氨基树脂的结构分类性能以及应用

氨基树脂的结构分类性能以及应用
氨基树脂的结构分类性能以及应用

氨基树脂的结构、分类、性能以及应用

氨基树脂的结构、分类、性能以及应用

一、氨基树脂的结构与分类

氨基树脂是指含有氨基的化合物与醛类(主要是甲醛)经缩聚反应制得的热固性树脂。氨基树脂在模塑料、黏结材料、层压材料以及纸张处理剂等方面有广泛的应用。

涂料用氨基树脂既可按醚化剂分类,又可按母体化合物分类,还可按醚化程度分类。按醚化剂的不同,可分为丁醚化氨基树脂、甲醚化氨基树脂以及混合醚化氨基树脂(甲醇和乙醇混合醚化、甲醇和丁醇混合醚化的氨基树脂);按每体化合物的不同,可分为脲醛树脂、三聚氰胺甲醛树脂、苯代三聚氰胺甲醛树脂以及共缩聚树脂(三聚树脂尿素共缩聚树脂、三聚氰胺苯代三聚氰胺共缩聚树脂);按醚化程度的不同,可分为聚合型部分烷基化氨基树脂、聚合型高亚氨基高醚化氨基树脂以及单体型高烷基化氨基树脂。

按结构分类,丁醚化氨基树脂主要属于聚合型部分烷基氨基树脂,这类树脂羟甲基含量较高,醚化程度低,分子量较高。

二、氨基树脂的性能与应用

氨基树脂的性能既与母体化合物的性能有关,又与醚化剂及醚化程度有关。树脂的醚化程度一般通过测定树脂对200号溶剂油的容忍度来控制。测定容忍度在规定的不挥发分含量及规定的溶剂中进行,测定方法是:称39试样于l00mL烧杯中,在25℃时搅拌下以200号溶剂油进行滴定,至试样溶液显示乳浊并在15s 内不消失为终点。1g试样可容忍200号溶剂油的质量(g)即为树脂的容忍度。容忍度也可用100g试样能容忍的溶剂的质量(g)来表示。

1.脲醛树脂的性能

脲醛树脂具有如下特性:价格低廉,来源充足;分子结构上含有极性氧原子,与基材的附着力好,可用于底漆,亦可用于中间层涂料;用酸催化时可在室温固化,故可用于双组分木器涂料;以脲醛树脂固化的涂膜改善了保色性,硬度较高,柔韧性较好,但对保光性有一定的影响;用于锤纹漆时有较清晰的花纹。但因脲醛树脂溶液的黏度较大,故贮存稳定性较差。

用甲醇醚化的脲醛树脂仍可溶于水,它具有快固性,可用作水性涂料交联剂,也可与溶剂型醇酸树脂并用。用乙醇醚化的脲醛树脂可溶于乙醇,它固化速度慢于甲醚化脲醛树脂。以丁醇醚他的脲醛树脂在有机溶剂中有较好的溶解度。一般来说,单元醇的分子链越长,醚化产物在有机溶剂中的溶解性越好,但固化速度较慢。

丁醚化脲醛树脂在溶解性、混溶性、固化性、涂膜性能和成本等方面都较理想,且原料易得,生产工艺简单,所以与溶剂型涂料相配合的交联剂常采用丁醚化氨基树脂。丁醚化

脲醛树脂是水白色黏稠液体,主要用于和不干性醇酸树脂配制氨基醇酸烘漆,以提高醇酸树脂的硬度、干性等。因脲醛树脂的耐候性和耐水性稍差,因此大多用于内用漆和底漆。

大多数实用的甲醚化脲醛树脂属于聚合型部分烷基化的氨基树脂,这类树脂有良好的醇溶性和水溶性。甲醚化脲醛树脂具有快固性,对金属有良好的附着力,成本较低,可作高固体涂料、无溶剂

涂料交联剂。工业甲醚化脲醛树脂有两种规格,一种分子量较低,和各种醇酸树脂、环氧树脂、聚酯树脂有良好的混溶性;另一种具有较高的分子量,适合与干性或不干性短油醇酸树脂配合使用,以芳香烃和醇类的混合物为溶剂,涂膜有良好的光泽和耐冲击性。

2.三聚氰胺甲醛树脂的性能

三聚氰胺甲醛树脂简称三聚氰胺树脂,是多官能团度的聚合物,常和醇酸树脂、热固性丙烯酸树脂等配合,制成氨基烘漆。

与丁醚化脲醛树脂相比,丁醚化三聚氰胺树脂的交联度较大,其热固化速度、硬度、光泽、抗水性、耐化学性、耐热性和电绝缘性都较脲醛树脂优良。且过度烘烤时能保持较好的保光保色性,用它制漆不会影响基体树脂的耐候性。丁醚化三聚氰胺树脂可溶于各种有机溶剂,不溶于水,可用于各种溶剂型烘烤涂料,固化速度快。

甲醚化的三聚氰胺树脂可分为三类,第一类是聚合型部分甲醚化的三聚氰胺树脂,这类树脂游离羟甲基较多,甲醚化度较低,分子量较高,水溶性较好;第二类为聚合型高亚氨基高甲醚化三聚氰胺树脂,这类树脂游离羟甲基少,甲醚化度较第一类高,分子量较第一类低,分子中保留了一定量的亚氨基,可溶于水和醇类溶剂;第三类是单体型高甲醚化三聚氰胺树脂,该类树脂游离羟甲基最少,中醚化度高,分子量最小,基本上是单体,需要助溶剂才能溶于水。

甲醚化氨基树脂中产量最大、应用最广的是六甲氧基甲基三聚氰胺树脂(HMMM),它是一个6官能度的单体化合物,属于单体型高醚化三聚氰胺树脂。HMMM可溶于醇类、酮类、芳烃、酯类、醇醚类溶剂,部分溶于水。工业级HMMM分子结构中含极少量的亚氨基和羟甲基,它作交联剂时固化温度高于通用型丁醚化三聚氰胺树脂,有时还需加入酸性催化剂帮助固化,固化涂膜硬度大,柔韧性大。HMMM可与醇酸、聚酯、热固性丙烯酸树脂、环氧树脂中羟基、羧基、酰氨基进行交联反应,也可作织物处理剂、纸张涂料,或用于油墨制造、高固体涂料。聚合型部分甲醚化三聚氰胺树脂可溶于醇类,也具有水溶性,可用于水性涂料。树脂中的反应基团主要是甲氧基甲基和羟

甲基。它与醇酸树脂、环氧树脂、聚酯树脂、热固性丙烯酸树脂配合作交联剂时,易于基体树脂的羟基进行缩聚反应,同时也进行自缩聚反应,产生性能优良的涂膜。基体树脂的酸值可有效地催化固化反应,增加配方中的氨基树脂的用量,涂膜的硬度增加,但柔韧性下降。与丁醚化三聚氰胺相比,它具有快固性,具有较好的耐化学性,可代替丁醚化三聚氰胺树脂应用于通

用型磁漆及卷材涂料中。

聚合型高亚氨基高甲醚化三聚氰胺树脂的分子量比部分甲酰化的三聚氰胺树脂低,易溶于芳烃溶剂、醇和水,适于作高固体涂料,以及需要高温快固的卷材涂料交联剂。与聚合型部分甲醚化三聚氰胺树脂不同之处在于树脂中保留了一定量的未反应的活性氢原子。由于醚化反应较完全,经缩聚反应后树脂中残余的羟甲基较少,但它能像部分烷基化的氨基树脂一样在固化时能进行交联反应,也能进行自缩聚反应。增加涂料配方中氨基树脂的用量可得到较硬的涂膜。这类树脂与含羟基、羧基、酰氨基的基体树脂反应时,基体树脂的酸值可有效地催化交联反应,外加弱酸催化剂如苯酐、烷基磷酸酯等可加速固化反应。由于树脂中亚氨基含量较高,使它有较快的固化性。在低温(120℃以下)固化时,由于进行自缩聚的同时进行了有效的交联厦应,故能得到性能优良的涂膜。以它交联的涂料固化时释放甲醛较少,厚涂层施工时不易产生缩孔,并且在烘烤后涂料的保重性也较好。

3.苯代三聚氰胺甲醛树脂的性能

苯代三聚氰胺分子中引入了苯环,与三聚氰胺相比,降低了整个分子的极性。因此与三聚氰胺相比,苯代三聚氰胺在有机溶剂中的溶解性增大,与基体树脂的混溶性也大为改善。以苯代三聚氰胺交联的涂料初期有高度的光泽,其耐碱性、耐水性和耐热性也有所提高。但由于苯环的引入,降低了官能度,因而涂料的固化速度比三聚氰胺树脂慢,涂膜的硬度也不及三聚氰胺,耐候性较差。一般来说,苯代三聚氰胺适用于内用漆。

实用的甲醚化苯代三聚氰胺大多属于单体型高烷基化氨基树脂。由于苯环的引入,使这类树脂具有亲油性,在脂肪烃、芳香烃、醇类中有良好的溶解性,涂膜具有优良的耐化学品性,它已应用于溶剂型涂料、高固体涂料及水性涂料中。在电泳涂料中,它作为交联剂,与基体树脂配合,还显示优良的电泳共进性。

4.共缩聚树脂的性能

共缩聚树脂主要有三聚氰胺尿素共缩聚树脂、三聚氰胺苯代三聚氰胺共缩聚树脂。以尿素取代部分三聚氰胺,可提高涂膜的附着力和于性,成本降低,如取代量

过大,则将影响涂膜的抗水性和耐候性。

以苯代三聚氰胺取代部分三聚氰胺,可以改进三聚氰胺树脂和醇酸树脂的混溶性,显著提高涂膜的初期光泽、抗水性和耐碱性,但对三聚氰胺树脂的耐候性有一定的影响。

总的来说,在涂料中,由氨基树脂单独加热固化所得的涂膜硬而脆,且附着力差,因此氨基树脂常与其他树脂如醇酸树脂、聚酯树脂、环氧树脂等配合,组成氨基树脂漆。氨基树脂在氨基树脂漆中主要作为交联剂,它提高了基体树脂的硬度、光泽、耐化学品性以及烘干速度,而基体树脂则克服了氨基树脂的脆性,改善了附着力。氨基树脂在一定的温度下经过短时间烘干后,即形成强韧的三维结构涂层。

与醇酸树脂漆相比,氨基树脂漆的特点是:清漆色泽浅,光泽高,硬度高,有良

好的电绝缘性;色漆外观丰满,色彩鲜艳,附着力优良,耐老化性好.具有良好的抗性;干燥时间短,施工方便,有利于涂漆的连续化操作。尤其是三聚氰胺甲醛树脂,它不与干性醇酸树脂、热固性丙烯酸树脂、聚酯树脂配合,可制得保光保色性极佳的高级白色或浅色烘漆。这类涂料目前在车辆、家用电器、轻工产品、机床等方面得到了广泛的应用。

氟树脂

1.1含氟树脂概述 自1963年聚偏氟乙烯(PVDF)涂料成功地应用在建筑业,涂覆于装饰板材上以来。氟树脂涂料已经走过了近40年的发展历程,氟树脂涂料以其独特的性能经受住了历史的考验。目前国际上形成了三种不同用途的氟树脂与氟涂料行业,第一种是以美国阿托—菲纳公司生产的PVDF树脂为主要成分的外墙高耐候性氟树脂涂料、具有超强耐候性;第二种是以美国杜邦公司为代表的特氟龙不粘涂料。主要用于不粘锅、不粘餐具及不粘模具等方面;第三种是以日本旭硝子为代表的室外常温固化氟树脂涂料,主要应用于桥梁、电视塔等难以经常施工的塔架防腐等[1]。 1.2含氟树脂的结构特点及性能 1.2.1氟树脂的结构特点 常温固化氟树脂的结构如图1.1所示, 在FEVE的分子结构中, 作为主要的单体三氟氯乙烯, 由于前述氟原子的特性, 在空间结构和化学上, 氟烯烃单元保护了不很稳定的乙烯基醚单元, 使其难以受氧化侵蚀, 提高了树脂的耐候性和耐化学腐蚀性,并为树脂提供了必要的硬度。环己基的引人, 则赋予了树脂刚性和透明性, 其侧链的大环降低了树脂的结晶性, 使其可以在常温下溶于大多数有机溶剂。烷基的引人给树脂提供了较好的挠曲性能, 增加了树脂的柔韧性能。经烷基的引人则给树脂带来了固化点, 使树脂能在常温下与异氛酸醋交联固化, 高温下与三聚氰胺树脂交联固化, 使树脂具有从室温到高温广阔温度范围内固化的性能, 应用范围大为扩展。而侧链上梭基的引人, 则提高了树脂对颜料的润湿性, 加强了树脂与固化剂、有机颜料的相溶性。 C-F键能高达486KJ/mol,因此分子结构稳定, 很难被热、光以及其它化学因素破坏。在同一分子中未成键原子之间存在着一种较弱的范德华力。2个氟原子的范德华半径之和为0.27nm,两个氟原子正好把C-C之间的空隙填满, 保护了碳碳键, 使氟碳树脂相当稳定。 1.2.2氟树脂的性能 氟树脂具有优异的耐候性、耐腐蚀性、耐沾污性、耐热性、耐化学品性、斥水斥油性、绝缘性及低摩擦系数, 其原因是由于氟原子电负性高, 原子半径小, 与碳形成的C-F键极短, 相邻氟原子相互排斥, 使含氟烷烃中氟原子呈螺线形分布, 碳链周围被一系列带负电性的氟原子所包围, 形成屏蔽层。

新材料的产业链、分类及应用

新材料学习资料 一、新材料分类: 按材料的属性划分有金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。 1、金属材料:包括纯金属、合金、金属材料金属间化合物和特种金属材料等。 2、无机非金属材料:陶瓷、砷化镓半导体等 3、有机高分子材料:主要是碳、氢、氧、氮等 4、先进复合材料:指可用于加工主承力结构和次承力结构、其刚度和强度性能相当于或超过铝合金的复合材料。 按材料的使用性能分,有结构材料和功能材料。 1、结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求。 2、功能材料主要是利用材料具有的电、磁、声、光热等效应,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。 二、新材料类型: 1、复合新材料:由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。 复合材料的基体材料分为金属和非金属两大类: 金属基体常用的有铝、镁、铜、钛及其合金。 非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合新材料在新能源和交通市场上的应用: (1)清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器。 (2)汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等。 (3)民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。中国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套。 (4)船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于中国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。 2、超导材料:有些材料当温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。 超导材料主要分为合金材料(如铝合金、铜合金、铁合金、镁合金和高温合金等)和化合物材料(如超导陶瓷)两种。 超导材料最诱人的应用是:(1)发电、输电和储能。(2)超导磁悬浮列车。(3)超导计算机等

氟树脂简介

氟树脂简介 1定义 分子结构中含有氟原子的一类热塑性树脂。氟树脂的主要品种有聚四氟乙烯(PTFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙烯(PVDF)、乙烯-四氟乙烯共聚物(ETFE)、乙烯-三氟氯乙烯共聚物(ECTFE)、聚氟乙烯(PVF)等。其中以聚四氟乙烯为主。 2性能 氟树脂具有优异的耐高低温性能、介电性能、化学稳定性、耐候性、不燃性、不粘性和低的摩擦系数等特性。聚四氟乙烯可以在260℃高温下长期使用,-268℃低温下短期使用。介电性能不仅优异,且不受工作环境、温度、湿度和工作频率的影响。在高温下也不与强酸、强碱和强氧化剂起作用,即使在“王水”中煮沸也无变化,故有“塑料王”之称。润滑性特别是自润滑性很好,对钢的静摩擦系数仅0.02,动摩擦系数0.03,自摩擦系数0.01。主要缺点是有冷流性,在负荷和高速条件下尺寸不稳定;刚性、耐磨和压缩强度较差,需加硫化钼和青铜粉等填料改性;耐辐照性和加工性不好。可熔性聚四氟乙烯不仅具有聚四氟乙烯的原有特性,而且高温机械性能(250℃拉伸强度为13MPa,而聚四氟乙烯为8.5MPa)和加工性能大为改善。聚三氟氯乙烯的特点是透明性、尺寸稳定性和粘接性好,但耐温性较差。聚偏氟乙烯、乙烯-三氟氯乙烯共聚物和乙烯-四氟乙烯共聚物都是机械强度好和韧性大的氟树脂,耐辐照性优良;聚偏氟乙烯还是压电性和热电性极好的功能材料。聚氟乙烯薄膜可耐大气老化30年以上。偏氟乙烯-六氟异丁烯共聚物可在280℃以上高温下长期使用,主要问题是价格昂贵,常温下发脆。 3国内外状况 1934年,德国的F.施洛费尔和O.舍雷尔研究成功的聚三氟氯乙烯,是氟树脂的第一个品种。 1938年美国杜邦公司合成聚四氟乙烯树脂,开发出“特氟龙”不粘涂料,它是将聚四氟乙烯(PTFE)以微小颗粒状态分散在溶剂中,然后以360-380oC的高温烧结成膜,该涂层可长期在-195--250oC下使用,其耐化学品性超过所有聚合物,主要应用于不粘涂层;如:不粘锅内涂膜、聚合反应釜内衬。 20世纪60年代,Elf Ato 公司开发出“Kynar500”为商标的聚偏二氟乙烯(PVDF)氟碳树脂,随后,被应用于氟碳涂料之中。它具有优良的耐候性、耐水性、耐污染性、耐化学品性,尤其用于建筑物的外部装饰有其他涂料无法相比的优点。但由于PVDF树脂不溶欲

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

【CN110041683A】一种用于箱包壳体的PCPMMA材料及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910339782.4 (22)申请日 2019.04.25 (71)申请人 金旸(厦门)新材料科技有限公司 地址 361028 福建省厦门市海沧区后祥路 66号 (72)发明人 陈志峰 刁雪峰 王清文  (74)专利代理机构 厦门市精诚新创知识产权代 理有限公司 35218 代理人 赖秀华 (51)Int.Cl. C08L 69/00(2006.01) C08L 33/12(2006.01) C08L 23/08(2006.01) C08L 33/08(2006.01) (54)发明名称 一种用于箱包壳体的PC/PMMA材料及其制备 方法 (57)摘要 本发明属于复合材料领域,尤其涉及一种用 于箱包壳体的PC/PMMA材料及其制备方法。所述 用于箱包壳体的PC/PMMA材料由聚碳酸酯、聚甲 基丙烯酸甲酯、沙林树脂、增韧剂、分散剂和抗氧 剂组成,所述聚碳酸酯、聚甲基丙烯酸甲酯和沙 林树脂的重量比为(2.8~14.5):(1.2~7):1。本 发明提供的PC/PMMA复合材料兼具有优异的耐刮 擦性能和韧性,符合箱包壳体材料的各项测试要 求。权利要求书1页 说明书6页CN 110041683 A 2019.07.23 C N 110041683 A

1.一种用于箱包壳体的PC/PMMA材料,其特征在于,所述用于箱包壳体的PC/PMMA材料由聚碳酸酯、聚甲基丙烯酸甲酯、沙林树脂、增韧剂、分散剂和抗氧剂组成,所述聚碳酸酯、聚甲基丙烯酸甲酯和沙林树脂的重量比为( 2.8~14.5):(1.2~7):1。 2.根据权利要求1所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述用于箱包壳 体的PC/PMMA材料由如下重量百分比的组分组成: 3.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述聚碳酸酯为挤出级聚碳酸酯;所述聚碳酸酯在300℃、1.2kg条件下的熔融指数为3.5~8.0cm 3/10min。 4.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述聚甲基丙烯酸甲酯为低流动性聚甲基丙烯酸甲酯;所述聚甲基丙烯酸甲酯在230℃、3.8kg条件下的熔融指数小于3.0cm 3/10min。 5.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述沙林树脂为乙烯-(甲基)丙烯酸-金属离子聚合物,金属离子为锌离子、钠离子、镁离子、钾离子或锂离子。 6.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述增韧剂为丙烯酸酯类聚合物。 7.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述分散剂选自硅氧烷类分散剂、硬脂酸盐类分散剂和蜡类分散剂中的至少一种。 8.根据权利要求1或2所述的用于箱包壳体的PC/PMMA材料,其特征在于,所述抗氧剂为受阻酚类抗氧剂和/或亚磷酸酯类抗氧剂。 9.权利要求1~8中任意一项所述的用于箱包壳体的PC/PMMA材料的制备方法,其特征在于,该方法包括:将所述聚碳酸酯、聚甲基丙烯酸甲酯、沙林树脂、增韧剂、分散剂和抗氧剂混合均匀,之后将所得混合料在双螺杆挤出机中进行熔融挤出造粒。 10.根据权利要求9所述的用于箱包壳体的PC/PMMA材料的制备方法,其特征在于,所述混合在混料锅中进行,且所述混合的条件包括转速为300~500r/min,时间为2~5min;所述熔融挤出的条件包括温度为240~260℃,螺杆转速为350~500r/min ,真空度不小于0.08MPa。 权 利 要 求 书1/1页2CN 110041683 A

氟树脂涂料

氟树脂涂料 蒋卓君 04300011 摘要:简述了氟树脂涂料的发展、分类、特点、性能、存在的问题与对策,并简单介绍了几种典型的氟树脂涂料的性能和合成工艺。 关键词:氟树脂; 氟涂料 1 前言 自1963 年聚偏氟乙烯(PVDF) 涂料成功地应用在建筑业,涂覆于装饰板材上以来,氟树脂涂料已经走过了近40 年的发展历程,氟树脂涂料以其独特的性能经受住了历史的考验。目前国际上形成了三种不同用途的氟树脂与氟涂料行业, 第一种是以美国阿托—菲纳公司生产的PVDF 树脂为主要成分的外墙高耐候性氟树脂涂料, 具有超强耐候性;第二种是以美国杜邦公司为代表的特氟龙不粘涂料, 主要用于不粘锅、不粘餐具及不粘模具等方面; 第三种是以日本旭硝子为代表的室外常温固化氟树脂涂料, 主要应用于桥梁、电视塔等难以经常施工的塔架防腐等[1]。 2氟树脂涂料发展的几个阶段 氟树脂涂料的品种发展主要经历了熔融型、溶剂可溶型、可交联固化型及水性氟树脂涂料等阶段。 2.1熔融型氟树脂涂料 熔融型氟树脂涂料又称高温烘烤型氟树脂涂料,是最早的氟树脂涂料品种。PTFE、PVF、PVDF 等均可制成熔融型氟树脂涂料,常用熔融型氟树脂及其性能如表1 所示[2 ]。

由表可见,这些氟树脂都有很好的耐候性、耐溶剂性及耐高温性。但由于这些氟树脂涂料须在高温下烘烤使其熔融成膜,只适合于工厂涂装,不适合现场施工。因而应用范围主要局限在电饭锅、耐高温铝板或钢板上,从而限制了自身的发展。 2.2溶剂可溶型氟树脂涂料 为扩大氟树脂涂料的应用范围,首先必须降低氟树脂的结晶度,提高其在有机溶剂中的溶解度。因此,研究者们就将各种含氟单体与带侧基的乙烯单体进行共聚改性,制得了溶解性较高的氟树脂涂料。如VDF/ TFE/ HFP 三元共聚物、VF2/ HFP 二元共聚物涂料等。这种涂料可在较低温度下成膜,因而拓展了氟树脂涂料的使用范围。 2.3可交联固化型氟树脂涂料 可交联固化型氟树脂涂料是指在氟树脂中引入—OH 及—COOH 等官能团,使之可与异氰酸酯、三聚氰胺和氨基树脂等进行交联固化。典型的可交联固化型氟树脂涂料有羟基乙烯基醚共聚物( PFEVE) 涂料等。 2.4 水性氟树脂涂料 随着人们环保意识的加强,水性涂料将成为21世纪的主流产品之一,因此,水性氟树脂涂料已成为当今涂料研究的热点。水性氟树脂涂料一般是由含氟烯烃、乙烯基醚、含羧基化合物和水溶性氨基树脂共聚而制得。研究较多的有三氟氯乙烯共聚物涂料、四氟氯乙烯共聚物涂料及偏氟乙烯共聚物涂料等。降低水性氟树脂涂料的成膜温度是研究的热点。目前,日本旭硝子公司的PFEVE 乳胶成膜温度为35~50 ℃。国内水性氟树脂涂料也在积极研究之中,研究焦点也集中在如何降低成膜温度上。

金属材料的分类及性能

金属材料的分类及性能 一、金属材料定义:是金属元素或以金属元素为主构成的具有金属特性的材料。 二、金属材料分类: ①黑色金属:纯铁、铸铁、钢铁、铬、锰。 ②有色金属:有色轻金属、有色重金属、半金属、贵金属、稀有金属 三、金属材料性能: ①工艺性能:铸造性能、锻造性能、焊接性能、切削加工性能、热处理性能等 ②使用性能:机械性能、物理性能、化学性能等 1. 工艺性能 金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下五个方面:(1)铸造性能:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。铸造性能通常指流动性,收缩性,铸造应力,偏析,吸气倾向和裂纹敏感性。 (2)锻造性能:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。可锻性:塑性和变形抗力 (3)焊接性能:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。 (4)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。 (5)热处理性能:热处理是机械制造中的重要过程之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的,所以,它是机械制造中的特殊工艺过程,也是质量管理的重要环节。 2. 机械性能:

环氧树脂种类及性能

环氧树脂种类及性能 一、定义 1、环氧树脂(Epoxy Resin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固化产物的高分子低聚体(Oligomer)。当聚合度n为零时,称之为环氧化合物,简称环氧化物(Epoxide)。这些低相对分子质量树脂虽不完全满足严格的定义但因具有环氧树脂的基本属性在称呼时也不加区别地统称为环氧树脂。典型的环氧树脂结构如下式。 2、环氧基是环氧树脂的特性基团,它的含量多少是这种树脂最为重要的指标。描述环氧基含量有以下几种不同的表示法: ⑴环氧当量:是指含有1 mol环氧树脂的质量,低相对分子质量(分子量)环氧树脂的环氧当量为175~200,随着分子量的增大环氧基间的链段越长,所以高分子量环氧树脂的环氧当量就相应的高。 ⑵环氧值:每100g树脂中所含有环氧基的物质的量(摩尔)。这种表示方法有利于固化剂用量的计量和用量的表示。因为固化剂用量的含义是每100g环氧树脂中固化剂的加入量(part perhundred of resin缩写成phr)。我国采用环氧值这一物理量。 环氧当量=100/环氧值 3、粘度的定义

粘度:液体在流动时,在其分子间产生的内摩擦的性质,称为液体的黏性,黏性的大小用黏度表示,是用来表征液体性质相关的阻力因子。 粘度单位有两种:1、厘泊 (cps) 2、毫帕秒(m·pas) 1厘泊(cps)= 1 毫帕秒(m·pas) 二、种类及性能 1、双酚A型环氧树脂:双酚A(即二酚基丙烷)型环氧树脂即二酚基丙烷缩水甘油醚。在环氧树脂中它的原材料易得、成本最低,因而产量最大(在我国约占环氧树脂总产量的90%,在世界约占环氧树脂总产量的75%~80%),用途最广,被称为通用型环氧树脂。由双酚A型环氧树脂的分子结构决定了它的性能具有以下特点: ⑴是热塑性树脂,但具有热固性,能与多种固化剂,催化剂及添加剂形成多种性能优异的固化物,几乎能满足各种使用需求。 ⑵树脂的工艺性好。固化时基本上不产生小分子挥发物,可低压成型。能溶于多种溶剂。 ⑶固化物有很高的强度和粘结强度。 ⑷固化物有较高的耐腐蚀性和电性能。 ⑸固化物有一定的韧性和耐热性。 ⑹主要缺点是:耐热性和韧性不高,耐湿热性和耐候性差。 2、双酚F型环氧树脂:这是为了降低双酚A型环氧树脂本身的粘度并具有同样性能而研制出的一种新型环氧树脂。通

一文看懂塑料的韧性、刚性、抗冲击性

一文看懂塑料的韧性、刚性、抗冲击性刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。“刚度”越大,越不容易发生变形;“柔度”越大,越容易发生变形。韧性好的材料比较柔软,拉伸断裂伸长率、抗冲击强度较大,而硬度、拉伸强度和拉伸弹性模量较小。 从以上叙述可以看出,刚度和韧性呈对立态,但对经过改性的塑料制品而言,两者会相互依存。例如用玻纤增强塑料后,它的刚性变大的同时,可能出现拉伸强度和冲击强度都增加。 如何提高塑料韧性 通过对塑料制品的测试发现,提高基体树脂的韧性有利于提高增韧塑料的增韧效果。增韧的途径很多,比如增大基体树脂的分子量,使分子量分布变得窄小,或者控制是否结晶以及结晶度、晶体尺寸和晶型等方法提来高韧性。 如何区分塑料常用的增韧剂?

橡胶弹性体增韧 EPR(二元乙丙)、EPDM(三元乙丙)、顺丁橡胶(BR)、天然橡胶(NR)、异丁烯橡胶(IBR)、丁腈橡胶(NBR)等;适用于所有塑料树脂的增韧改性; 热塑性弹性体增韧 SBS、SEBS、POE、TPO、TPV等;多用于聚烯烃或非极性树脂增韧,用于聚酯类、聚酰胺类等含有极性官能团的聚合物增韧时需加入相容剂; 核-壳共聚物及反应型三元共聚物增韧 ACR(丙烯酸酯类)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸缩水甘油酯共聚物)、E-MA-GMA (乙烯-丙烯酸甲酯—甲基丙烯酸缩水甘油酯共聚物)等;多用于工

程塑料以及耐高温高分子合金增韧; 高韧性塑料共混增韧 PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、PC/ABS、PC/PBT等;高分子合金技术是制备高韧性工程塑料的重要途径; 其它方式增韧 纳米粒子增韧(如纳米CaCO3)、沙林树脂(杜邦金属离聚物)增韧等。

丙烯酸树脂类药用辅料的分类、结构性能与合成研究概况

丙烯酸树脂类药用辅料的分类、结构 性能及合成研究概况 迈特兴华制药厂 建国 摘要:本文通过论述丙烯酸树脂药用辅料的分类、结构与性能;综述合成研究概况,展望了丙烯酸树脂药用辅料合成研究的发展方向。 关键词:丙烯酸树脂;分类;结构;合成研究 药用辅料的丙烯酸树脂是一类由丙烯酸(或甲基丙烯酸及它们的酯如:甲酯、乙酯等)以本体(一种单体)聚合,或者与甲基丙烯酸(或它的酯如:甲酯、乙酯、二甲胺基乙酯等)以二种单体(二元)或以三种单体(三元)按一定比例共聚而形成的高分子化合物。其合成反应可以用下列通式表示: R (或R 1或R 2或R 3 )+R 1 (或R 2或R 3或R 4 丙烯酸树脂 R =丙烯酸 R 1 =甲基丙烯酸 R 2 = 丙烯酸酯类 R 3 = 甲基丙烯酸酯类 R 4 = 其它酯类 本体聚合:R=R 1=R 2=R 3 =R 4 二元聚合:R 、R 1、R 2、R 3 、R 4中任意二种R 共聚 三元聚合:R 、R 1、R 2、R 3 、R 4中任意三种R 共聚 该类化合物在体不降解,安全无毒,由于其结构特点,可以使药物按预期设 计或在胃或在肠溶出;并可以用于缓(控)释制剂(1)(2);更有可能以此类辅料将 药物制成靶向制剂(3)(4)。因此,在药剂中应用日益广泛。本文试以“分类”、“结构与性能”、“合成研究概况”等三方面作一概述。 1 分类 1.1 按制造原料(单体)分类 1.1.1 本体聚合而形成 即自身聚合而形成的高分子化合物,如:“部分被中和的聚丙烯酸”(国际特品公司NP600、NP700、NP800)

1.1.2 二元聚合而形成的高分子化合物,如:聚丙烯酸树脂l (甲基丙烯酸、甲基丙烯酸丁酯35;65共聚物)、聚丙烯酸树脂Ⅱ(甲基丙烯酸和丙烯酸甲酯(1:1)共聚物)、聚丙烯酸树脂Ⅲ(甲基丙烯酸和丙烯酸甲酯(1:2)共聚物)、Eudragit(尤特奇)NE 30D (丙烯酸乙酯和甲基丙烯酸甲酯(2:1)共聚物)、尤特奇L 100—55(甲基丙烯酸和丙烯酸乙酯(1:1)共聚物)等等。 1.1.3 三元聚合而形成的高分子化合物如:聚丙烯酸树脂lV (甲基丙烯酸丁酯、甲基丙烯酸二甲胺基乙酯和甲基丙烯酸甲酯(1:2:1)共聚物)、聚甲丙烯酸铵酯Ⅰ(丙烯酸乙酯、甲基丙烯酸甲酯和甲基丙烯酸氯化三甲胺基乙酯(1:2:0.2)共聚物)、聚甲丙烯酸铵酯Ⅱ(丙烯酸乙酯、甲基丙烯酸甲酯和甲基丙烯酸氯化三甲胺基乙酯(1:2:0.1)共聚物)、尤特奇FS 30D (甲基丙烯酸、丙烯酸甲酯和甲基丙烯酸甲酯(1:1:1)共聚物)等等。 1.1.4与其它高分子混合而形成的高分子化合物 本类丙烯酸树脂是在共聚(合成反应)完成以后加入其它高分子药用辅料而形成的产品。如: 尤特奇RD 100(聚甲丙烯酸铵酯Ⅰ和羟甲基纤维素钠(9:1)混合物)、 1.2 按丙烯酸树脂的溶解性能分类 1.2.1 pH 依赖型丙烯酸树脂 本类丙烯酸树脂只在特定的pH 条件下溶解而释放药物如:聚丙烯酸树脂lV 溶于pH<5的胃液;是胃溶性药物的良好辅料。而聚丙烯酸树脂l 、尤特奇L 100—55、聚丙烯酸树脂Ⅱ、聚丙烯酸树脂Ⅲ、尤特奇FS 30D 等等溶于pH>7以上肠液。是肠溶性药物的良好辅料。 1.2.2 非pH 依赖型丙烯酸树脂 本类丙烯酸树脂不溶于水,在任何pH 条件下都不溶解如:尤特奇NE 30D 。是缓(控)释制剂的良好辅料。 1.2.3 渗透型丙烯酸树脂 本类丙烯酸树脂不溶于水,但是遇水能溶胀,形成微小的水分子通道,如: 聚甲丙烯酸铵酯Ⅰ、聚甲丙烯酸铵酯Ⅱ,广泛用于缓(控)释制剂的膜包衣技术。 2结构与性能 2.1 含酸性基团的丙烯酸树脂(阴离子型、肠溶型丙烯酸树脂) 酸性基团为:-COOH - 如:

氟树脂涂层的性能特点

氟树脂涂层的性能特点 一、氟树脂静电喷涂工艺是当今世界上最先进的防腐工艺,经喷涂后在设备表面形成0.3—1.8mm厚的涂层,所喷涂原料有PTFE、PFA、FEP、ETFE、halar-ECTFE、PVDF六种,经过喷涂不同原料的涂层后具有以下特点: 1、涂层与金属间有极高的结合力:外力基本无法去除,金属与涂层的附着,如同人的表皮与真皮附着。故解决了传统内衬四氟工艺四氟层与金属基层间因结合力不足易起鼓,脱落的缺陷,温度变化频繁的环境中表现更加明显。 2、克服了传统内衬四氟工艺因形状限制造成的使用范围的局限性:任意形状设备、零部件均可喷涂加工; 3、优良的成形可再加工性能:由于氟塑料熔融流动性能优良,在零件表面喷涂后,还可进行二次加工,以满足对工件尺寸精密度控制的要求。 4、优良的防粘性能:经喷涂后不仅具有优异的防粘性能而且具有优异的耐温性能,在-193到260℃的高温使用中依然具备独特的防粘性能。 5、优良的耐真空性能:在任何真空条件下不会出现脱层(在真空-0.01至-0.1兆帕)。 6、优良的机械性能:机械强度大,耐具有高硬度与韧性。 7、优良的耐热性:可在-193到260℃的高低温下的环境长期稳定使用。 8、优良的电气性能:介电常数与介电损耗因子在很宽的温度与频率范围内都比较低,显示出高介电强度; 9、阻燃性:氟树脂在易燃易暴环境下都不易燃烧,是很好的阻燃材料。 10、优良的耐磨性:经过特殊处理可增加涂层表面硬度,以提高耐磨性。 11、优良的耐腐蚀性:几乎不受任何介质的腐蚀。 12、优良的高纯洁净性:例如多晶硅行业、电镀行业、特殊物料反应等等,既达到防腐又起到高纯洁净的效果。 二、已经成功应用到化工业、纯水设备制造业、多晶硅业、半导体业、制药业、电镀业、纯水设备制造业等等

常用金属材料分类及鉴别知识

1.2 常用金属材料 金属材料来源丰富,并具有优良的使用性能和加工性能,是机械工程中应用最普遍的材料,常用以制造机械设备、工具、模具,并广泛应用于工程结构中。 金属材料大致可分为黑色金属两大类。黑色金属通常指钢和铸铁;有色金属是指黑色以外的金属及其合金,如铜合金、铝及铝合金等。 1.2.1 钢 钢分为碳素钢(简称碳钢)和合金两大类。 碳钢是指含碳量小于2.11%并含有少量硅、锰、硫、磷杂质的铁碳合金。工业用碳钢的含碳量一般为0.05%~1.35%。 为了提高钢的力学性能、工艺性能或某些特殊性能(如耐腐蚀性、耐热性、耐磨性等),冶炼中有目的地加入一些合金元素(如Mn、Si、Cr、Ni、Mo、W、V、Ti等),这种钢称为合金钢。 (一)碳钢 1.碳钢的分类 碳钢的分类方法有多种,常见的有以下三种。 (1)按钢的含碳量多少分类分为三类: 低碳钢,含碳量0.25%; 中碳钢,含碳量为0.25%~0.60%; 高碳钢,含碳量0.60%。 (2)按钢的质量(即按钢含有害元素S、P的多少)分类分为三类: 普通碳素钢,钢中S、P含量分别≤0.055%和0.045%; 优质碳素钢,钢中S、P含量均≤0.040%; 高级碳素钢,钢中S、P含量分别≤0.030%和0.035%。 (3)按钢的用途分类分为两类: 碳素结构钢,主要用于制造各种工程构件和机械零件; 碳素工具钢,主要用于制造各种工具、量具和模具等。 2.碳钢牌号的表示方法 (1)碳素结构钢碳素结构钢的牌号由屈服点“屈”字汉语拼音第一个字母Q、屈服点数值、质量等级符号(A、B、C、D)及脱氧方法符号(F、b、Z)等四部分按顺序组成。其中质量等级按A、B、C、D顺序依次增高,F代表沸腾钢,b代表镇静钢,Z代表镇静钢等。如Q235-A·F表示屈服强度为235Mpa的A级沸腾碳素结构钢。 (2)优质碳素结构钢优质碳素结构钢的牌号用两位数字表示。这两位数字代表钢中的平均含碳量的万分之几。例如45钢,表示平均含碳量为0.45%的优质碳素结构钢。08钢,表示平均含碳量为0.08%的优质碳素结构钢。 (3)碳素工具钢碳素工具钢的牌号是用碳字汉语拼音字头T和数字表示。其数字表示钢的平均含碳量的千分之几。若为高级优质,则在数字后面加“A”。例如,T12钢,表示平均含碳量为1.2%的碳素工具钢。T8钢,表示平均含碳量为0.8%的碳素工具钢。T12A,表示平均含碳量为1.2%的高级优质碳素工具钢。 3.碳钢的用途举例 Q195、Q215,用于铆钉、开口销等及冲压零件和焊接构件。 Q235、Q255,用于螺栓、螺母、拉杆、连杆及建筑、桥梁结构件。 Q275,用于强度较高转轴、心轴、齿轮等。 Q345,用于船舶、桥梁、车辆、大型钢结构。

一文看懂塑料的韧性刚性抗冲击性

一文看懂塑料的韧性刚性 抗冲击性 Modified by JEEP on December 26th, 2020.

一文看懂塑料的韧性、刚性、抗冲击性 刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。“刚度”越大,越不容易发生变形;“柔度”越大,越容易发生变形。韧性好的材料比较柔软,拉伸断裂伸长率、抗冲击强度较大,而硬度、拉伸强度和拉伸弹性模量较小。 从以上叙述可以看出,刚度和韧性呈对立态,但对经过改性的塑料制品而言,两者会相互依存。例如用玻纤增强塑料后,它的刚性变大的同时,可能出现拉伸强度和冲击强度都增加。 如何提高塑料韧性 通过对塑料制品的测试发现,提高基体树脂的韧性有利于提高增韧塑料的增韧效果。增韧的途径很多,比如增大基体树脂的分子量,使分子量分布变得窄小,或者控制是否结晶以及结晶度、晶体尺寸和晶型等方法提来高韧性。 如何区分塑料常用的增韧剂 橡胶弹性体增韧 EPR(二元乙丙)、EPDM(三元乙丙)、顺丁橡胶(BR)、天然橡胶(NR)、异丁烯橡胶(IBR)、丁腈橡胶(NBR)等;适用于所有塑料树脂的增韧改性; 热塑性弹性体增韧 SBS、SEBS、POE、TPO、TPV等;多用于聚烯烃或非极性树脂增韧,用于聚酯类、聚酰胺类等含有极性官能团的聚合物增韧时需加入相容剂; 核-壳共聚物及反应型三元共聚物增韧

ACR(丙烯酸酯类)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸缩水甘油酯共聚物)、E-MA-GMA(乙烯-丙烯酸甲酯—甲基丙烯酸缩水甘油酯共聚物)等;多用于工程塑料以及耐高温高分子合金增韧; 高韧性塑料共混增韧 PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、PC/ABS、PC/PBT等;高分子合金技术是制备高韧性工程塑料的重要途径; 其它方式增韧 纳米粒子增韧(如纳米CaCO3)、沙林树脂(杜邦金属离聚物)增韧等。 从原理上讲,增韧的本质可以说是增容。如果把增韧剂看作一类聚合物,就可以把这种增容原理延伸到所有的高分子共混物中。工业上制备有用的聚合物共混物时,反应性增容是我们必须要运用的技术,增韧剂也因此有了不一样的意义,也正是如此,才有了“增韧相容剂”,“界面乳化剂”的形象称谓! 如何提高抗冲击性能

氟树脂及其在行业中的应用

氟树脂及其在行业中的应用 董经博(浙江蓝天环保高科技股份有限公司,浙江杭州310023) 文章编号:1006-4184(2010)01-0004-05 摘要:主要介绍了氟树脂的性能及PVDF 、PFA 、ETFE 、PTFE 、e-PTFE 、FEP 、TFE 树脂在行 业中的应用。 关键词:氟树脂;PVDF ;PFA ;ETFE ;PTFE ;e-PTFE ;FEP ;TFE 收稿日期:2009-06-29 作者简介:董经博(1979-),男,本科毕业。从事氟树脂应用研究工作。 自1934年德国首先开发成功聚三氟氯乙烯(PCTFE ),1938年DuPont 公司开发成功聚四氟乙烯,并逐步工业化以来,氟树脂的种类一直在不断增加,应该领域不断扩大,迄今其身影已遍及航空、航天、石油、化工、机械、电子、建筑、农药、医药及生活材料等。 1氟树脂性能及种类 氟树脂由含氟原子的单体通过均聚或共聚反 应而得。F 原子的电负性为4.0,范德华半径为1.35, C-F 键能为487.2kJ/mol ,C-F 键的极化率为0.68c-x , 再加之特殊的结构,使得氟树脂在耐热性、耐酸性、耐碱性、耐药品性、耐候性、疏水疏油性、耐玷污性、不粘性、生物体适应性、气体选择透过性、射线敏感性和低摩擦系数等方面有优良的表现。 使用中的氟树脂品种主要有:聚四氟乙烯(PTFE )、聚三氟氯乙烯(PCTFE )、聚偏氟乙烯(PVDF )、聚氟乙烯(PVF )、四氟乙烯-六氟丙稀共聚物(FEP )、乙烯-三氟氯乙烯共聚物(ECTFE )、乙烯-四氟乙烯共聚物(ETFE )、四氟乙烯-全氟烷基乙烯基醚共聚物(PFA )、四氟乙烯-六氟乙烯-偏氟乙烯共聚物(THV )和四氟乙烯-六氟丙烯-三氟乙烯共聚物(TFB )等。 2氟树脂在行业中的应用情况 2.1绿色能源 二次锂离子电池是20世纪80年代末出现的绿色高能电池,具有电压高、容量大、自放电小、循环寿命长、绿色环保等优点,是国防工业、数码相机、手机、笔记本电脑、太空技术等领域近年来能源研究和开发的重点之一。 锂离子电池包括液体型锂离子电池(LIB )和聚合物型锂离子电池(LIP )。在液体型锂离子电池中, PVDF 树脂主要用作阴阳两极电极活性物质的粘结 剂;在聚合物型锂离子电池中,PVDF 改性树脂与锂盐、溶剂一起,被制成聚合物电解质膜。 PVDF 树脂由于碳链中的间个碳原子的氢原子 被电负性为4.0的氟原子取代,氟原子相互排斥使得氟原子沿碳链呈螺旋状分布,所以碳链的四周被一系列性质稳定的氟原子包围,这种几乎无间隙的空间屏障使得任何原子或基团不可能进入其结构内部而破坏碳链,因而表现出极高的化学稳定性和热稳定性,这不仅使得PVDF 树脂具有足够的粘结强度,而且还使PVDF 树脂不易被氧化或还原。同时,由于C-F 键的极化率极低,仅为0.68c-x ,因此 PVDF 树脂还具有高度的绝缘性。所以将PVDF 树 脂应用于液体型锂离子电电池时,能够保证: (1)足够的粘结强度,以防止活性物质在集电 器上脱落或在电池装配过程中裂化及被覆盖层从集电器上脱落或在反复充放电循环中裂化; A 。

苯代氨基树脂的应用

苯代氨基树脂的应用 (本文作者为资深氨基树脂专家查吉志先生亲自撰写) 苯代氨基树脂对一般的涂料界朋友来说相对陌生于其它氨基树脂,因为之前这类树脂未被广泛引入到烤漆体系之中来,只在特殊要求领域涂料之中有应用,且价高于其它氨基树脂。苯代氨基树脂分甲醚化苯代氨基树脂和丁醚化苯代氨基树脂。本人经过大量研究及应用实践,发现苯代氨基树脂在特殊烤漆体系中举足轻重,缺其不可,且应用更加宽广。苯代氨基树脂最大的优点就是与各种热固性树脂的兼容性优越。性能方面耐水性好、光泽鲜艳性好、柔韧性极好、耐盐雾、耐化学性能好,特别是移转印方面对着色更优异,在深冲加工方面弯折性更是其他氨基树脂不能媲美的。 印铁制罐涂料目前是苯代氨基树脂用量最大的一块。印铁制罐众所周知是先把白可铁处理后印上各色图案,再将印刷铁板拿去深冲加工,制成各种食品罐听或食品盒等,这个深冲就涉及到涂料附着力和柔韧性的高要求。冲击不能爆裂且不能脱落,在这个前提下涂料的柔性肯定要达到零T,否则没有加工的必要。这类涂料所用树脂一般是柔性饱和聚酯与苯代氨基树脂匹配。 家电涂料涂装也是苯代氨基树脂的主要应用领域。因为苯代氨基树脂特有的耐水煮性能,迎合了家用电器的需求。微波炉内壁涂料要求耐盐雾、耐水性、耐中高温,不脱落抗腐蚀性;洗衣机、脱水桶、

空调器、电冰箱等都因为经常与水接触,自交联型丙酸酰胺涂料根本无法与丙烯酸与氨基树脂热交联反应形成的网状固化漆膜相比,耐高温和牢固度更是后者优异。耐水性和耐水煮是苯代氨基树脂的强势和优点所以必须采用苯代氨基树脂做交联剂才能达到家用电器长期接触水、油的家用要求。家电涂料一般用高酸值丙烯酸树脂与苯代氨基树脂匹配。 酒水饮料瓶盖涂料俗称皇冠盖,譬如啤酒瓶盖、饮料瓶盖、药水瓶盖、保健品瓶盖等,因为在某些运输和保质期需求上塑料压铸盖易碎易褪色易被瓶内压力冲击存安全隐患;特殊领域必须采用铁质皇冠盖;苯代氨基树脂有很好的耐水性和深冲加工性所以能很好的满足以上涂料的要求。这类涂料所用树脂一般也是柔性饱和聚酯与苯代氨基树脂匹配。 移印转印材料基础涂料上很多地方用到苯代氨基树脂,苯代氨基树脂与基料树脂配成的油漆层间附着力好,性能方面:干而不脆;柔而不掉;硬而不滑。为二次移印转印花纹提供了很好的接纳条件,譬如香水瓶、酒瓶、玻璃工艺品和玻璃幕墙;香水瓶、酒瓶必须达到耐水耐醇甚至耐油性方面都要达到基本要求,否则无法盛装这些含醇水的化合物品,瓶子在包装之前要在水里煮要在乙醇里面消毒处理且保证不掉色不软化脱落。瓶子首先要涂装,且涂装后要移印或转印商标及图案。着色也是一道比较复杂的工序,对涂装有很高的要求,移印转印油墨溶剂过强会咬底、溶剂过弱影响表面干燥,甚至在日后使用当中被带乙醇的香水或酒水洗脱落。这类涂料一般选用玻璃漆用丙烯

环氧树脂特性.docx

WORD格式 环氧树脂 目录 材料简介应用特性类型分类使用指南国内主要厂商环氧树脂应用领域环氧树脂行业 材料简介 物,除个别外,它们环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合的 都不高。环氧树脂的分子结构是以分子链中含有,环氧基相对分子质量活泼的环氧基团为其特征团 可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。 应用特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种 应用对形式提出的要求,其低的粘度到高熔点固 范围可以从极体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在 0 ~ 180 ℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的具有很高极性羟基和醚键的存在,使其对各种物质的树脂固化时的收缩性低,产生内应力小,这也有助于提高 粘附力。环氧的粘附强度。 4 环氧基的、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中开进行的,没有水或其它挥发性产物放出。它们和不饱和聚 环聚合反应来副酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。 5 树脂体系具有优良的力学性、力学性能。固化后的环氧能。 6、电性能。固化后的环氧树脂体系是的优良绝一种具有高介电性能、耐表面漏电、耐电弧缘 材 料。 7、化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固 环氧树脂化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用和

使其具有特殊的化学稳定性固化剂,可以能。 8 性能的综合,使环氧树脂体系 、尺寸稳定性。上述的许多具有突出的尺寸稳定性和耐久性。 9 体系耐大多数霉菌,可以在苛 、耐霉菌。固化的环氧树脂刻的热带条件下使用。 类型分类 根据分子结构,环氧树脂大体上可分为五大类: 1、缩水甘油醚类环氧树脂 2、缩水甘油酯类环氧树脂 3、缩水甘油胺类环氧树脂 4、线型脂肪族类环氧树脂 5、脂环族类环氧树脂 专业资料整理

沙林料

沙林料 沙林料Surlyn简介 沙林树脂是美国杜邦利用独特的生产工艺聚合而成,是乙烯-(甲基)丙烯酸锌盐、钠盐、锂盐等离子键聚合体。杜邦是世界上唯一一家离子聚合树脂生产厂家。 沙林料的特性: ·优异的低温抗冲击韧性; ·出色的抗磨损、刮擦性能; ·出色的抗化学药品性能; ·透明、清澈、光泽柔和华贵; ·优异的熔融强度(熔融下拉伸不断裂); ·有多种牌号符合FDA相关标准; ·直接粘贴环氧树脂和聚丙烯表面作修饰保护; ·直接热贴合在金属、玻璃、天然纤维表面作修饰保护; 沙林料的应用领域: (1)化妆品领域:香水瓶盖,霜、膏容器等; (2)消费品领域:各种手柄,玩具如宠物口嚼物,冰桶,地板; (3)运动器材领域:高尔夫球壳,冲浪板,滑雪板表层,滑雪靴,滑冰靴,雪曲棍球头盔,鞋后跟内衬,牛仔竞技保护背心; (4)其他领域:浮标,户外安全照明,玻璃制品表面涂层,管道螺丝保护盖,荧光灯表面保护; 沙林料Surlyn各种型号性能对照表 型号 主要特性 Surlyn PC2000 高透明 香水瓶专用料 Surlyn 1601 良好的耐磨性能;高透明;良好的硬度;低温韧性;低温热封性;低凝胶 Surlyn 1601-2 良好的热封性 Surlyn 1601-2LM 低吸水性 Surlyn 1601B 低凝胶 Surlyn 1601B-2 低防粘连 Surlyn 1605 良好的耐磨性能;高透明;良好的硬度;低温韧性;低温热封性 Surlyn 1605SBR 低滑动性;低防粘连;良好的脱模性 Surlyn 1650 良好的耐磨性能;高透明;良好的硬度;低温韧性;低温热封性 Surlyn 1652 良好的耐磨性能;高透明;良好的硬度;低温韧性;低温热封性 Surlyn 1652-1 低凝胶 Surlyn 1652SB 滑动;防粘连 Surlyn 1652SBR 滑动;防粘连;良好的脱模性 Surlyn 1652SR 滑动;良好的脱模性

丙烯酸酯类树脂的合成工艺进展

丙烯酸酯类树脂的合成工艺进展 1215511121 12精细化工(1)班 摘要:自1843年Joseph Redtenbacher 首先发现丙烯酸单体以来,人们一直对这类具有活性的有机化合物不断地从结构与性能上进行探讨,合成各类的丙烯酸树脂。丙烯酸树脂是由丙烯酸酯类和甲基丙烯酸酯类及其它烯属单体共聚制成的树脂,通过选用不同的树脂结构、不同的配方、生产工艺及溶剂组成,可合成不同类型、不同性能和不同应用场合的丙烯酸树脂,丙烯酸树脂根据结构和成膜机理的差异又可分为热塑性丙烯酸树脂和热固性丙烯酸树脂。丙烯酸类树脂的生产方式主要有本体聚合、悬浮聚合、乳液聚合。 关键词:丙烯酸酯类树脂,合成工艺,进展 1.丙烯酸类树脂的合成工艺 1.1丙烯酸类树脂复合材料的制备 丙烯酸类树脂复合材料是含丙烯酸类树脂的由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。互穿网络具有良好的阻尼性能而引起了各地科学家的重视,暨南大学的将笃孝【1】等人以甲基丙烯酸丁酯和聚氧硅烷为主要原料,制备了聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料。并用院子力显微镜对聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料的微相结构观察表明,聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料的微相结构的阻尼性能,有效的互传和一定程度的微相分离,才使材料具有良好的阻尼性能。 原位插层聚合法聚合制备聚合物基无机纳米复合材料是近年来研究最多的。鲍艳【2】等人采用原位插层聚合法成功制备了PMAA/MMT和P(MMA-AL/MMT)两种纳米复合材料。所制备的两种纳米复合材料均为剥离型纳米复合材料,纳米复合材料的热性能较相应的聚合物提高了20℃左右,应用结果表明另种纳米复合材料均具有鞣制性能,其应用性能较显影聚合物有所提高。 1.2丙烯酸类树脂微球的制备 反应性凝胶是一种分子内交联,表面或者内部带有一定火星集团的大分子, 由于具有独特的结构和流变性能而广泛应用于生物医药、涂料与软了、、石油开采等方面。微凝胶最常用的制备方法是乳液聚合和溶液聚合。张静【3】等采用疏水性较强的带有长脂肪链的丙烯酸单体进行共聚,利用分散合成聚合法合成了带有不同反应性基团的丙烯酸酯类微凝胶。张静等人还发现当丙烯酸十六酯用量为30mol%~40mol%,三羟甲基丙烷三甲基丙烯酸酯的用量为5mol%时可得到平均微径为25nm左右的微凝胶颗粒。 熊圣东【4】等人通过微博辐射分散聚合制备分散聚甲基丙烯酸甲酯微球。但分散聚合物微球具有比表面积大,吸附性强,表面反应能力高等特异性。在环境保护、生物医学、胶体科学等领域都有广泛的应用。熊圣东等以乙醇/水位分散介质,在微博辐射下制得了微径为250nm~400nm的PMMA微球,其研究表明,当分散介质中乙醇的质量分数位40%~50%时能得到稳定的聚合物微球。随着聚合反应前期微博功率的增加,微球的粒径增大,粒径分布先变小后变大。随着AIBN浓度的增加,微球粒径增大,粒径分布先变窄后变宽。微球半径大小和粒径分布都岁PVP浓度的增大而减少。 1.3含氟丙烯酸类树脂的制备 氟化丙烯酸酯聚合物中的C-F键键能大(460J/mol),稳定性很高,螺旋状排列的氟原子对碳珠帘起到很好的“屏蔽保护”作用,有效地防止了碳原子和贪恋的暴露,使得氟化丙烯酸酯聚合物具有优异的耐后行,耐腐蚀性,耐化学戒指等性能。【5】

相关文档
最新文档