 理论教学主要结合在项目实验中进行。 ❖ 课程的教学以项目作为核心实例带动知识点讲授,
每一个项目分解为若干个工作任务,通过每一个工 作任务使学生掌握必要的理论知识和技能。 ❖ 大部分内容在实验室中进行理论实践一体化教学, 可先讲再实践,或先实践再分析理论知识,或边讲 边练,讲练结合,工学交替,理论教学与实践教学 同步进行。
“设计实验”根据敖教与学的客观实际并结会现有条件设计 一实用电路,以实现简单的调压或调速。
6
课程整体设计
项目设计(课程设计)
❖ 在项目实训中鼓励学生将课外活动或生活见到的 应用纳入教学设计活动中来,课内外学习相互结 合,使学生视野开阔、能力增强。
7
课程整体设计

电力电子技术第五版课件

电力电子技术第五版课件

PWM控制技术
采用脉宽调制(PWM)技术,通过改变脉冲宽度来控 制输出电压的大小,实现直流电压的连续调节。
直流斩波电路的分类与特点
分类
根据开关管的控制方式不同,直流斩波电 路可分为定频调宽式、定宽调频式和调宽 调频式三种类型。
输出电压稳定
采用PWM控制技术,输出电压稳定度高, 纹波小。
效率高
由于开关管工作在开关状态,导通压降小, 损耗低,因此效率高。
02
柔性交流输电(FACTS)
通过电力电子装置对交流输电系统的电压、电流、功率等参数进行快速、
灵活的控制,提高电力系统的稳定性和可靠性。
03
分布式发电与微电网
利用电力电子技术实现分布式电源的并网、控制和优化运行,构建高效、
可靠的微电网系统。
电力电子技术在交通运输中的应用
电动汽车驱动与控制
01
采用电力电子技术实现电动汽车的高效、安全驱动,提高电动
交流电力电子开关可用于电力系 统的无功补偿。通过控制晶闸管 的导通与关断,可以实现对无功 电流的连续调节,提高电力系统 的功率因数和稳定性。
电力电子技术的应用与案例分
07

电力电子技术在电力系统中的应用
01
高压直流输电(HVDC)
利用电力电子技术实现高效、稳定的直流电能传输,减少输电损耗,提
高输电效率。
特点
方波逆变电路简单、成本低,但输出波形质 量差;正弦波逆变电路输出波形质量好,但 成本高、技术复杂;准正弦波逆变电路介于 两者之间,具有一定的性价比。
逆变电路的应用实例
不间断电源(UPS) 在市电停电或电压不稳定时,UPS通过逆变电路将蓄电池 的直流电能转换为交流电能,为负载提供稳定的电源供应。

电力电子技术(完整幻灯片PPT

电力电子技术(完整幻灯片PPT
1-3
2.1.1 电力电子器件的概念和特征
电力电子器件的损耗 通态损耗
主要损耗 断态损耗 开关损耗
开通损耗 关断损耗
通态损耗是器件功率损耗的主要成因。
器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
1-4
2.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路
恢复特性的软度:下降时间与
延复迟系时数间,用的S比r表值示tf。/td,或称恢uFFra bibliotek2V0
b) tfr
t
图2-6 电力二极管的动态过程波形
a) 正向偏置转换为反向偏置
b) 零偏置转换为正向偏置
1-17
2.2.2 电力二极管的基本特性
关断过程
IF
diF
dt
trr
须经过一段短暂的时间才能重新获 UF
td
A
G
KK
A A
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
图2-7 晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
外形有螺栓型和平板型两种封装。
四层三结三极。
螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便。
平板型晶闸管可由两个散热器将其夹在中间。
电力电子技术(完整幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!

(2024年)电力电子技术完整版全套PPT电子课件

(2024年)电力电子技术完整版全套PPT电子课件

实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26

电力电子技术第五版王兆安课件全

电力电子技术第五版王兆安课件全
电力电子技术第五版王兆安课 件全
本课件旨在深入浅出地讲解电力电子技术的概念、元器件和应用,介绍电力 电子技术的发展历程及未来趋势。
电力电子技术概述
电力
电力是指电荷在电场中移动, 在载流子作用下(如电子和正 离子)而产生的能量。
电子元器件
电力电子元器件是指用于在电 力电子领域中进行实际应用的 半导体器件、磁性元件、电容 电阻等元器件。
寿命、可靠性
由于功率电子器件工作状 态的特殊性,其寿命、可 靠性十分重要,经常需要 进行多方面的工艺优化。
电力电子应用领域
1
电力系统
通过利用功率电子器件来稳定电力系统的电压,电压变换器用于控制柔性交流输电, 提高电力系统的质量。
2
新能源应用
电力电子技术被广泛应用于新型能源制备和利用系统中,如太阳能、风力发电、燃料 电池、储能系统等。
功率电子元器件
功率电子元器件是电力电子技 术中最重要的组成部分,包括 晶闸管、电力场效应管、IGBT 等。
电力电子器件的特点
高压高电流
功率电子器件频率高、电 压高、电流大、热量大, 因此具有高温、高电压、 高电流、高能损状态特点。
高频率、高速度
功率电子器件具有响应速 度快、开关频率高的特点, 这使得它们非常适合在不 同领域中进行应用。
电力电子技术的未来趋势
1 新型功率电子器件
发展更加高效稳定、高可靠性、符合环保要求的全新型号功率电子器件。
2 应用前景广阔
在电力电子技术的不断发展中,其应用场景、应用情境与需要的功能和性能已经无法估 量。
3 高端智能电网
未来电力电子技术的发展将主要体现在高端智能电网,特别是电池和电能储存技术的应 用上。
电力电子技术第五版王兆安课 件全

(2024年)电力电子技术第5版王兆安课件

(2024年)电力电子技术第5版王兆安课件
调制法
该方式通过调制信号(如正弦波)与高频载波(如三角波)进行比较生成PWM脉冲。优 点是生成的PWM脉冲频率高、波形好且易于实现实时控制。缺点是对于非线性负载的适 应性较差。
32
07
电力电子系统的设计与应用
2024/3/26
33
电力电子系统的设计原则与方法
2024/3/26
设计原则
确保系统稳定性、高效性、可靠性和 安全性;满足特定应用需求;优化成 本和性能。
2024/3/26
6
02
电力电子器件
2024/3/26
7
不可控器件
电力二极管(Power Diode)
结构和工作原理
伏安特性
2024/3/26
8
不可控器件
主要参数
晶闸管(Thyristor)
结构和工作原理
2024/3/26
9
不可控器件
伏安特性和主要参数
派生器件
2024/3/26
10
半控型器件
2024/3/26
36
感谢您的观看
THANKS
2024/3/26
37
26
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路的输出电压波形为矩 形波或正弦波,其特点是输出电压幅 值和频率可调,适用于对输出电压要 求较高的场合。
电流型逆变电路
电流型逆变电路的输出电流波形为矩 形波或正弦波,其特点是输出电流幅 值和频率可调,适用于对输出电流要 求较高的场合。
2024/3/26
工业自动化
应用于电机驱动、电源供 应、过程控制等领域,提 高生产效率和能源利用率 。
35
电力电子系统的发展趋势与挑战
发展趋势

电力电子技术(第5版)课件:交流交流变流电路

电力电子技术(第5版)课件:交流交流变流电路

I VTN I VT
Z 2U1
(6-10) (6-11)
图6-4 单相交流调压电路为参变量时IVTN和关系曲线
6.1.1 单相交流调压电路
◆<时的工作情况 ☞VT1的导通时间超过。 ☞触发VT2时,io尚未过零,VT1仍导通,VT2不会导通,io过零后,VT2才可
开通,VT2导通角小于。 ☞io有指数衰减分量,在指数分量衰减过程中,VT1导通时间渐短,VT2的导
交流交流变流电路
6.1 交流调压电路 6.2 其他交流电力控制电路 6.3 交交变频电路 6.4 矩阵式变频电路
本章小结
引言
■交流-交流变流电路:把一种形式的交流变成另一种形式 交流的电路。
■交流-交流变换电路可以分为直接方式(即无中间直流环 节)和间接方式(有中间直流环节)两种。
■直接方式 ◆交流电力控制电路:只改变电压、电流或对电路的通 断进行控制,而不改变频率的电路。 ◆变频电路:改变频率的电路。
解:负载阻抗及负载阻抗角分别为:
Z
R2
X
2 L
10W
arctan(X L ) arctan(6) 0.6435 36.87
R
8
因此开通角的变化范围为:

0.6435
①当=/6时,由于<,因此晶闸管调压器全开放,输出电压为完整 的正弦波,负载电流也为最大,此时输出功率最大,为
I I 220 22( A)
6.1 交流调压电路
6.1.1 单相交流调压电路 6.1.2 三相交流调压电路
6.1 交流调压电路·引言
■把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可 以控制交流输出。
■交流电力控制电路 ◆交流调压电路:在每半个周波内通过对晶闸管开通相位的控制,调 节输出电压有效值的电路。 ◆交流调功电路:以交流电周期为单位控制晶闸管的通断,改变通态 周期数和断态周期数的比,调节输出功率平均值的电路。 ◆交流电力电子开关:串入电路中根据需要接通或断开电路的晶闸管。

《电力电子技术》电子课件(高职高专第5版) 5.2 交流调功电路

《电力电子技术》电子课件(高职高专第5版)  5.2 交流调功电路
电力电子技术(第5版) 第5章 交流变换电路
5.2 交流调功电路
5.2 交流调功电路
1、与调压电路的比较:

电路形式完全相同
控制方式不同:以交流电源周波数为控制单断周波数
的比值来调节负载所消耗的平均功率。
应用
交流调功电路直接调节对象是电路的平均输出功率;
控制对象时间常数很大,以周波数为单位控制;
晶闸管导通时刻为电源电压过零的时刻,负载电压电流都 是正弦波,不对电网电压电流造成通常意义的谐波污染。
5.2 交流调功电路
2、电阻负载时的工作情况:
控制周期为M倍电源周期, 晶闸管在前N个周期导通,后M- N个周期关断;
负载电压和负载电流(也即
电源电流)的重复周期为M倍电
源周期;
M=3、N=2时
的电路波形
图5.2.1交流调功电路典 型波形
5.2 交流调功电路
3、谐波分析:
图5.2.2为以控制周期为基准 的交流调功电路的频谱图,In为 n次谐波有效值, Io为导通时电 路电流幅值;
电流中不含整数倍频率的谐 波,但含有非整数倍频率的谐 波,而且在电源频率附近,非 整数倍频率谐波的含量较大。
图5.2.2 交流调功电路的电 流频谱图(M =3、N =2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5.3.2 TSC理想投切时刻原理说明
5.3 交流电力电子开关
2、晶闸管投切时间的选择
3)电路特点:
◆由于二极管的作用,在电路不导通时uC总会维持在电源
电压峰值; ◆二极管不可控,响应速度要慢一些,投切电容器的最大
时间滞后为一个周波。
图5.3.3 晶闸管和二极管反并联方改善用电质量
◆是一种很好的无功补偿方式
图5.3.1 TSC基本原理图
5.3 交流电力电子开关
1、电路结构和工作原理(晶闸管反并联)
1)实际常用三相TSC,可三角形联 结,也可星形联结。
2)反并联的晶闸管控制C并入电网 或从电网断开,如图5.3.1(a)。
3)串联电感很小,用来抑制电容 器投入电网时的冲击电流。
4)为避免电容器组投切造成较大 电流冲击,一般把电容器分成几组,如 图5.3.1(b)所示,可根据电网对无功的 需求而改变投入电容器的容量。
图5.3.1 TSC基本原理图
5.3 交流电力电子开关
2、晶闸管投切时间的选择
1)选择原则:投入时刻交流电源电压和电容器预充电 电压相等,防止冲击电流。
2)理想选择:理想情况下,希望电容器预充电电压为 电源电压峰值,这时电源电压的变化率为零,电容投入过 程不但没有冲击电流,电流也没有阶跃变化。
电力电子技术(第5版) 第5章 交流变换电路
5.3 交流电力电子开关
作用
5.3 交流电力电子开关
将晶闸管反并联后串入交流电路代替机械开关, 起接通和断开电路的作用;
优点
◆响应速度快、无触点寿命长、可频繁控制通断;
◆控制晶闸管总是在电流过零时关断,在关断时不会 因负载或线路电感存储能量而造成过电压和电磁干扰;
特点(与交流调功电路的区别)
◆只控制通断,并不控制电路的平均输出功率 ◆没有明确的控制周期,只是根据需要控制电路的接通和 断开 ◆控制频度通常比交流调功电路低
5.3 交流电力电子开关
晶闸管投切电容器(Thyristor Switched Capacitor—TSC)
◆代替机械开关投切电容器, 对电网无功进行控制
相关文档
最新文档