第20课时反比例函数在中考中的常见题型(含答案)

合集下载

2020人教版中考数学《反比例函数》专题及答案详解

2020人教版中考数学《反比例函数》专题及答案详解
4
4 x (a> 0)中,得 a=2,
把( 4+ b, b)代入函数解析式得 b= 4 b ,解得 b= 2 2 ﹣ 2,
∴y2 =2 2 ﹣2,
∴A2 的坐标是( 4 2 ,0),
设 C3 的纵坐标是 c(c>0),则 C3 横坐标为 4 2 +c,把( 4 2 + c, c)代入函数解析式得 c 4
(3)直接写出当 y1> y2 时, x 的取值范围 .
【思路分析】
(1)将 A 点坐标代入反比例函数解析式求出 m,即可得到反比例函数解析式;把 y=-3 代入反
比例函数解析式求出 a 的值,得到 B 点坐标,再将 A, B 坐标代入一次函数解析式求出 k, b,
即可求出一次函数解析式;
(2)利用 A 、B 坐标求出直线 AB 解析式,由解析式求出 C、D 两点坐标;分别对 B、 C、 P 三
1
A. y
1 B.
x1
【答案】 C.
1
1
1
y
1 C. y
1 D. y
1
x1
x1
x1
【解析】二次函数平移的规律“左加右减,上加下减”对所有函数的图象平移均适合.
∵将 y
1 的图象向右平移 1 个单位长度后所得函数关系式为
y
1,
x
x1
∴将 y
1 的图象向右平移
1 个单位长度,再向上平移
x
1 个单位长度所得图象的解析式为
= 4 2 c,
解得 c= 2 3 ﹣ 2 2 ,
∴y3 =2 3 ﹣ 2 2 .
∵y1 =2 1 ﹣ 2 0 ,y2 =2 2 ﹣2 1 ,y3 =2 3 ﹣ 2 2 ,…
∴y100= 2 100 ﹣ 2 99 ,

2020年陕西省中考13题---反比例函数(包含答案)

2020年陕西省中考13题---反比例函数(包含答案)

y =x (k ≠0)y反比例函数(13 题)知识点一 反比例函数的图象与性质1.反比例函数的概念k一般地,形如 y =x(k ≠0,k 为常数)的函数,叫做反比例函数,其中 x 是自变量,y 是关于 x 的函数.2.反比例函数的图象与性质表达式 k k 的符号k >0k <0图象取值范围x ≠0,y ≠0性质函数图象的两个分支分别在第 ①_______象限,在每个象限 内, 随 x 的增大而②________函数图象的两个分支分别在第③__________象限, 在每个象限内,y 随 x 的增大而④________对称性 关于原点成中心对称1.关于反比例函数 y =x ,下列说法不正确的是(关于直线 y =x 或 y =-x 成轴对称1)A .图象过点(1,1)B .图象在第一、三象限C .当 x >0 时,y 随 x 的增大而减小D .当 x <0 时,y 随 x 的增大而增大2.如果函数 y = 4-2kx (x >0)的函数值 y 随 x 的增大而减小,那么 k 的取值范围是__________.知识点二 反比例函数系数 k 的几何意义1.k 的几何意义如图,过双曲线上任意一点 P 作 x 轴,y 轴的垂线 PM ,PN ,所得矩形PMON 的面积 S =|xy|=⑤__________.2.与 k 几何意义应用有关的类型△S AOB = △S BOC =△S ABP =⑥________3.如图,点 A (x ,y )在反比例函数 y =- x的图象上,且 AB (1)设函数解析式为 y =x(k ≠0);(4)确定反比例函数的解析式为 y = x .4.若反比例函数 y =x (k ≠0)的图象经过点 P (-2,3),则反比例函数的解析式△S APP ′=⑦_____________(P ′为 P 关于原点的对称点)△S AOB =⑧__________________________12垂直于 x 轴,垂足为 B ,则 △S OAB =______.知识点三 反比例函数解析式的确定1.待定系数法k(2)找出反比例函数图象上的一点 P (a ,b );(3)将 P (a ,b )代入函数解析式得 k =ab ;ab2.利用 k 的几何意义求解:当已知面积时,可考虑用 k 的几何意义.由面积得|k |值,再结合图象所在象限判断 k 的正负,从而得出 k 值,代入解析式即可.k5.如图,正方形 OABC 的边长为 2,反比例函数 y =x 的图象过点 B ,则该3)函数解析式;为____________.k反比例函数的解析式为____________.知识点四 反比例函数的应用1.方法:求解此类题目要认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解答,解题时注意利用反比例函数两变量之积是定值的性质,算出定值.⎧⎪(1)根据实际情况建立反比例函数模型; 2.步骤⎨(2)利用待定系数法或跨学科的公式等确定⎪⎩( 根据反比例函数的性质解决实际问题.重点一 反比例函数的图象与性质1-m1、已知反比例函数 y = x .1-m(1)若反比例函数 y = x 的图象如图,则 m 的取值范围是__________.【解答】由图象可得 k >0,即 1-m >0,解得 m <1.【解答】方法一:∵m=5,∴反比例函数的解析式为y=-x.∵-4<0,∵A(-4,y1),B(-1,y2)是反比例函数y=-x图象上的两个点,-4<-1<0,1-m(2)若反比例函数y=x的图象经过点(-3,-1),则m=________.1-m【解答】∵反比例函数y=x的图象经过点(-3,-1),∴-1=1-m-3,解得m=-2.1-m(3)若A(-4,y1),B(-1,y2)是反比例函数y=x图象上的两个点,当m =5时,y1与y2的大小关系为______________.4∴在每个象限内,y随x的增大而增大.4∴y1<y2.4方法二:∵m=5,∴反比例函数的解析式为y=-x,画草图如答图,由图象可知y1<y2.4方法三:∵m=5,∴反比例函数的解析式为y=-x.∵当x=-4时,y1=1,当x=-1时,y2=4,∴y1<y2.(4)若m=3,y≤1,则自变量x的取值范围是____________________.1-m2【解答】把m=3代入y=x,得出反比例函数的解析式为y=-x.(1)若反比例函数 y =x(k ≠0)的图象经过点 P (5,3),则该反比例函数的解析式 【解答】∵反比例函数 y =x (k ≠0)的图象经过点 P (5,3),∴k =5×3=15,∴(2)如图,A 为反比例函数 y =x图象上的一点,且矩形 ABOC (3)在平面直角坐标系中,点 P (2,a )在反比例函数 y =x 的图象上,把点 P 向∴点 Q 的坐标是(3,3).设经过点 Q 的反比例函数图象的解析式是 y =x .把 Q (3,3)∵当 y =1 时,x =-2,∴当 y ≤1 时,x ≤-2 或 x >0.重点二 反比例函数解析式的确定 (高频考点)k为__________.k15该反比例函数的解析式为 y = x .k的面积为 3,则这个反比例函数的解析式为____________.【解答】由题意,得 S 矩形ABOC =|k |=3,则 k =±3.∵反比例函数的图象位于3第二、四象限,∴k <0,∴k =-3,则反比例函数的解析式为 y =-x .2上平移 2 个单位长度,再向右平移 1 个单位长度得到点 Q ,则经过点 Q 的反比例函数图象的解析式为__________.2【解答】∵点 P (2,a )在反比例函数 y =x 的图象上,∴a =1,即点 P 的坐标为(2,1).∵把点 P 向上平移 2 个单位长度,再向右平移 1 个单位长度得到点 Q ,k代入,得 k =9,∴经过点 Q 的反比例函数图象的解析式9为 y =x .【解题思路】设经过点 A 的双曲线的解析式为 y =x .过点 C 作 CE ⊥x 轴于【解答】设经过点 A 的双曲线的解析式为 y = .如答图,过点 C 作 CE ⊥x 轴x解得 a =2,b =2,∴A (-2,2),∴k =- 4 , 得直线 l 的解析式为 y = x+1.∵A (-2,0),∴OA =2.2(4) 如图,在平面直角坐标系中,正方形 OABC 的顶点 B 的坐标为(1,4),则经过点 A 的双曲线的解析式为____________.k点 E ,过点 B 作 BD ⊥EC 的延长线于点 D ,过点 A 作 AF ⊥x 轴于点 △F ,得到AOF ≌△OCE ≌△CBD ,设 OE =a ,CE =B .由 B (1,4)可得 a 与 b 的关系式,可得点 A 的坐标,即可得到答案.k于点 E ,过点 B 作 BD ⊥EC 的延长线于点 D ,过点 A 作 AF ⊥x 轴于点 F .易证得△AOF ≌△OCE ≌△CBD .设 OE =a ,CE =B .∵B (1,4),∴a -b =1,a +b=4,5 3 3 5 1515∴经过点 A 的双曲线的解析式为 y =-4x .(5)如图,直线 l 经过点 A(-2,0)和点 B(0,1),点 M 在 x 轴上,过点 M 作 x 轴的垂线交直线 l于点 C .若 OM =2OA ,则经过点 C 的反比例函数图象的解析式为__________.【解答】由直线 l 经过点 A (-2,0)和点 B (0,1),可1∵OM =2OA ,∴OM =4,∴点 C 的横坐标为 4,当 x =4 时,y =3,∴C (4,3).设k反比例函数的解析式为 y =x ,将 C (4,3)代入,得 k =12,∴反比例函数的解析式12为 y = x .重点三 反比例函数系数 k 的几何意义1、如图,反比例函数 y =x(x >0)的图象经过 A ,B 两点,过点 A 作 AC ⊥yS =4,反比例函数 y =x (x > .如图,△1 AOB 与反比例函数 y = 的图象交于 C ,D 两点,且 AB ∥x 轴,△AOB 的k轴于点 C ,过点 B 作 BD ⊥y 轴于点 D ,过点 B 作 BE ⊥x 轴于点 E ,连接 AD . 已知 AC =1,BE =1, 矩形 BDOE=4,则 △S ACD =______.【解答】如答图,过点 A 作 AH ⊥x 轴于点 H ,交 BD 于点 F ,则四边形 ACOH 和四边形 ACDF均为矩形.∵S矩形 BDOEk 0)的图象经过点 B ,∴k =4,∴S 矩形 ACOH =4.∵AC =1,∴OC =4,∴CD =OC -OD =OC -BE =4-1=3,∴S 矩形 ACDF =1×3=3,∴△S AC D3=2.作业练习k x3面积为 6.若 AC ∶CB =1∶3,则反比例函数的解析式为__y =x __.2.如图,在平面直角坐标系中,四边形OACB 为菱形,OB 在 x 轴的正半轴上,∠AOB4,则AOF的面积为__4__.=60°,过点A的反比例函数y=x的图象与BC交于点△F3.如图,正方形ABCD的顶点A,D分别在x轴,y轴上,∠ADO=30°,OA=2,反k比例函数y=x的图象经过CD的中点M,则k=__3+6__.。

初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析1. 如果反比例函数的图像在每个象限内随的增大而减小,那么的取值范围是 .【答案】k >【解析】∵反比例函数y=的图象在每个象限内y 随x 的增大而减小,∴2k-1>0,解得k >. 故答案为:k >.【考点】反比例函数的性质.2. 已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A .(﹣6,1)B .(1,6)C .(2,﹣3)D .(3,﹣2)【答案】B .【解析】∵反比例函数y=的图象经过点(2,3), ∴k=2×3=6,A 、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B 、∵1×6=6,∴此点在反比例函数图象上;C 、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D 、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上. 故选B .【考点】反比例函数图象上点的坐标特征.3. 如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD=10,则k 的值为 .【答案】﹣16【解析】∵OD=2AD , ∴,∵∠ABO=90°,DC ⊥OB , ∴AB ∥DC ,∴△DCO ∽△ABO , ∴, ∴,∵S 四边形ABCD =10, ∴S △ODC =8, ∴OC×CD=8,OC×CD=16,∴k=﹣16,故答案为:﹣16.【考点】1、相似三角形的判定与性质;2、反比例函数系数k的几何意义4.反比例函数的图象在二、四象限,则m的取值范围.【答案】m<1.【解析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.∵反比例函数的图象在二、四象限,∴m-1<0解得:m<1.【考点】反比例函数的性质.5.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图象应为()【答案】C【解析】因xy=a,y=,y与x成反比例,所以选C.6.若双曲线过两点(-1,y1),(-3,y2),则有y1____y2(可填“”、“”、“”).【答案】<.【解析】将(﹣1,y1),(﹣3,y2),分别代入y=得,y1=﹣2,y2=﹣,y1<y2..故答案是<.【考点】反比例函数图象上点的坐标特征.7.老师给出一个函数,甲、乙、丙、丁四位同学分别指出了这个函数的一个性质: 甲:函数图象不经过第二象限;乙:函数图象上两个点A(x1,y1)、B(x2,y2)且x1<x2,y1<y2;丙:函数图象经过第一象限;丁:y随x的增大而减小.老师说这四位同学的叙述都是正确的,请你构造一个满足上述性质的一个函数:____________.【答案】y=(x>0)【解析】函数图象上两个点A(x1,y1)、B(x2,y2)且x1<x2,y1>y2,y随x的增大而减小,若是反比例函数则k>0,函数图象不经过第二象限,函数图象经过第一象限,只取第一象限的分支.8.已知y=y1-y2,其中y1是x的反比例函数,y2是x2的正比例函数,且x=1时y=3,x=-2时y=-15.求:(1)y与x之间的函数关系式;(2)当x=2时y的值.【答案】(1)y=-3x2. (2)-9.【解析】(1)y1是x的反比例函数,可设y1=,y2是x2的正比例函数,可设y2=k2x2,则y与x的关系式为y=-k2x2,x=1时y=3;x=-2时y=-15,代入求出k1=6,k2=3.(2)将x=2代入解析式y=-3x2,y=3-3×4=-9.9.反比例函数y1=,y2=(k≠0)在第一象限的图象如图,过y1上的任意一点A,作x轴的平行线交y2于点B,交y轴于点C,若S△AOB=2,则k=_________.【答案】12.【解析】根据y1=,过y1上的任意一点A,得出△CAO的面积为4,进而得出△CBO面积为3,即可得出k的值.试题解析:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×8=4,又∵S△AOB =2,∴△CBO面积为6,∴|k|=6×2=12,∵根据图示知,y2=(k≠0)在第一象限内,∴k>0,∴k=12考点: 反比例函数系数k的几何意义.10.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.11.已知y是x的反比例函数,当x=5时,y=8.(1)求反比例函数解析式;(2)求y=-10时x的值.【答案】(1);(2).【解析】(1)由y是x的反比例函数可设,将x=5,y=8代入可求得k,从而得到反比例函数解析式;(2)把y=-10代入即可求得x的值.试题解析:(1)∵y是x的反比例函数,∴设.∵当x=5时,y="8" ,∴,解得k="40."∴反比例函数解析式为.(2)把y=-10代入得,解得 .【考点】1.待定系数法的应用;2.曲线上点的坐标与方程的关系.12.若反比例函数经过点(1,2),则下列点也在此函数图象上的是()A.(1,-2)B.(-1,﹣2)C.(0,﹣1)D.(﹣1,﹣1)【答案】B【解析】设反比例函数图象的解析式为,∵反比例函数的图象经过点(1,2),∴k=1×2=2,而1×(-2)=-2,-1×(-2)=2,0×(-1)=0,-1×(-1)=1.∴点(-1,-2)在反比例函数图象上.故选B.【考点】反比例函数图像上点的坐标的特征.13.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.【答案】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,-3),∴AB=5。

初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析1.如图,点A,B分别在轴,轴上,点D在第一象限内,DC⊥轴于点C,AO=CD=2,AB=DA=,反比例函数的图象过CD的中点E。

(1)求证:△AOB≌△DCA;(2)求的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在轴上,试判断点G是否在反比例函数的图象上,并说明理由。

(【答案】(1)证明见解析(2)K=3(3)点G在反比例函数图象上【解析】(1)利用HL可证△AOB≌△DCA由勾股定理可求出AC的长,从而得到OC的长,可得E坐标,代入即得(3)由△BFG和△DCA关于某点成中心对称可知BF=DC=2,FG=AC=1,从而可得点G坐标,代入判断即可试题解析:(1)∵点A,B分别在X,Y轴上,DC⊥X轴于点C∴∠AOB=∠DCA=90°∵AO=CD=2,AB=DA=∴△AOB≌△DCA(2)∵∠DCA=90°,DA=,CD=2∴AC=∴OC=OA+AC=2+1=3∵E是CD的中点∴E(3,1)∵反比例函数的图象过点E∴K=3(3)∵△BFG和△DCA关于某点成中心对称∴BF=DC=2,FG=AC=1∵点F在Y轴上∴OF=OB+BF=1+2=3∴G(1,3)把X=1代入中得Y=3∴点G在反比例函数图象上【考点】1、直角三角形全等,2、勾股定理,3、反比例函数,4、中心对称2.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2【答案】B【解析】设A点坐标为(m,n),过点O的直线与双曲线y=交于A、B两点,则A、B两点关与原点对称,则B的坐标为(﹣m,﹣n);矩形OCBD中,易得OD=﹣n,OC=m;则S1=﹣mn;在Rt△EOF中,AE=AF,故A为EF中点,由中位线的性质可得OF=﹣2n,OE=2m;则S2=OF×OE=﹣2mn;故2S1=S2.故选B.【考点】反比例函数系数k的几何意义3.平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(-4,0),B(2,0),C (3,3),反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.【答案】(1)y=(2)见解析(3)12,图形见解析【解析】(1)把点C(3,3)代入反比例函数y=,求出m,即可求出解析式;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线;(3)根据C(3,3),D′(-3,-3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由S△AD′C =2S△AOC=2×AO•CE求出面积的值.解:(1)∵点C(3,3)在反比例函数y=的图象上,∴3=,∴m=9,∴反比例函数的解析式为y=;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,∴AF=BE ,DF=CE ,∵A (-4,0),B (2,0),C (3,3), ∴DF=CE=3,OA=4,OE=3,OB=2,∴OF=OA-AF=OA-BE=OA-(OE-OB )=4-(3-2)=3, ∴D (-3,3),∵点D′与点D 关于x 轴对称, ∴D′(-3,-3),把x=-3代入y=得,y=-3,∴点D′在双曲线上;(3)∵C (3,3),D′(-3,-3), ∴点C 和点D′关于原点O 中心对称, ∴D′O=CO=D′C ,∴S △AD′C =2S △AOC =2×AO•CE=2××4×3=12,即S △AD′C =12.4. 试写出图象位于第二、四象限的一个反比例函数的解析式y = W. 【答案】y =-,答案不唯一【解析】∵反比例函数位于二、四象限, ∴k <0,解析式为:y =-.故答案为y =-,答案不唯一.5. 如图,在平面直角坐标系中,直线y=﹣3x+3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线(k≠0)上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a 的值是( )A .1B .2C .3D .4 【答案】B .【解析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=-3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入得:k=4,则函数的解析式是:.OE=4,则C的纵坐标是4,把y=4代入得:x=1.即G的坐标是(1,4),∴CG=2.故选B.考点: 反比例函数综合题.6.如图所示,点A、B在反比例函数(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为 .【答案】4=OC·AM=·3x·=6,【解析】设点A(x,),∵ OM=MN=NC,∴ AM=,OC=3x.由S△AOC解得k=4.7.已知反比例函数图象在各自的象限内,y随x的增大而减小,则m的取值范围是__________.【答案】.【解析】由于反比例函数的图象在每个象限内y的值随x的值增大而减小,可知比例系数为正数,即:,解得:.【考点】反比例函数的性质.8. 反比例函数的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限【答案】A.【解析】∵反比例函数中k=2>0,根据反比例函数的性质图象在第一,三象限.故选A .【考点】反比例函数的性质.9. 反比例函数的图象在每一个象限内y 随x 的增大而减小,则k 的取值范围为( )A .k≥1B .k >1C .k≤1D .k <1【答案】B.【解析】∵反比例函数图象在每一个象限中y 随着x 的增大而减小,∴, 解得:, 故选B .【考点】反比例函数的性质.10. 如图,△AOB 为等边三角形,点A 在第四象限,点B 的坐标为(4,0),过点C (4,0)作直线l 交AO 于D ,交AB 于E ,且点E 在某反比例函数图象上,当△ADE 和△DCO的面积相等时,k 的值为( )A .B .C .D .【答案】C .【解析】如图,连接AC ,∵点B 的坐标为(4,0),△AOB 为等边三角形,∴AO="OB=4." ∴点A 的坐标为.∵C (4,0),∴AO=OC=4,∴∠OCA=∠OAC. ∵∠AOB=60°,∴∠ACO=30°. 又∵∠B="60°." ∴∠BAC=90°.∵S △ADE =S △DCO ,S △AEC =S △ADE +S △ADC ,S △AOC =S △DCO +S △ADC , ∴S △AEC =S △AOC =,即.∴E 点为AB 的中点. 把E 点代入中得:k=.故选C.【考点】1. 等边三角形的性质;2. 等腰三角形的判定和性质;3.三角形内角和定理;4.曲线上点的坐标与方程的关系.11.如图,点是反比例函数(是常数,)上的一个动点,过点作轴、轴的平行线交反比例函数(为常数,)于点、.当点的横坐标逐渐增大时,三角形的面积( )A.先变大再变小B.先变小再变大C.不变D.无法判断【答案】C【解析】设点的坐标为,则点坐标为,点坐标为,的面积为.因为且,,则,所以,所以,故点的横坐标逐渐增大,的面积的面积不变.【考点】反比例函数.12.若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图像与反比例函数的图像的公共点的个数为 .【答案】1或0。

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

D.当y增大时,BE·DF的值不变。

8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。

中考反比例函数解答题典型题型(含答案)

中考反比例函数解答题典型题型(含答案)

中考反比例函数典型题型(含答案)1.如图,在平面直角坐标系内,一次函数y=kx+m(k,m是常数,k≠0)的图象与反比例函数y=(n是常数,n≠0,x>0)的图象相交于A(1,4)、B(a,b)两点,其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD、DC、CB.(1)求n的值;(2)若△ABD的面积为6,求一次函数y=kx+m的关系式.2.如图,一次函数y=x﹣2的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数y=(k>0)的图象于Q,S△OQC=,(1)求A点和B点的坐标;(2)求k的值和Q点的坐标.3.如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.4.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.5.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C坐标为(﹣1,0),tan∠ACO=2.一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.(1)求一次函数和反比例函数的关系式;(2)直接写出当x<0时,kx+b﹣<0的解集;(3)在x轴上找一点M,使得AM+BM的值最小,并求出点M的坐标和AM+BM的最小值.6.如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数(x>O)的图象相交于B、C两点.(1)若B(1,2),求k1•k2的值;(2)若AB=BC,则k1•k2的值是否为定值?若是,请求出该定值;若不是,请说明理由.7.如图,点A(3,4),B(m,2)都在反比例函数的图象上.(1)求k和m的值.(2)如果点C、D分别在x轴和y轴的正半轴上,以A、B、C、D为顶点的四边形是平行四边形,请直接写出直线CD的函数关系式.8.如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.9.已知:如图,等边三角形AOB的顶点A在反比例函数y=(x>0)的图象上,点B在x轴上.(1)求点B的坐标;(2)求直线AB的函数表示式;(3)在y轴上是否存在点P,使△OAP是等腰三角形?若存在,直接把符合条件的点P的坐标都写出来;若不存在,请说明理由.10.如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上x轴于F.(1)求m,n的值;(2)求直线AB的函数解析式;(3)求证:△AEC≌△DFB.1. 解:(1)将A(1,4)代入y=,得n=4.(2分)(2)∵A(1,4)、B(a,b)在反比例函数图象上,∴ab=4.(3分)∴S△ABD=a(4﹣b)=2a﹣ab=2a﹣2=6.(4分)∴a=4,B点坐标为(4,1).(5分)将A(1,4)、B(4,1)代入y=kx+m得(6分)解得(7分)∴一次函数的关系式为y=﹣x+5.(8分)2. 解:(1)设A点的坐标为(a,0),B点坐标为(0,b),分别代入,解方程得a=4,b=﹣2,∴A(4,0),B(0,﹣2);(6分)(2)∵PC是△AOB的中位线,∴PC⊥x轴,即QC⊥OC,又Q在反比例函数的图象上,∴2S△OQC=k,∴,(9分)∵PC是△AOB的中位线,∴C(2,0),可设Q(2,q)∵Q在反比例函数的图象上,∴,∴点Q的坐标为.(12分)3.解:(1)由已知条件得,在Rt△OAB中,OB=2,tan∠AOB=,∴=,∴AB=3,∴A点的坐标为(2,3)…(1分)∴k=xy=6…(2分)(2)∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,…(3分)又∵点E在双曲线上,∴点E的坐标为(4,)…(4分)设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN的函数表达式为.…(5分)(3)结论:AN=ME…(6分)理由:在表达式中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,)…(7分)解法一:延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON﹣OF=,∴根据勾股定理可得AN=…(8分)∵CM=6﹣4=2,EC=∴根据勾股定理可得EM=∴AN=ME…(9分)解法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM=,S△AON=…(8分)∴S△EOM=S△AON,∵AN和ME边上的高相等,∴AN=ME…(9分)4. 解:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),D(6,6);(2)A、C落在反比例函数的图象上,设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),∵A、C落在反比例函数的图象上,∴k=2(6﹣x)=6(4﹣x),x=3,即矩形平移后A的坐标是(2,3),代入反比例函数的解析式得:k=2×3=6,即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是y=.5.解:(1)过点B作BF⊥x轴于点F,在Rt△AOC中,AC==,则sin∠CAO==,∵∠BCA=90°,∴∠BCF+∠ACO=90°,又∵∠CAO+∠ACO=90°,∴∠BCF=∠CAO,∴sin∠BCF=sin∠CAO==,∴BF=1,∴CF==2,∴点B的坐标为(﹣3,1),将点B的坐标代入反比例函数解析式可得:1=,解得:k=﹣3,故可得反比例函数解析式为y=﹣;将点B、C的坐标代入一次函数解析式可得:,解得:.故可得一次函数解析式为y=﹣x﹣.(2)结合点B的坐标及图象,可得当x<0时,kx+b﹣<0的解集为:﹣3<x<0;(3)作点A关于x轴的对称点A′,连接B A′与x轴的交点即为点M,设直线BA'的解析式为y=ax+b,将点A'及点B的坐标代入可得:,解得:.故直线BA'的解析式为y=﹣x﹣2,令y=0,可得﹣x﹣2=0,解得:x=﹣2,故点M 的坐标为(﹣2,0),AM+BM=BM+MA′=BA′==3.综上可得:点M的坐标为(﹣2,0),AM+BM的最小值为3.,解得)在反比例函数图象上,∴=2,x+3=,整理得﹣,,∴﹣(﹣)代入得y=)分别代入得,解得x+6=AB=CD=x+n点坐标为(n)把点()代入反比例函数,得×y=)联立,解得或××的面积为,,)﹣b=2x+2.)))),)y=0y=2 2,解得,解得)由题意得,解得。

2024年人教版九年级数学中考专题训练:反比例函数(含解析)

2024年人教版九年级数学中考专题训练:反比例函数(含解析)

2024年人教版九年级数学中考专题训练:反比例函数1.如图,在平面直角坐标系中,一次函数y =﹣x+m 的图象与反比例函数y=(x >0)的图象交于A 、B 两点,已知A (1,2)(1)求一次函数和反比例函数的解析式;(2)连接AO 、BO ,求△AOB 的面积.2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数.已知当时,.(1)求出这个函数的表达式;(2)当气球内的气压大于时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?3.如图,反比例函数与一次函数的图像在第一象限交于、两点.(1)则 ,  , (2)观察图像,请直接写出满足的取值范围.(3)若Q 为y 轴上的一点,使最小,求点Q 的坐标.4.如图,在平面直角坐标系中,一次函数的图象分别交x 轴,y 轴正半轴于点A ,B ,内切于,反比例函数的图象经过点P ,交直线于点C ,D (C 在点D 的左侧).kx()P kPa ()3mV 30.8m V =120kPa P =128kPa ()10ky k x=≠2y x b =-+()13A ,()3B n ,k =b =n =12y y ≥QA QB +364y x =-+P ABO ()0ky x x=>AB(1)求反比例函数的解析式;(2)过点C ,D 分别作x 轴,y 轴的平行线交于点E ,求的面积.5.如图1,点A (1,0),B (0,m )都在直线y =﹣2x+b 上,四边形ABCD 为平行四边形,点D 在x轴上,AD=3,反比例函数(x>0)的图象经过点C .(1)求k 的值;(2)将图1的线段CD 向右平移n 个单位长度(n≥0),得到对应线段EF ,线段EF 和反比例函数(x>0)的图象交于点M .①在平移过程中,如图2,若点M 为EF 的中点,求△ACM 的面积;②在平移过程中,如图3,若AM ⊥EF ,求n 的值.6.如图,点A 是反比例函数图象上的点,AB 平行于y 轴,且交x 轴于点,点C 的坐标为,AC 交y 轴于点D ,连接BD ,(1)求反比例函数的表达式;(2)设点P 是反比例函数图象上一点,点Q 是直线AC 上一点,若以点O ,P ,D ,Q CDE ky x=ky x=()0ky k x=>()10B ,()10-,AD =()0ky x x=>为顶点的四边形是平行四边形,求点Q 的坐标; (3)若点是该反比例函数图象上的点,且满足∠MDB>∠BDC ,请直接写a 的取值范围.7.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?8.在学习反比例函数后,小华在同一个平面直角坐标系中画出了(x>0)和的图象,两个函数图象交于A (x 1,y 2),B (x 2,y 2)两点,在线段AB 上选取一点P ,过点P 作y 轴的平行线交反比例函数图象于点 O (如图1).在点P 移动的过程中,发现PO 的长度随着点P 的运动而变化.为了进一步研究 PO 的长度与点P 的横坐标之间的关系,小华提出了下列问题∶(1)设点P 的横坐标为x ,PQ 的长度为y ,则y 与x 之间的函数关系式为 (x 1<x<x 2);(2)为了进一步的研究(1)中的函数关系,决定运用列表,描点,连线的方法绘制函数的图象;①列表∶()M a b ,ky x=1y x=5y x =-+x 1234ym3n表中 m = ,n =;②描点∶根据上表中的数据,在图2中描出各点;③连线∶请在图2中画出该函数的图象.观察函数图象,当x =时,y 的最大值为;(3)应用∶已知某矩形的一组邻边长分别为m ,n ,且该矩形的周长 W 与n 存在函数关系,求 m 取最大值时矩形的对角线长.9.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M 的坐标.10.若关于x 的函数y ,当时,函数y 的最大值为M ,最小值为N ,令函数,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数,当时,求函数y 的“共同体函数”h 的值;②若函数(,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数,求函数y 的“共同体函数”h 的最大值;(3)若函数,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.11.已知一块矩形草坪的两边长分别是2米与3米,现在要把这个矩形按照如图1的方式扩大到面积为1x 13122x 535234220W n=-+1y x =+()0my x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=1122t x t -≤≤+2M Nh -=4044y x =1t =y kx b =+0k ≠21y x x=≥()24y x x k =-++原来的2倍,设原矩形的一边加长a 米,另一边长加长b 米,可得a 与b 之间的函数关系式b=﹣2.某班“数学兴趣小组”对此函数进一步推广,得到更一般的函数y =﹣2,现对这个函数的图象和性质进行了探究,研究过程如下,请补充完整:(1)类比反比例函数可知,函数y =﹣2的自变量x 的取值范围是 ,这个函数值y 的取值范围是  .(2)“数学兴趣小组”进一步思考函数y =|﹣2|的图象和性质,请根据函数y =﹣2的图象,画出函数y =|﹣2|的图象;(3)结合函数y =|﹣2|的图象解答下列问题:①求出方程|﹣2|=0的根;②如果方程|﹣2|=a 有2个实数根,请直接写出a 的取值范围.12.如图,抛物线与x 轴交于两点(在的左边),与y 轴交于C ,;双曲线经过抛物线的顶点,点的横坐标为1.123a +123x +123x +123x +123x +123x +123x +123x +123x +23y ax bx =++A B 、A B 3tan CAB ∠=(0)ky k x=≠23y ax bx =++D D(1)求抛物线和双曲线的解析式.(2)点P 为抛物线上一动点,且在第一象限,连接,求当四边形取得最大值时,点P 的坐标,并求出这个最大值.(3)若在此抛物线和双曲线上存在点Q ,使得,请求出点Q 的坐标.13.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.(1)分别求一次函数及反比例函数的表达式;(2)在第三象限内的B 点右侧的反比例函数图象上取一点P ,连接且满足.i )求点P 的坐标;ii )过点A 作直线,在直线l 上取一点Q ,且点Q 位于点A 的左侧,连接,试问:能否与相似?若能,求出此时点Q 的坐标;若不能,请说明理由.14.定义:函数图象上到两坐标轴的距离都不大于的点叫做这个函数图象的“n 阶方点”.例如,点是函数图像的“阶方点”;点是函数图像的“2阶方点”.(1)在①;②;③三点中,是反比例函数图像的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数图像的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数图像的“n 阶方点”一定存在,请直接写出n 的取值范围.15.如图1,已知反比例函数的图象与一次函数的图象相交于A (2,a ),B 两点.BP CP 、ABPC QB QC =xOy y kx b =+my x=(14)A ,(4)B n -,PA PB ,15PAB S = l PB BQ QAB ABP (0)n n ≥1133⎛⎫⎪⎝⎭,y x =12(21),2y x =122⎛⎫-- ⎪⎝⎭,(11)--,(11),1y x=31y ax a =-+2()21y x n n =---+(0)ky k x=≠1y x =-(1)求反比例函数的表达式及A ,B 两点的坐标;(2)M 是x 轴上一点,N 是y 轴上一点,若以A ,B ,M ,N 为顶点的四边形是以为边的平行四边形,求点M 的坐标;(3)如图2,反比例函数的图象上有P ,Q 两点,点P 的横坐标为,点Q 的横坐标与点P 的横坐标互为相反数,连接,,,.若的面积是的面积的3倍,求m 的值.16.如图,直线AC 与双曲线交于A (m ,6),B (3,n )两点,与x 轴交于点C ,直线AD 与x 轴交于点D (-11,0),(1)请直接写出m ,n 的值;(2)若点E 在x 轴上,若点F 在y 轴上,求的最小值;(3)P 是直线AD 上一点,Q 是双曲线上一点,是否存在点P ,Q ,使得四边形ACQP 是正方形?若存在,求出点P ,Q 的坐标;若不存在,请说明理由.17.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)横坐标与纵坐标互换后得到的点叫这一点的“H 点”,如(2,-3)与(-3,2)是一对“H 点”.(1)点 和它的“H 点”均在直线 上,求k 的值;AB ky x=(2)m m >AP AQ BP BQ ABQ ABP ()60y k x=≠AF EF BE ++()m n ,y kx a =+(2)若直线 经过的A ,B 两点恰好是一对“H 点”,其中点A 还在反比例函数 的图象上,一条抛物线 也经过A ,B 两点,求该抛物线的解析式;(3)已知 ,B 为抛物线 上的一对“H 点”,且满足:, ,点P 为抛物线上一动点,若该抛物线上有且仅存在3个点P 满足△PAB 的面积为16,求 的值.18.已知:如图,一次函数y =-2x+10的图象与反比例函数y=的图象相交于A 、B 两点(A 在B 的右侧),点A 横坐标为4.(1)求反比例函数解析式及点B 的坐标;(2)观察图象,直接写出关于x 的不等式-2x+10->0的解集;(3)反比例函数图象的另一支上是否存在一点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.19.如图,反比例函数与一次函数相交于点A (1,4)和点B (4,1),直线 的图象与y 轴和x 轴分别相交于点C 和点D ;(1)请直接写出当时自变量x 的取值范围;(2)将一次函数向下平移8个单位长度得到直线EF ,直线EF 与x 和y 轴分别交于点E 和点F ,抛物线过点A 、D 、E 三点,求该抛物线的函数解析式(也称函数表达式);3y kx =+2y x=2y x bx c =++()()A m n m n <,()20y ax bx c a =++≠2m n +=3mn =-a b c ++kxkx()110k y x x=>22y k x n =+2y 12y y ≥22y k x n =+2y ax bx c =++(3)在(2)抛物线的对称轴上是否存在一点P ,使得△PBF 是以BF 为斜边的直角三角形,若存在,请用尺规作图(圆规和无刻度直尺)画出点P 所在位置,保留作图痕迹,并直接写出点P 的坐标;若不存在,请说明理由.20.如图1,平面直角坐标系中,,反比例函数的图象分别交矩形的两边、于E 、F (E 、F 不与A 重合),沿着将矩形折叠使A 、D 重合.(1)当点E 为中点时,求点F 的坐标,并直接写出与对角线的关系;(2)如图2,连接.①的周长是否有最小值,若有,请求出最小值;若没有,请说明理由;②当平分时,直接写出k 的值.21.如图1,四边形为正方形,点A 在y 轴上,点B 在x 轴上,且,,反比例函数在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的关系式;(2)如图,将正方形沿x 轴向右平移m 个单位长度得到正方形A ′B ′C ′D ′,点A ′恰好落在反比例函数的图象上,求n 值.(3)在(2)的条件下,坐标系内是否存在点P ,使以点O ,A ′,B ′,P 为顶点的四边形为平行四边形,若存在,请直接写出点P的坐标,若不存在,请说明理由.xOy (43)A -,(0)ky k x=<ABOC AC AB EF ABOC AC EF BC CD CDE CD ACO ∠ABCD 4OA =2OB =()0ky k x=≠2ABCD22.如图,在平面直角坐标系中,A (8,0)、B (0,6)是矩形OACB 的两个顶点,双曲线y=(k≠0,x >0)经过AC 的中点D ,点E 是矩形OACB 与双曲线y =的另一个交点.(1)点D 的坐标为 ,点E 的坐标为 ;(2)动点P 在第一象限内,且满足S △PBO =S △ODE .①若点P 在这个反比例函数的图象上,求点P 的坐标;②若点Q 是平面内一点,使得以A 、C 、P 、Q 为顶点的四边形是菱形,请你直接写出满足条件的所有点Q 的坐标.23.如图,一次函数的图像与反比例函数的图像交于,两点.(,,为常数)(1)求一次函数和反比例函数的解析式;(2)将一次函数向下平移个单位后与反比例函数的图像有且只有一个公共点,求的值;(3)为轴上一点,若的面积为,求点的坐标.24.如图,一次函数的图象与反比例函数(k 为常数且)的图象交于A ,B 两点,其中,直线与y 轴、x 轴分别交于C ,D 两点.kxkx561y k x b =+2k y x=()41A -,()4B m ,1k 2k b 1y k x b =+m 2k y x=m P y PAB 3P 4y x =+ky x=0k ≠()13A -,4y x =+(1)求反比例函数的表达式;(2)在x 轴上找一点P ,使的值最小,并求满足条件的点P 的坐标;(3)在坐标平面中是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与相似?如果存在,请直接写出所有满足条件的点Q的坐标.PA PB COD答案解析部分1.【答案】(1)解:把点A (1,2)代入y =-x+m ,得-1+m =2,∴m =3,∴一次函数解析式为y =﹣x+3;把点A (1,2)代入y =,∴k =1×2=2,∴反比例函数解析式为y =;(2)解:联立方程组{y =−x +3y =2x , 解得或,∴B (2,1),设直线y =﹣x+3与y 轴的交点为C ,∴C (0,3),∴S △AOB =S △COB -S △COA =×3×2-×3×1=1.5.【解析】【分析】(1)利用待定系数法求出一次函数的解析式和反比例函数的解析式即可;(2)先求出点B 的坐标,再求出直线与y 轴的交点C 的坐标,再利用S △AOB =S △COB -S △COA ,根据三角形的面积公式进行计算即可.2.【答案】(1)解:设P 与V 之间的函数表达式为,当时,,所以,∴,∴P 与V 之间的函数表达式为;(2)解:当时,,∴,∴为确保气球不爆炸,气球的体积应不小于.【解析】【分析】(1)由题意可设,把V=0.8,P=120代入解析式计算可求得F 的值,则解析式可k x 2x12x y =⎧⎨=⎩21x y =⎧⎨=⎩1212F P V=0.8V =120P =1200.8F =96F =96P V =128P ≤96128V ≤0.75V ≥30.75m F P V=求解;(2)由题意可得关于V 的不等式,解这个不等式可求解.3.【答案】(1)3;4;1(2)解:0<x≤1或x≥3(3)解:作A 关于y 轴的对称点,连接,如图,∵,∴A 关于y 轴的对称点A ′(−1,3).设直线的解析式为,将A ′(−1,3),代入可得:∴,解得:.∴直线的解析式为,令,则,∴.【解析】【解答】(1)解:∵反比例函数与一次函数的图像在第一象限交于、两点,∴,,∴,,∴反比例函数和一次函数的表达式分别为:,;将点代入得;故答案为:3,4,1(2)解:由图像可得:满足的取值范围是或;A 'A B '()13A ,A B 'y ax c =+()31B ,331a c a c -+=⎧⎨+=⎩1252a c ⎧=-⎪⎪⎨⎪=⎪⎩A B '1522y x =-+0x =52y =502Q ⎛⎫ ⎪⎝⎭,()10k y k x=≠2y x b =-+()13A ,()3B n ,3k =31b =-+3k =4b =13y x =24y x =-+()3B n ,13y x=1n =12y y ≥01x <≤3x ≥【分析】(1)将点A 、B 的坐标代入求出k 、n 的值,再将点A 的坐标代入求出b 的值即可; (2)结合函数图象,利用函数值大的图象在上方的原则求解即可;(3)作A 关于y 轴的对称点,连接,利用待定系数法求出直线的解析式,再将代入解析式求出y 的值,可得点Q 的坐标。

中考数学反比例函数综合题附答案.doc

中考数学反比例函数综合题附答案.doc

中考数学反比例函数综合题附答案一、反比例函数1.如图,四边形OP1A1B1、 A1P2A2B2、 A2P3 A3B3、、 A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、 A2 A3、、A n﹣1 A n都在y轴上( n≥1的整数),点P1( x1,y1),点P2(x2,y2),, P n( x n, y n)在反比例函数y=(x>0)的图象上,并已知B1(﹣ 1,1).(1)求反比例函数 y= 的解析式;(2)求点 P2和点 P3的坐标;( 3)由( 1)、( 2)的结果或规律试猜想并直接写出:△ P n B n O的面积为________ ,点P n的坐标为 ________ (用含【答案】(1)解:在正方形则B1与 P1关于 y 轴对称,∵B1(﹣ 1,1),∴P1( 1,1).n的式子表示).OP1A1B1中, OA1是对角线,则 k=1×1=1,即反比例函数解析式为y=(2)解:连接P2B2、 P3B3,分别交 y 轴于点 E、 F,又点 P1的坐标为( 1, 1),∴OA1=2,设点 P2的坐标为( a,a+2),代入 y= 得 a= -1,故点 P2的坐标为(-1,+1),则A1E=A2E=2 -2, OA2=OA1+A1A2=2 ,设点 P3的坐标为( b, b+2),代入 y= ( >0)可得 b= - ,故点 P3的坐标为(- ,+ )(3) 1;( - ,+ )【解析】【解答】解:( 3)∵=2 =2× =1,=2 =2× =1,∴△ P n B n O 的面积为1,由 P1( 1, 1)、 P2(﹣ 1,+1)、 P3(﹣,+ )知点 P n的坐标为(﹣,+ ),故答案为: 1、(﹣,+ ).【分析】( 1)由四边形 OP1 1 1 1 1 1A B 为正方形且OA 是对角线知 B 与 P 关于 y 轴对称,得出点 P1(1, 1),然后利用待定系数法求解即可;(2)连接 P2B2、 P3B3,分别交 y 轴于点 E、 F,由点 P1坐标及正方形的性质知OA1=2,设P2的坐标为( a, a+2),代入解析式求得 a 的值即可,同理可得点P3的坐标;(3)先分别求得 S△P1 B1 O、 S△P2B2O 的值,然后找出其中的规律,最后依据规律进行计算即可 .2.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20课时《反比例函数在中考中的常见题型》◆知识讲解:1.反比例函数的图像是双曲线,故也称双曲线y=kx(k≠0).2.反比例函数y=kx(k≠0)的性质(1)当k>0时⇔函数图像的两个分支分别在第一,三象限内⇔在每一象限内,y随x的增大而减小.(2)当k<0时⇔函数图像的两个分支分别在第二,四象限内⇔在每一象限内,y随x的增大而增大.(3)在反比例函数y=kx中,其解析式变形为xy=k,故要求k的值,•也就是求其图像上一点横坐标与纵坐标之积,•通常将反比例函数图像上一点的坐标当作某一元二次方程的两根,运用两根之积求k的值.(4)若双曲线y=kx图像上一点(a,b)满足a,b是方程Z2-4Z-2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k,∴k=-2,故双曲线的解析式是y=2x-.(5)由于反比例函数中自变量x和函数y的值都不能为零,所以图像和x轴,y•轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势.◆经典例题:例1(2006,上海市)如图,在直角坐标系中,O为原点,点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=12x的图像经过点A,(1)求点A的坐标;(2)如果经过点A的一次函数图像与y轴的正半轴交于点B,且OB=AB,•求这个一次函数的解析式.例2 如图,已知Rt△ABC的顶点A是一次函数y=x+m与反比例函数y=mx的图像在第一象限内的交点,且S△AOB=3.(1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,•请写出它们的解析式;如不能确定,请说明理由.(2)如果线段AC的延长线与反比例函数的图像的另一支交于D点,过D作DE⊥x•轴于E,那么△ODE的面积与△AOB的面积的大小关系能否确定?(3)请判断△AOD为何特殊三角形,并证明你的结论.◆强化训练:一、填空题1.(2006,南通)如图1,直线y=kx(k>0)与双曲线y=4x 交于A(x1,y1),B(x2,y2)两点,•则2x1y2-7x2y1的值等于_______.图1 图2 图3 2.(2006,重庆)如图2,矩形AOCB的两边OC,OA分别位于x轴,y轴上,点B的坐标为B(-203,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A 点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是______.3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为_______.4.若y=2131a aax--+中,y与x为反比例函数,则a=______.若图像经过第二象限内的某点,则a=______.5.反比例函数y=kx的图像上有一点P(a,b),且a,b是方程t2-4t-2=0的两个根,则k=_______;点P到原点的距离OP=_______.6.已知双曲线xy=1与直线y=-x+b 无交点,则b 的取值范围是______. 7.反比例函数y=kx的图像经过点P (a ,b ),其中a ,b 是一元二次方程x 2+kx+4=0的两个根,那么点P 的坐标是_______.8.(2008,咸宁)两个反比例函数y=k x 和y=1x在第一象限内的图像如图3所示,•点P 在y=k x 的图像上,PC ⊥x 轴于点C ,交y=1x 的图像于点A ,PD ⊥y 轴于点D ,交y=1x 的图像于点B ,•当点P 在y=kx的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上,•少填或错填不给分). 二、选择题9.(2008,济南)如图4所示,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴,y 轴,•若双曲线y=kx(k≠0)与△ABC 有交点,则k 的取值范围是( ) A .1<k<2 B .1≤k≤3 C .1≤k≤4 D .1≤k<4图4 图5 图610.反比例函数y=k x(k>0)的第一象限内的图像如图5所示,P 为该图像上任意一点,PQ 垂直于x 轴,垂足为Q ,设△POQ 的面积为S ,则S 的值与k 之间的关系是( ) A .S=4k B .S=2kC .S=kD .S>k11.如图6,已知点A 是一次函数y=x 的图像与反比例函数y=2x的图像在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( ) A .2 B .22C .2D .22 12.函数y=mx与y=mx -m (m≠0)在同一平面直角坐标系中的图像可能是( )13.如果不等式mx+n<0的解集是x>4,点(1,n )在双曲线y=2x上,那么函数y=(n -1)x+2m 的图像不经过( )A .第一象限 B .第二象限 C 第三象限 D .第四象限 14.(2006,攀枝花)正比例函数y=2kx 与反比例函数y=1k x在同一坐标系中的图像不可能是( )15.已知P 为函数y=2x的图像上一点,且P 到原点的距离为3,则符合条件的P 点数为( )A .0个 B .2个 C .4个 D .无数个 16.如图,A ,B 是函数y=1x的图像上关于原点O 对称的任意两点,AC 平行于y 轴,•交x 轴于点C ,BD 平行于y 轴,交x 轴于点D ,设四边形ADBC 的面积为S ,则( )A .S=1B .1<S<2C .S=2D .S>2三、解答题17.已知:如图,反比例函数y=-8 x与一次函数y=-x+2的图像交于A,B两点,求:(1)A,B两点的坐标;(2)△AOB的面积.18.(2006,广州白云区)如图,已知一次函数y=kx+b的图像与反比例函数y=-8x的图像交于A,B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积.19.已知函数y=kx的图像上有一点P(m,n),且m,n是关于x方程x2-4ax+4a2-6a-8=0•的两个实数根,其中a是使方程有实根的最小整数,求函数y=kx的解析式.20.(2006,北京市)在平面直角坐标系Oxy中,直线y=-x绕点O顺时针旋转90•°得到直线L.直线L与反比例函数y=kx的图像的一个交点为A(a,3),试确定反比例函数的解析式.21.(2008,南通)如图所示,已知双曲线y=kx与直线y=14x相交于A,B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=kx上的动点.过点B作BD∥y 轴交x轴于点D.•过N(0,-n)作NC∥x轴交双曲线y=kx于点E,交BD于点C.(1)若点D的坐标是(-8,0),求A,B两点的坐标及k的值;(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;(3)设直线AM,BM分别与y轴相交于P,Q两点,且MA=pMP,MB=qMQ,求p-q的值.22.如图,在等腰梯形ABCD中,CD∥AB,CD=6,AD=10,∠A=60°,以CD•为弦的弓形弧与AD相切于D,P是AB上的一个动点,可以与B重合但不与A重合,DP•交弓形弧于Q.(1)求证:△CDQ∽△DPA;(2)设DP=x,CQ=y,试写出y关于x的函数关系式,并写出自变量x的取值范围;(3)当DP之长是方程x2-8x-20=0的一根时,求四边形PBCQ的面积.第20课时《反比例函数在中考中的常见题型》(答案)◆经典例题 例1 (2006,上海市)如图,在直角坐标系中,O 为原点,点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=12x的图像经过点A ,(1)求点A 的坐标;(2)如果经过点A 的一次函数图像与y 轴的正半轴交于点B ,且OB=AB ,•求这个一次函数的解析式. 【分析】(1)用含一个字母a 的代数式表示点A 的横坐标,纵坐标,把点A 的坐标代入y=12x可求得a 的值,从而得出点A 的坐标.(2)设点B 的坐标为(0,m ),根据OB=AB ,可列出关于m 的一个不等式,•从而求出点B 的坐标,进而求出经过点A ,B 的直线的解析式.【解答】(1)由题意,设点A 的坐标为(a ,3a ),a>0.∵点A 在反比例函数y=12x 的图像上,得3a=12a,解得a 1=2,a 2=-2,经检验a 1=2,a 2=-2•是原方程的根,但a 2=-2不符合题意,舍去.∴点A 的坐标为(2,6).(2)由题意,设点B 的坐标为(0,m ).∵m>0,∴22(6)2m -+m=103,经检验m=103是原方程的根,∴点B 的坐标为(0,1013).设一次函数的解析式为y=kx+1013.由于这个一次函数图像过点A (2,6),∴6=2k+103,得k=43.∴所求一次函数的解析式为y=43x+103.例2 如图,已知Rt △ABC 的顶点A 是一次函数y=x+m 与反比例函数y=mx的图像在第一象限内的交点,且S △AOB =3.(1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,•请写出它们的解析式;如不能确定,请说明理由.(2)如果线段AC 的延长线与反比例函数的图像的另一支交于D 点,过D 作DE ⊥x•轴于E ,那么△ODE 的面积与△AOB 的面积的大小关系能否确定?(3)请判断△AOD 为何特殊三角形,并证明你的结论.【分析】△AOB 是直角三角形,所以它的面积是两条直角边之积的12,•而反比例函数图像上任一点的横坐标,纵坐标之积就是反比例函数中的系数.由题意不难确定m ,则所求一次函数,反比例函数的解析式就确定了. 由反比例函数的定义可知,过反比例函数图像上任一点作x 轴,y 轴的垂线,•该点与两垂足及原点构成的矩形的面积都是大小相等的.【解答】(1)设B (x ,0),则A (x 0,0m x ),其中0>0,m>0. 在Rt △ABO 中,AB=0mx ,OB=x 0. 则S △ABO =12·x 0·0m x =3,即m=6.所以一次函数的解析式为y=x+6;反比例函数的解析式为y=6x .(2)由66y x y x=+⎧⎪⎨=⎪⎩得x 2+6x -6=0,解得x 1=-15x 2=-315∴A (-1515,D (-315315.由反比例函数的定义可知,对反比例函数图像上任意一点P (x ,y ),有 y=6x.即xy=6. ∴S △DEO =12│x D y D │=3,即S △DEO =S △ABO .(3)由A (-1515和D (-315315可得33即AO=DO .由图可知∠AOD>90°,∴△AOD 为钝角等腰三角形.【点评】特殊三角形主要指边的关系和角的关系.通过对直观图形的观察,借助代数运算验证,便不难判断. ◆强化训练答案:1.20 2.y=-12x 3.y=100x4.2或-1;-1 5.-2;5 6.0≤b<4 7.(-2,-2),8.①②④ 9.C 10.B 11.C 12.C 13.B 14.D 15.A 16.C17.(1)由82y x y x ⎧=-⎪⎨⎪=-+⎩,解得1142x y =⎧⎨=-⎩,1124x y =-⎧⎨=⎩ ∴A (-2,4),B (4,-2).(2)当y=0时,x=2,故y=-x+2与x 轴交于M (2,0),∴OM=2.∴S △AOB =S △AOM +S △BOM =12OM·│y A │+12OM·│y B │=12·2·4+12·2·2=4+2=6.18.(1)y=-x+2 (2)S △AOB =619.由△=(-4a )2-4(4a 2-6a -8)≥0得a≥-43, 又∵a 是最小整数,∴a=-1. ∴二次方程即为x 2+4x+2=0,又mn=2,而(m ,n )在y=k x 的图像上,∴n=k m ,∴mn=k ,∴k=2,∴y=2x. 20.依题意得,直线L 的解析式为y=x .∵A (a ,3)在直线y=x 上, 则a=3.即A (3,3).又∵A (3,3)在y=k x 的图像上,可求得k=9.∴反比例函数的解析式为y=9x.21.(1)∵D (-8,0),∴B 点的横坐标为-8,代入y=14x 中,得y=-2.∴B 点坐标为(-8,-2),而A ,B 两点关于原点对称,∴A (8,2). 从而k=8×2=16.(2)∵N (0,-n ),B 是CD 的中点,A ,B ,M ,E 四点均在双曲线上,∴mn=k ,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). S 矩形DCNO =2mn=2k ,S △DBO =12mn=12k ,S △OEN =12mn=12k ,∴S 四边形OBCE =S 矩形DCNO -S △DBO -S △OEN =k . ∴k=4. 由直线y=14x 及双曲线y=4x,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2). 设直线CM 的解析式是y=ax+b ,由C ,M 两点在这条直线上,得 42,2 2.a b a b -+=-⎧⎨+=⎩解得a=b=23.∴直线CM 的解析式是y=23x+23. (3)如图所示,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1,M 1.设A 点的横坐标为a ,则B 点的横坐标为-a ,于是p=111A M MA a m MP M O m -==. 同理q=MB MQ =m am+, ∴p -q=a m m --m am+=-2. 22.(1)证∠CDQ=∠DPA ,∠DCQ=∠PDA . (2)y=60x(185.(3)S 四边形PBCQ =48-3。

相关文档
最新文档