第二章电阻电路的等效变换
第二章 电阻电路的等效变换

-
C
i
+ u
-
对A电路Hale Waihona Puke 言,C代替B后BA
C
A
(1)等效变换的条件
结 论 (2)仅仅是对外等效
(3)对内不等效
两电路具有相同的VCR
即外电路A中的电压、 电流和功率不变。
C是B的简化。
2.3 电阻的串联、并联
1. 电阻串联( Series Connection of Resistors )
(1) 电路特点
R31
R1
R2
R3
2
R23
3
2
3
形网络
Y形网络
R2
b
R4
三端 网络
,Y 网络的变形:
形电路 ( 形)
T 形电路 (Y形)
这两个电路当它们的电阻满足一定的关系时, 能够相互等效。
2. —Y 变换的等效条件
1 +– i1
1 +i1Y –
u12 R12
– i2
2+
R23 u23
等效条件:
i1 =i1Y ,
第二章 电阻电路的等效变换
2.2 电路的等效变换
1. 二端电路(网络)
任何一个复杂的电路, 向外引出两个端钮,且从一个 端子流入的电流等于从另一端子流出的电流,则称这一电 路为二端网络(或一端口网络)。
i i
2. 电路等效的概念
两个二端电路,端口具有相同的伏安特性,则两电路等效
B
i
+ u
等效
i3 =u31 /R31 – u23 /R23
根据等效条件,比较式(3)与式(1),得Y型型的变换条件:
R12
R1R2R2R3R3R1 R3
第二章 电阻电路的等效变换.

第二章 电阻电路的等效变换§ 2-1 引言§ 2-2电阻的等效变换 § 2-3 电阻串联和并联§ 2-4 星三角变换(一)教学目标1、 要求掌握电路等效的概念;2、 要求掌握电阻串并联电路的计算方法及分压分流公式;3、要求掌握星形三角形的等效变换。
(二)教学难点星三角变换为难点(三)教学思路对于简单电路的分析,常常采用的是等效化简的方法,首先让同学理解等效的概念,在此基础上,再接下来介绍串并联等效化简及其他变换。
(四)教学内容和要点2.2等效变换的概念(二端网络)i =i ’c(二端网络)若两个二端网络N 1和N 2,当它们与同一个外部电路相接,在相接端点处的电压、电流关系完全相同时,则称N 1和N 2为相互等效的二端网络.2.3 电阻的串联、并联和混联一. 电阻的串联+ + _ _ u u u R 3 i R eq1.特征:流过同一电流(用于以后判断是否为串联) 2.KVL:iR u u u u u k R k ⋅==++∑3213.等效电阻:∑=keq RR4.分压公式:u R R u eqkk =5.功率:2i R P k k = ∑=kPP二. 电阻的并联特征:1.承受同一个电压2.KCL:∑=++k i i i i 321分流不分压,分流电路u GR ui k kk ==u G i k )(∑= ∑=k eq G G3.等效电阻:∑=keq GG4.分压公式:i G G u G i eqkk k == 5.功率:2u G P k k =∑=kP P并联串联↔↔↔,,i u G RR 1 G 1i 1(R eq)G eq三.电阻的混联串联 串并联13232R R R R R R eq++=321321)(R RR R R R R eq ++⋅+=求R ab . R ab =4Ω+6Ω=10Ω 例:桥式电路 具有四个节点 每个节点联接三条支路求R ab .平衡电桥:R 1﹒R 4=R 2﹒R 3例:R 1c 6Ω3Ω4Ω4Ω2Ω1Ω3R 4求R ab =2R a00804080804031603a ab R R ⨯==Ω+=Ω 例:无限长梯形网络,求R ab =?(R=5Ω) R cd ≈R ab 近似解法22205250ab ab abab ab abab ab R R R R R R R R R R R R R ⋅=++--⋅=--=∴==R ab2.4 电阻的Y —⊿等效变换1、三端网络的等效概念若两个三端网络的电压u 13、u 23与电流i 1、i 2之间的关系完全相同时,则称这两个三端网络对外互为等效。
大学物理-电阻电路的等效变换名师公开课获奖课件百校联赛一等奖课件

+ u_
N2 压电流与电路(b)中外电路部分旳完
全相同。
(b)
思索题:
i +
2 u
4V
_
N1
i +
3 u
5V
_
N2
如上图所示两个一端口网络N1和N2,已知N1:当u=2V时,i =-1A; 对于N2: 当u=2V时,i=-1A;即两个网络具有相同 旳电压和电流,问这两个网络是否等效?
两个端口旳伏安关系:
由串联组合(us, R)
并联组合(is, G)旳等效变换:
i
+
uS _
+
u
R
_
变换
由并联组合(is, G)
串
联组合(us, R)旳等效变换:
i
iS
+
Gu _
i
iS
+
Gu _
is us R , G 1 R
i
+
uS _
+
u
R
_
us is G ,
R
1 G
注意:
1. 一般情况下,这两种等效变换前后旳内部功率不相同, 但对外部来说,他们吸收或发出旳功率相同。
– i1 u31 R31
1+ u12
R12
+ i3 3–
R23 u23
型网络
i2 +2
,Y 网络旳变形:
型电路 ( 型)
T 型电路 (Y 型)
2. — Y 等效变换
外
电
路
1
R31
R12
3
R23
2
1
外 电 路
R1
R3
第02章电阻电路的等效变换(丘关源)

(6)恒压源并联任何元件其两端电压不变;
恒流源串联任何元件其流出电流不变;
a a
+ us
-
+ +
-
对外等效
us
-
b
c
b c
对外等效
is
+
-
d
is
d
(1-30)
例1 用电源等效变换法求i R5
R1 u1 + R2 R3 i
+
i=?
解:
-u3
R4
is
R5 u3 — R3 i
应 用 举 例
一、理想电压源的串联和并联
1、串联 + uS1_ _ uS2 +
+ 注意参考方向
º uS=+uS1 …-uS2 i + uS _ º
等效
+
uS _
º +
_ º
2、并联
条件:uS=uS1=uS2 方向相同 º 恒压源中的电流由外电路决定。相同的恒压源才能并联 。
(1-21)
uS1_
u S2
+ _
i
º
3、恒压源与任意支路(非恒压源)并联的等效 i i + + + + 任意 uS 对外等效 uS _ u _ u 元件 _ _ 4、实际电压源的串联等效
+ i +
uS1 _
R1
_ uS2 + u
R2 _
等效
uS _ R + i +
u
_
uS=+uS1-uS2
R=R1 + R2
(1-22)
二、理想电流源的串联和并联
第2章电阻电路的等效变换

总电流
U S 18 I= = A = 6A R 3
由分流公式得
6 I1 = I = × 6A = 4A 4× 4 9 6 + (1 + ) 4+4
再分流得
6
1 I x = I 1 = 2A 2
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.4 Y形电路和Δ形电路之间 的等效变换
返回
电路分析基础
如何等效化简电桥测温电路? 如何等效化简电桥测温电路?
返回
电路分析基础
第2章 电阻电路的等效变换
2.1 等效变换
电阻电路
线性电阻电路
非线性电阻电路
简化线性电阻电路的主要依据是等效变换
返回
电路分析基础
第2章 电阻电路的等效变换
2.1.1 一端口网络的定义
二端网络
一端口网络
流入一个端子的电流必定等于流出另一端子的电流
Ig =
Rp Rg + R p
× 10 × 10 −3 = 1 × 10 −3 mA
解之得应并联的电阻为
0.1RG 2 × 10 3 Rp = = Ω ≈ 222.22Ω 0.9 9
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.3 电阻的混联
判别电路的串并联关系根据以下原则: 判别电路的串并联关系根据以下原则: (1)看电路的结构特点。 看电路的结构特点。 (2)看电压、电流关系。 看电压、电流关系。 (3)对电路作变形等效。 对电路作变形等效。 (4)找出等电位点。 找出等电位点。
R4 R5 R2(R3 + ) R4+R5 R = R1 + R4 R5 R2 + (R3 + ) R4 + R5
02第二章电阻电路的等效变换

12
12
12
8 //(4 4) 4
R
R eq R
R
R
例6.求Req。
解:
R
R
R
R R
Req
R 8
例7.
R R I1 I2
I3
I4 求:I1 ,I4 ,U4
12V
2R 2R
2R
U4 2R
解:
I1
12 R
I4
1 2
I
3
1 4
I2
1 8
I1
1 8
12 R
3 2R
0.04
16.5mA
10mA
I3
G1
G3 G2
G3
Is
0.04 0.025 0.1
0.04
16.5mA
4mA
三、 电阻的串并联(混联)
电阻的串联和并联相结合的联接方式叫电阻的串并联 (或混联)。
要求:弄清楚串、并联的概念。
计算举例:
4
º
例1.
Req
2 3
Req
i1
i' 1
,
i2
i' 2
,
i3
i' 3
i' 2
2
对,各个电阻的电流分别为:
R31
'
i ' 31
i3 3
1 i'
1
i' 12
i' u12 R 12
12
R 12
R23
电阻电路的等效变换法

i
R1
+
u
R2
-
VAR:
i + u VAR:
R=R1+R2
注意:当电路中的某一部分用其等效电路替代后,未被替代部分的电压电流均 应保持不变,即“对外等效”。
§2-1 引言
三、等效法
1、等效法:将复杂电路进行等效化简,从而求出各i. u, p的一种分析方法
2、本章内容
电阻的等效变换 电源的等效变换
第二章 电阻电路的等效变换法
R4
Rg
R2
R3
若R1 R3=R2 R4
R1
R4
则电桥平衡
或者
R2
R3
R1
R4
x
R2
R3
第二章 电阻电路的等效变换法
§2-3 Y—△等效变换
一、电阻的Y、△联接 1、为什么需Y—△变换 2、Y形联接
Байду номын сангаас
§2-3 Y—△等效变换
3、△形联接 a
4、举例: 上图:R1.R2.R3 R3.R4.R5——△ R1.R3.R4 R2.R3.R5——Y
+
i
+
US -
U
R0 -
i
+
US R0
R0
U
-
§2-5 两种实际电源的等效变换
2、实际电流源——实际电压源
iS R0
+
i
iSR0 -
R0
3、说明: 注意极性 等效对外电路等效,内部不等效 举例说明其应用 受控源也可以同样等效(但不能将受控变掉)
§2-5 两种实际电源的等效变换
+
U1
-
R0
第二章电阻电路的等效变

第二章-电阻电路的等效变第二章 电阻电路的等效变换2.1 学习要点1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。
2. 电源的串联、并联及等效变换。
3. “实际电源”的等效变换。
4. 输入电阻的求法。
2.2 内容提要 2.2.1 电阻的等效变换1. 电阻的串联:等效电阻: R eq =∑1=k nk R ;分压公式:u k =eqkeq ×R R u ; 2. 电阻的并联:等效电导:G eq =∑1=k nk G ;分流公式:qe G G i i keqk ×=;2.2.2. 电阻的Y 与△的等效变换1. △→Y :一般公式:Y 形电阻=形电阻之和形相邻电阻的乘积∆∆;即31232331*********231231212311++=++=++R R R R R R R R R R R R R R R R R R 2312=2. Y →△:一般公式:形不相邻电阻形电阻两两乘积之和形电阻=Y Y ∆;即:213322131113322123313322112++=++=++=R R R R R R R RR R R R R R R R R R R R R R R R2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。
表2.1 电源的串联、并联等效变换图2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”R u =R i =1/G i u s =i s R i =i s /G i两者等效互换的原则是保持其端口的V AR 不变。
2.2.5 输入电阻的求法一端口无源网络输入电阻的定义(见图2.2):R in =u/ i1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。
2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻R in =u s /i 或 R in =u/ i s方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比值即是一端口无源网络的输入电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
º
º 并联: 电压相同的电压
源才能并联,且
每个电源的电流
º
不确定。
二、理想电流源的串并联
并联: 可等效成一个理想电流源 iS(与iS参考方向相
注意方向 !
4. 功率关系
p1=G1u2, p2=G2u2,, pn=Gnu2
p1: p2 : : pn= G1 : G2 : :Gn
总功率 p=Geqi2 = (G1+ G2+ …+Gn ) u2 =G1i2+G2i2+ +Gni2 =p1+ p2++ pn
(1)电阻并联时,各电阻消耗的功率与电阻大小成反比 (2)等效电导消耗的功率等于各并联电导消耗功率总和
i
+
i1 i2
ik
in 等效 +
u R1 R2
Rk
Rn
u
Req
_
_
由KCL: 故有
i = i1+ i2+ …+ ik+ in= u / Req
1/Req= 1/R1+1/R2+…+1/Rn
令 G =1 / R, 称为电导
Geq=G1+G2+…+Gk+…+Gn= Gk= 1/Rk
º Rin=? 1.3 6.5 13
2-2 电阻的串联、并联和串并联
一、 电阻串联 ( Series Connection of Resistors )
1. 电路特点:
R1
Rk
Rn
i
+ u1 _ + uk _ + un _
+
u
_
(a) 各电阻顺序连接,流过同一电流(KCL);
(b) 总电压等于各串联电阻的电压之和 (KVL)。
u u 1 u k u n
等效电阻针对电路的某两 端而言,否则无意义。
R ab R 1 R R 2 2 ( R R 3 3 R R 4 4 ) 6 1 1( 5 5 5 5 5 5 ) 1 2 R cd R R 3 3( R R 22 R R 44 )5 5( 11 5 5 55 ) 4
例5:求:Rab a
三、 电阻的串并联(混联)
要求:弄清楚串、并联的概念。
例1. º
R º
4 2
3 6 3
R = 4∥(2+3∥6) = 2
例2.
40
º
º
R
R
30
º
30
º
R = (40∥40+30∥30∥30) = 30
40 40
30 30
例3.
+ 12V_
I1 I2 R I3 R
+
+
2R U_1 2R U_2 2R
两个两端电路,端口具有相同的电压、电流
关系,则称它们是等效的电路。
VCR相同
N1
等效
N2
B
i
+ u
等效
C
i
+ u
- VCR相同
-
对A电路中的电流、电压和功率而言,满足
B
A
C
A
(1)电路等效的条件 明 确 (2)电路等效的对象
(3)电路等效的目的
两电路具有相同的VCR
未变化的外电路A中的 电压、电流和功率 化简电路,方便计算
2. 等效电阻Req
R1
Rk
Rn
Req
等效
i
+ u1 _ + uk _ + un _
i
+
u
_
+
u
_
Req=( R1+ R2 +…+Rn) = Rk
结论:串联电路的总电阻等于各分电阻之和。
3. 串联电阻上电压的分配 例i :两个电阻分压, 如下图
º
uk
Rk Req
u
++ u-1
uu2
_+
R1
u1
R1 R1 R2
º
3. 并联电阻的电流分配
由
ik u/ Rk Gk i u/ Req Geq
Rin=1.3∥6.5∥13 故 R=1/G=1
即 电流分配与电导成正比
知 ik Gk i Gk
对于两电阻并联, 有
i
º i1
i2
R1
R2
º
i11/R1 1 /R 1/R2iR1R 2R2i i21/R 1 1 /R 1/2R 2iR 1R 1R 2i
二、电阻并联 (Parallel Connection)
1. 电路特点:
i
+
i1 i2
ik
in
u R1 R2
Rk
Rn
_
(a) 各电阻两端分别接在一起,两端为同一电压 (KVL); (b) 总电流等于流过各并联电阻的电流之和 (KCL)。
i = i1+ i2+ …+ ik+ …+in
2. 等i 效电阻Req
u
R2
u2
R2 R1 R2
u
º
注意方向 !
4. 功率关系
p1=R1i2, p2=R2i2,, pn=Rni2
p1: p2 : : pn= R1 : R2 : :Rn
总功率 p=Reqi2 = (R1+ R2+ …+Rn ) i2 =R1i2+R2i2+ +Rni2 =p1+ p2++ pn
(1)电阻串联时,各电阻消耗的功率与电阻大小成正比 (2)等效电阻消耗的功率等于各串联电阻消耗功率的总和
I4 +
2R U_4
求:I1 ,I4 ,U4
解: ① 用分流方法做
I41 2I31 4I28 1I18 11 R 2 2 3 R
U 4I42R3V
I1
12 R
②用分压方法做
U4
U2 2
14U1
3V
I4
3 2R
例4 电路如图所示。已知R1=6, R2=15, R3=R4=5。试求ab两端和cd两端的等效电阻。
第二章 电阻电路的等效变换
Georg Simon Ohm (1787-1845),欧姆
a
US
U
R
I R R US
c US
b
重点:电阻等效变换,无源电阻电路的等效变换;
2-1 2-2 2-4 2-5 2-6
引言 电阻的串联、并联和串并联 电压源、电流源的串并联 电源的等效变换 输入电阻和等效电阻
R
R
d
Rab
uab i
R
Rab R
练习:电路如图所示。试求ab两端和cd两端的等效电阻。
R ab3 0 R cd 1 5
2-4 电压源、电流源的串并联
一、 理想电压源的串并联
+
º
uS1 _
+
uSk _ º
Iº ++ 5V_ 5V_
º
+ uS _
I + 5V_
º 串联: uS= uSk
其中与Us参考方向相 同的电压源Us取正号, 相反则取负号。
2-1 引言
一、电路分类:
线性电路:线性无源元件、受控源、独立电源组成 非线性电路:含非线性元件
二、电路求解方法:
1.等效电路 2.独立变量i,u,根据KCL、KVL列方程求解 3.线性电路的性质,定理。
二、等效:
1. 两端电路(网络): 电路为二端网络(或一端口网络)。
i
无
i
无
源
i
源
一
i
端
口
2. 两端电路等效的概念
20 40
b
100 10 60 50
a
20
120
b
100 60
60
80
a
b
20 100
a
100
Rab=70
20 40
b
100 60
例6:求:Rab
c
对称电路
c、d等电位
c
R
R
iR a i1
R
Байду номын сангаас
R
i
R i2 b
短路 a
b
R
R
d
c
根据电
d
R
R
流分配
i1
1 2
i
i2
a
b
11 uabi1Ri2R(2i2i)RiR