工程热力学.ppt

合集下载

第二章——工程热力学课件PPT

第二章——工程热力学课件PPT

100 U1A2 60 Q2B1 U 2B1 40
Q2B1 80
第二章 讨论课
2、一个装有2kg工质的闭口系经历了如下 过程:过程中系统散热25kJ,外界对系统 做功100KJ,比热力学能减小15KJ/kg,并 且整个系统被举高1000m。试确定过程中系 统动能的变化。
Q E W
第二章 讨论课

Q

Q W
T
第二章 讨论课
➢ 计算题
1、对某种理想气体加热100KJ,使其由状 态1沿途径A可逆变化到状态2,同时对外做 功60KJ。若外界对该气体做功40KJ,迫使 它沿途径B可逆返回状态1。问返回过程中该 气体是吸热还是放热?热量是多少?
Q1A2 U1A2 W1A2 Q2B1 U 2B1 W2B1
V
1b 2
2c1
状态参数 ( Q W ) ( Q W )
1a 2
1b 2
热力学能及闭口系热一律表达式
定义 dU = Q - W 热力学能U 状态函数
Q = dU + W Q=U+W
闭口系热一律表达式
!!!两种特例 绝功系 Q = dU 绝热系 W = - dU
热力学能U 的物理意义
不可能制成的”
§2-2 热一律的推论热力学能
热力学能的导出 闭口系循环
Q W
( Q W ) 0
热力学能的导出
( Q W ) 0 对于循环1a2c1
p1
( Q W ) ( Q W ) 0
b
1a 2
2c1
a
c
对于循环1b2c1
2
( Q W ) ( Q W ) 0
• u : 比参数 [kJ/kg] • 热力学能总以变化量出现,热力学能零点人 为定

(精品)工程热力学(全套467页PPT课件)

(精品)工程热力学(全套467页PPT课件)
从能源结构来看,2004年一次能源消费中,煤炭占 67.7%,石油占22.7%,天然气占2.6%,水电等占 7.0%;一次能源生产总量中,煤炭占75.6%,石油 占13.5%,天然气占3.0%,水电等占7.9%。
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科

工程热力学

传热学 Heat Transfer

流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式

次 能
热能

电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能

水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变

生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa

工程热力学课件ppt

工程热力学课件ppt

热力系统的环境影响评价
环境影响
环境影响是指人类活动对环境产生的各种影响,包括正面和负面 影响。
生命周期评价
生命周期评价是一种用于评估产品或服务在整个生命周期内对环境 的影响的方法。
热力系统的环境影响
热力系统在运行过程中会产生各种环境影响,如排放污染物、消耗 能源等。
可持续性与可再生能源在热力学中的应用
高效热力系统的研究与开发
高效热力系统设计
针对不同应用场景,研究开发高效热 力系统,如高效燃气锅炉、高效空调 系统等,通过优化系统结构和运行参 数,降低能耗和提高能效。
高效热力系统评估
建立和完善高效热力系统的评估体系 ,制定相关标准和规范,为实际应用 提供指导和依据。
热力学在可再生能源利用中的应用
热力学在工程中的应用
热力发动机
热力发动机原理
热力发动机利用燃料燃烧产生的 热能转化为机械能,通过活塞、 转子或涡轮等机构输出动力。
热力发动机类型
热力发动机有多种类型,如内燃 机、蒸汽机和燃气轮机等,每种 类型都有其特点和应用领域。
热力发动机效率
提高热力发动机效率是重要的研 究方向,通过优化设计、改善燃 烧过程和减少热量损失等方法可 以提高效率。
新型热力材料与技术
新型热力材料
随着科技的发展,新型热力材料不断涌现,如纳米材料、复合材料等,这些材料 具有优异的热物理性能和热力学特性,为热力系统的优化和能效提升提供了新的 可能性。
新型热力技术
新型热力技术如热管技术、热泵技术、热电技术等在工程热力学领域的应用越来 越广泛,这些技术能够实现高效能的热量传递和转换,提高能源利用效率。
要点二
详细描述
热力系数是衡量热力学系统转换效率的参数,表示系统输 出功与输入功的比值。它反映了系统转换能量的能力,是 评价系统性能的重要指标之一。热力效率是衡量系统能量 转换效率的参数,表示系统输出有用功与输入总功的比值 。它反映了系统在能量转换过程中的损失程度,也是评价 系统性能的重要指标之一。

工程热力学第三章气体和蒸汽的性质ppt课件

工程热力学第三章气体和蒸汽的性质ppt课件

标准状态下的体积流量:
qV 0 Vm0qn 22.4103 288876 6474.98m3 / h
☆注意:不同状态下的体积不同。
3-2 理想气体的比热容
1、比热容的定义 ■比热容 c(质量热容)(specific heat)
1kg物质温度升高1K所需的热量, c q / dT J / (kg K)
(T 1000
)2
C3
(T 1000
)3
见附表4(温度单位为K)。
qp
T2 T1
cpdT
qV
T2 T1
cV
dT
说明:此种方法结果比较精确。
(2)平均比热容表
c
t2 t1
q t2 t1
q
t2 cdt
t1
t2 cdt
0℃
t1 cdt
0℃
c
t2 0℃
t2
c
t t1
0℃ 1
平均比热容 c t0℃的起始温度为0℃,见附表5(温
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
理想气体是实际上并不存在的假想气体。 假设: (1)分子是弹性的、不占体积的质点(与空间相比) (2)分子间没有作用力。(分子间的距离很大) ■作为理想气体的条件
气体 p 0 ,v ,即要沸点较低、远离液态。
■比定压热容c p 和比定容热容 cV 比定压热容(specific heat at constant pressure):定压
过程的比热容。
比定容热容(specific heat at constant volume):定容过
程的比热容。
●可逆过程

《工程热力学》课件

《工程热力学》课件

理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。

工程热力学PPT课件

工程热力学PPT课件
另一种表述是,热量不可能自发地从低温物体传到高温物体而不引起其他变化。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。

工程热力学ppt课件

工程热力学ppt课件

{
但 T < T0 ,Q不能传回 T 0 。
结论:温差使过程不可逆。
进一步分析,为使Q能传回 T 0 ,需加热泵,但要消耗一 定的功 W泵 ,也不可逆(比较水泵)。
压力差的影响:压力差使过程不可逆。
F α P f
pA > F cos α + f pA = F cos α + f
非准静态过程—nonequilibrium process 非准静态过程 准静态过程, 准静态过程,不可逆 准静态过程, 准静态过程,可逆
定义:工质从中吸取或向之排放热能的物质系统。
热源
{
温度高低
温度变化
{ {
高温热源(热源 — heat source) 低温热源(冷源—heat sink) 恒温热源(constant heat reservoir)
变温热源(variational heat reservoir)
3.1 热力系统(热力系、系统、体系)和 外界及边界 系统(thermodynamic system or system)
3.6 热力系示例图
刚性绝热喷管
取红线为系统—闭口系 取喷管为系统—开口系绝热系?
§1-3 工质的热力状态及基本状态数
• 热力学状态— state of thermodynamic system
— 某一瞬间系统所呈现的宏观物理状况
• 状态参数— state of properties
— 描述系统所处状态的宏观物理量 a) .状态参数是宏观量,反映了大量粒子运动的宏观平均效果, 只有平衡态才有统一的状态参数。 常用的状参有:p, T,V,U,H,S等, 其中p,T,V称为基本状态参数。 b)状态参数的特性:状态的单值函数 物理上:与过程无关 dx ∫ dx = 0, ∫abc dx = ∫adc 数学上:其微分是全微分

《工程热力学》课件

《工程热力学》课件

空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湿空气
一、湿空气的一般概念 *湿空气:干空气和水蒸气组成的混合气体--混合理想气体。
*湿空气的总压力p=pa+pv *在采暖与空调等工程中的湿空气是环境大气,B=pa+pv。
二、饱和湿空气 未饱和湿空气—过热水蒸
气+干空气,如点A。
饱和湿空气—饱和水蒸气
+干空气,如点B。 露点温度(露点)—pv对
*当温度超过一定值tc时,液相不可能存在,而只可 能是气相。
思考题
有没有500ºC的水?
水蒸气的 h-s图
h-s图的结构: C—临界点,
六类等值线簇: 定焓线、定熵线、定压线、定温线定容 线、定干度线。
四、 水蒸气的基本热力过程 ---四个过程
可利用的公式: •热力学第一定律 •可逆过程的公式
不可利用的公式: •理想气体的公式
2) 柴油机的理论循环—定压加热循环(狄塞尔循环)
p 2
3
s
s
T
2
4
1
1
v
一个定压、一个定容、两个定熵 过程构成
3
p
4
v
s
定压加热循环的计算
T
3
吸热量 q1 cp T3 T2
放热量 q2 cv T4 T1
三个阶段: ①水的预热过程
—未饱和水(0.01℃)→饱和水(ts);
②水的汽化过程
—饱和水(ts)→干饱和水蒸气(ts);
③水蒸气的过热过程
—饱和水蒸气(ts)→过热水蒸气(t)。
汽化潜热---1kg饱和水汽化成为干饱和水蒸气所需的热量。
压力越高,汽化潜热越小。在临界压力下,汽化潜热为零。
水蒸气定压发生过程说明
2 管内定熵流动的基本特性
喷管—利用气体压降使气流加速的管道。即dcf>0。
扩压管—利用气体流速逐渐降低而使气体压力增高的设备。
即dcf<0。
喷管中气体状态的变化为:
dcf>0 → dh<0、dp<0、dv>0 。
扩压管中气体状态的变化为: dp>0 → dcf<0 、dh>0、dv<0 。
扩压管与喷管的区别与联系
动力循环分类: 凝汽式动力循环 --排汽压力低于大气压力的动力循环。 背压式动力循环 ---排汽压力高于大气压力动力循环. 调节抽汽式动力循环 --凝汽式与背压式组合的动力循环.
热电联产的热效率比朗肯循环低, 热能利用率最高 K=1
五、内燃机循环
1)汽油机理论循环─定容加热循环(奥托循环)
p 3
T 3
*热力设备:蒸汽锅炉、汽轮机、给水泵和冷凝器。
锅 炉
4
1 汽轮机 12 汽轮机 s 膨胀 23 凝汽器 p 放热
发电机 34 给水泵 s 压缩
2
41 锅炉 p 吸热
凝汽器
给水泵 3
郎肯循环
*朗肯循环工作循环:两个可逆定
压和两个可逆绝热组成的理想循环。
*热力过程: 0-1—定压吸热过程, 1-2—绝热膨胀过程, 2-3—定压放热过程, 3-0—绝热加压过程。
吸收水蒸气的能力愈弱; Φ ↓→湿空气干燥,吸收水蒸气 的能力↑
*Φ为0时,即为干空气; Φ为100% ,即为饱和湿空气; Φ介于0—1之间的湿空气是未饱和湿空气。
*Φ的测量:干湿球温度计
3 含湿量d —单位质量干空气的湿空气含有的水蒸气的质量。
d mv 1000 622 pv 622 ps
注册公用设备工程师考试 专业基础课辅导
工程热力学
辅导人 北京建筑工程学院 邱 林
第六部分 水蒸气和湿空气
一、水蒸气的基本概念
水蒸气不是理性气体,而是离液相较近的实际气体。 一)冷凝、汽化、蒸发和沸腾
气化---液相转变为气相的过程,反过程叫冷凝。 气化分蒸发和沸腾 蒸发—液体表面的汽化过程,任何温度都可以发生 沸腾---液体内部的汽化过程,达到沸点温度时才会 发生
出口压力等于环境压 力
1)当
pb p0



pc p0
即 pb pc
采用渐缩喷管。
2)当
pb p0


pc p0

pb pc
采用缩扩喷管。
** 渐缩喷管的校和计算---确 定
p2
已知 p0、T0、k、pb、f
p p 1) 当 pb pc 即
p0
p0
b
c
p2 pb
2)当
二)饱和状态
饱和状态:汽化与凝结的动态平衡
饱和温度Ts 饱和压力ps
一一对应 Ts
ps
饱和状态有三种状态,分别: ----饱和水,湿蒸汽,干饱和蒸汽
ps=1.01325bar
青藏 ps=0.6bar 高压锅ps=1.6bar
Ts=100 ℃ Ts=85.95 ℃
Ts=113.32 ℃
二、 水蒸气的定压发生过程
缩放型喷管的最小截面处称为喉部,Ma=1,dA=0。临界截面。
扩压管:Ma>l,采用渐缩扩压管。 Ma<1,采用渐扩扩压管。 Ma > 1→ Ma < 1 ,采用渐缩渐扩扩压管。
3 气体的流速及临界流速
绝热流动的能量关系式 通常取cf0=0,出口流速为:
h0
h2

1 2
(cf22
cf20 )
过热蒸汽 过热度 t过热 t ts
水蒸气的p-v图和T-s图
水蒸气的相变图线可以总结为: 一点(临界点)、 二线(上界线、下界线) 三区(液态区、湿蒸汽区、气态区) 五态(未饱和水状态、饱和水状态、湿饱和蒸汽状态、 干饱和蒸汽状态、过热蒸汽状态)
水和水蒸气状态参数确定的原则
1、未饱和水及过热蒸汽 确定任意两个独立参数,如:p、T
扩压管是在已知进口参数、 定熵流动的基本关系式
进口速度和出口速度的情 和管道截面变化规律的
况下计算出口压力
关系式相同
马赫数:气体流速与当地声速的比值。Ma=cf/a Ma<l,即cf<a,亚音速; Ma>l,即cf>a,超音速; Ma=l,即cf=a, 音速 管道截面变化与气流速度变化的关系:
喷管: Ma<1时, 采用渐缩喷管; Ma > 1时,采用渐扩喷管; Ma<1→ Ma > 1,采用缩放型喷管(拉伐尔喷管)
应的饱和温度。
三、绝对湿度、相对湿度、含湿量和焓
1 绝对湿度—每立方米湿空气中含有的水蒸气的质量—
即水蒸气密度。
v

mv V
2 相对湿度--湿空气中水蒸气的分压力pv与同温度下饱和 湿空气中水蒸气分压力ps的比值: pv v
ps s
*Φ说明了吸收水蒸气的能力。 Φ值愈大,湿空气愈潮湿,
5 干球温度与湿球温度
湿球温度的形成过程
近似看做是定焓过程。
干球温度、湿球温度与露点三者的关系: 未饱和湿空气:干球温度>湿球温度>露点温度 饱和湿空气: 干球温度=湿球温度=露点温度
四、焓湿图(h-d图)
焓-湿图上有下述图线 ①定含湿量线 ②定焓线。 ③定温线。 ④定相对湿度线。⑤水蒸气分压力线。
(1) Q U W U pdV H
(2) S Sf Sg 0
只有熵加热时永远增加
(3) 实际气体 h f (T )
实际气体汽化时,T=Ts不变,但h增加
h '' h ' 汽化潜热 (4) 未饱和水 过冷度 t过冷 ts t 过冷水
s
2
s
4
v
4 2
v
1
1
v
s
两个定容、两个定熵过程构成
定容加热理论循环的计算
吸热量 q1 cv T3 T2
T
放热量 q2 cv T4 T1
循环净功 w0 q1 q2
循环热效率
t

w0 q1
1
q2 q1
2
tV
1 T4 T1 T3 T2
1 T1 T4 T2 T3
二、朗肯循环热效率分析
* 热计算
工质吸热 工质放热
q1=h1-h0
q2 h2 h3
汽轮机所作轴功 水泵耗功可忽略 循环净功
(ws,T)1-2=h1-h2 w0 (h1 h2 )
朗肯循环热效率
t

w0 q1

h1 h2 h1 h0
提高朗肯循环热效率的途径
1、提高蒸汽初温 乏汽的干度增大,有利改善汽轮机工作条件 注意,要求锅炉材料具有较好的耐热性
T1 1 T2 1
1
因 s23 s14

cv
ln
T3 T2

cv
ln
T4 T1

T3 T4 T2 T1
3
v
4
v
s
代入上式 得
tv
1 T1 T2
1 1
T2 T1
1
v1
1 v2
1
tv
1
1
1
ε -压缩比,
表示压缩过程中工质体积被压缩的程度。
pb p0


pc p0

pb pc
喷管的最大流量
mm ax
f ccc vc
p2 pc
kg/s
5.绝热节流
定义:气体在管道中流过突然缩小的截面, 而又未及与外界进行热量交换的过程
特点: 1)绝热节流过程前后的焓相等,但 整个过程绝不是等焓过程。
在缩孔附近,流速 ,焓
h2 h1
2)不可逆性
管道截面积的变化 系统的外部条件
绝热流动的基本方程
稳态稳流(稳定流动)
相关文档
最新文档