生物陶瓷英文文献
生物陶瓷材料的研究报告及应用

生物瓷材料的研究及应用波化工07-3班9摘要介绍了生物瓷的定义,对羟基磷灰石生物瓷材料、磷酸钙生物瓷材料、复合生物瓷材料、涂层生物瓷材料和氧化铝生物瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。
关键词生物瓷,磷酸钙,复合生物瓷材料,涂层生物瓷材料,氧化铝瓷,生物瓷应用。
Bioceramic Materials Research and ApplicationZhangbo Chemical Engineering and Technology 073 class 9AbstractThis paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, posite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects.Key wordsbio-ceramics, calcium phosphate, posite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications.1 引言生物瓷是指用作特定的生物或生理功能的一类瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的瓷材料。
SBN陶瓷英文文献

Ferroelectric and piezoelectric properties of tungsten substituted SrBi 2Ta 2O 9ferroelectric ceramicsIndrani Coondoo *,S.K.Agarwal a ,A.K.Jha ba Superconductivity and Cryogenics Division,National Physical Laboratory,Dr K.S.Krishnan Road,New Delhi 110012,India bDepartment of Applied Physics,Delhi College of Engineering,Bawana Road,Delhi 110042,India1.IntroductionDefects in crystals significantly influence physical and various other properties of materials [1].For instance,as it is well known,doping by other elements leads to significant changes in the electrical properties of silicon.Historically,‘‘defect engineering’’has been developed in the field of semiconducting materials such as compound semiconductors as well as in diamond,Si and Ge [2–4].Subsequently,the concept of defect engineering has been applied to other functional materials,and the significant improve-ment in material properties have been achieved in high transition-temperature superconductors [5],amorphous SiO 2[6],photonic crystals [7]and also in the field of ferroelectrics,such as BaTiO 3,Pb(Ti,Zr)O 3(PZT),etc.[8,9].Various structural and electrical properties of bismuth layer-structured ferroelectrics (BLSF)are also strongly affected on deviation from stoichiometric composi-tions and defects have been recognized as a crucially important factor [10–13].It has been found that in BLSF small changes in chemical composition result in significantly altered dielectric and ferroelectric properties including dielectric constant and remanent polarization.In SrBi 2Ta 2O 9(SBT)and SrBi 2Nb 2O 9(SBN),orthor-hombic structural distortions with non-centrosymmetric spacegroup A 21am cause spontaneous ferroelectric polarization (P s )along a axis [14,15].SBT,a member of the BLSF family,has occupied an important position among the Pb-free ferroelectric memory materials [16–18].Tungsten (W 6+)has recently been investigated as a dopant for bismuth titanates and lanthanum doped bismuth titanates,in which the remanent polarization was observed to enhance when a small amount of Ti 4+was substituted by W 6+[19,20].With the objective to improve structural,dielectric and ferroelectric proper-ties,the hexavalent tungsten (W 6+)was chosen as a donor cation for partial replacement of the pentavalent tantalum (Ta 5+)SBT.In this report,the effect of tungsten substitution in SBT (SBTW),on the microstructural,ferroelectric and piezoelectric properties is reported.The results including the improvement in polarization properties have been discussed.2.ExperimentalSamples of compositions SrBi 2(W x Ta 1Àx )2O 9(SBWT),with x =0.0,0.025,0.050,0.075,0.10and 0.20were synthesized by solid-state reaction method taking SrCO 3,Bi 2O 3,Ta 2O 5and WO 3(all from Aldrich)in their stoichiometric proportions.The powder mixtures were thoroughly ground and passed through sieve of appropriate size and then calcined at 9008C in air for 2h.The calcined mixtures were ground and admixed with about 1–1.5wt%polyvinyl alcohol (Aldrich)as a binder and then pressed at $300MPa into disk shaped pellets.The pellets were sintered at 12008C for 2h in air.Materials Research Bulletin 44(2009)1288–1292A R T I C L E I N F O Article history:Received 3October 2008Received in revised form 5December 2008Accepted 6January 2009Available online 15January 2009Keywords:A.CeramicsC.X-ray diffractionD.FerroelectricityA B S T R A C TTungsten substituted samples of compositions SrBi 2(W x Ta 1Àx )2O 9(x =0.0,0.025,0.050,0.075,0.10and 0.20)were synthesized by solid-state reaction method and studied for their microstructural,electrical conductivity,ferroelectric and piezoelectric properties.The X-ray diffractograms confirm the formation of single phase layered perovskite structure in the samples with x up to 0.05.The temperaturedependence of dc conductivity vis-a`-vis tungsten content shows a decrease in conductivity,which is attributed to the suppression of oxygen vacancies.The ferroelectric and piezoelectric studies of the W-substituted SBT ceramics show that the remanent polarization and d 33values increases with increasing concentration of tungsten up to x 0.05.Such compositions with low conductivity and high P r values should be excellent materials for highly stable ferroelectric memory devices.ß2009Elsevier Ltd.All rights reserved.*Corresponding author.Present address:Liquid Crystal Group,National Physical Laboratory,Dr K.S.Krishnan Road,New Delhi 110012,India.Tel.:+919810361727;fax:+911125170387.E-mail address:indrani_coondoo@ (I.Coondoo).Contents lists available at ScienceDirectMaterials Research Bulletinj o ur n a l h o m e p a g e :w w w.e l se v i e r.c om /l oc a t e /m a t r e sb u0025-5408/$–see front matter ß2009Elsevier Ltd.All rights reserved.doi:10.1016/j.materresbull.2009.01.001X-ray diffractograms of the sintered samples were recorded using a Bruker diffractometer in the range 108 2u 708with CuK a radiation.The sintered pellets were polished to a thickness of 1mm and coated with silver paste on both sides for use as electrodes and cured at 5508C for half an hour.Electrical conductivity was performed using Keithley’s 6517A Electrometer.The polarization–electric field (P –E )hysteresis measurements were done at room temperature using an automatic P –E loop tracer based on Sawyer–Tower circuit.Piezoelectric charge co-efficient d 33was measured using a Berlincourt d 33meter after poling the samples in silicone–oil bath at 2008C for half an hour under a dc electric field of 60–70kV/cm.3.Results and discussion3.1.Structural and micro-structural studiesThe phase formation and crystal structure of the ceramics were examined by X-ray diffraction (XRD),which is shown in Fig.1.The XRD patterns of the samples show the characteristic peaks of SBT.The peaks have been indexed with the help of a computer program–POWDIN [21]and the refined lattice parameters are given in Table 1.It is observed that a single phase layered perovskite structure is maintained in the range 0.0 x 0.05.Owing to the same co-ordination number i.e.6and the smallerionic radius of W (0.60A˚)in comparison to Ta (0.64A ˚),there is a high possibility of tungsten occupying the tantalum site.The observance of unidentified peak of very low intensity in the compositions with x >0.05indicates the solubility limit of W concentration in SBT.The unidentified peak is possibly due to tungsten not occupying the Ta sites in the structure as the intensity of this peak is observed to increase with tungsten content.Composition and sintering temperature influences the micro-structure such as grain growth and densification of the specimen,which in turn control other properties of the material [11,13].The effects of W substitution on the microstructure have been examined by SEM and the obtained micrographs are shown in Fig.2.It shows the microstructure of the fractured surface of the studied samples.It is clearly observed that W substitution has pronounced effect on the average grain size and homogeneity of the grains.Randomly oriented and anisotropic plate-like grains are observed in all the samples.It is also observed that the average grain size increases gradually with increasing W content.The average grain size in the sample with x =0.0is $2–3m m while that in the sample with x =0.20the size increases to $5–7m m.3.2.Electrical studiesThe electrical conductivity of ceramic materials encompasses a wide range of values.In insulators,the defects w.r.t.the perfect crystalline structure act as charge carriers and the consideration of charge transport leads necessarily to the consideration of point defects and their migration [22].Many mechanisms were put forward to explain the conductivity mechanism in ceramics.Most of them are approximately divided into three groups:electronic conduction,oxygen vacancies ionic conduction,and ionic and p-type mixed conduction [22].Intrinsic conductivity results from the movement of the component ions,whereas conduction resulting from the impurity ions present in the lattice is known as extrinsic conductivity.At low temperature region (ferroelectric phase),the conduction is dominated by the extrinsic conduction,whereas the conduction at the high-temperature paraelectric phase ($300–7008C)is dominated by the intrinsic ionic conduction [23,25].Fig.3shows the temperature dependence of dc conductivity (s dc )for the undoped and doped SBT samples.The curves show that the conductivity increases with temperature.This is indicative of negative temperature coefficient of resistance (NTCR)behavior,a characteristic of dielectrics [22].It is observed in Fig.3that throughout the temperature range,the dc conductivity of the doped samples are nearly two to three orders lower than that of the undoped sample.Two predominant conduction mechanisms indicated by slope changes in the two different temperature regions are observed in Fig.3.Such changes in the slope in the vicinity of the ferro-paraelectric transition region have been observed in other ferroelectric materials as well [23,24].In addition,it is also observed (Table 2)that the activation energy calculated using the Arrhenius equation [22]in the paraelectric phase increase from $0.80eV for the undoped sample to $2eV for the doped samples.The X-ray photoemission spectroscopic study has confirmed that when Bi 2O 3evaporates during high-temperature processing,vacancy complexes are formed in the (Bi 2O 2)2+layers [26].As a result,defective (Bi 2O 2)2+layers are inherently present in SBT.The undoped SBT shows n-type conductivity,since when oxygen vacancies are created,it leaves behind two trapped electrons [27]:O o !12O 2"þV o þ2e 0(1)where O o is an oxygen ion on an oxygen site,V o is a oxygen vacant site and e 0represents electron.The conductivity in the perovskites can be described as an ordered diffusion of oxygen vacancies [28].Their motion is manifested by enhanced ionic conductivity associated with an activation energy value of $1eV [26].These oxygen vacancies can be suppressed by addition of donors,since the donor oxide contains more oxygen per cation than the host oxide it replaces [29].It has been reported that conductivity in Bi 4Ti 3O 12(BIT)can be significantly decreased,up to three orders of magnitude with the addition of donors,such as Nb 5+and Ta 5+at the Ti 4+sites [23,30].A few other studies on layered perovskites have also reported a decrease inconductivityFig.1.XRD patterns of SrBi 2(W x Ta 1Àx )2O 9samples sintered at 12008C.Table 1Lattice parameters of SrBi 2(W x Ta 1Àx )2O 9samples.Concentration of W a (A ˚)b (A ˚)c (A ˚)0.0 5.5212 5.513924.92230.025 5.5214 5.520225.10790.05 5.5217 5.519925.05850.075 5.5191 5.504525.05670.10 5.5142 5.506125.0850.205.51335.493925.0861I.Coondoo et al./Materials Research Bulletin 44(2009)1288–12921289with addition of donors [23,24,31].In the present study,the Ta 5+-site substitution by W 6+in SBT can be formulated using a defect chemistry expression as WO 3þV o!Ta 2O 512W Ta þ3O o (2)It shows that the oxygen vacancies are reduced upon the substitution of donor W 6+ions for Ta 5+ions.Hence,it is reasonable to believe that the conductivity in SBT is suppressed by donor addition.As per the above discussion,the high s dc observed in the undoped SBT (Fig.3)can be attributed to the motion of oxygen vacancies.As already discussed,the doped samples show reduced conductivity because the transport phenomena involving oxygen vacancies are greatly reduced.The high E a value of $1.75–2eVcorresponding to the high-temperature region in the doped ceramics is consistent with the fact that in the donor-doped materials,the ionic conduction reduces [32].The activation energy E a in the low temperature ferroelectric region (Table 2)corre-sponds to extrinsic conduction.At lower temperatures the extrinsic conductivity results from the migration of impurity ions in the lattice.Some of these impurities may also be associated with lattice defects.Pure SBT has large number of Schottky defects (oxygen vacancies)in addition to impurity ions whereas in the doped samples,due to charge neutrality,there is relatively less content of oxygen vacancies.Thus,in the doped samples the conductivity in the low temperature region is largely due to the impurity ions only.This explains the high activation energy in pure SBT in the low temperature region compared to doped samples (Table 2).In the high-temperature region,the value of E a in the doped samples is observed to increase with W concentration up to x =0.05but beyond that,it decreases (Table 2).The decrease in the activation energy for samples with x >0.05suggests an increase in the concentration of mobile charge carriers [33].This observation can be ascribed to the existence of multiple valence states of tungsten.Since tungsten is a transitional metal element,the valence state of W ions in a solid solution most likely varies from W 6+to W 4+depending on the surrounding chemical environment [34].When W 4+are substituted for the Ta 5+sites,oxygen vacancies would be created,i.e.one oxygen vacancy would be created for every two tetravalent W ions entering the crystal structure,whichFig.3.Variation of dc conductivity with temperature in SrBi 2(W x Ta 1Àx )2O 9samples.Fig.2.SEM micrographs of fractured surfaces of SrBi 2(W x Ta 1Àx )2O 9samples with (a)x =0.0,(b)x =0.025,(c)x =0.050,(d)x =0.075,(e)x =0.10and (f)x =0.20Table 2Activation energy (E a )in the high-temperature paraelectric region and low temperature ferroelectric region;Curie temperature (T c )in SrBi 2(W x Ta 1Àx )2O 9samples.Concentration of W E a (high temp.)(eV)E a (low temp.)(eV)T c (8C)0.00.790.893110.025 1.920.593080.05 1.960.543250.075 1.940.543380.10 1.860.573680.201.740.54390I.Coondoo et al./Materials Research Bulletin 44(2009)1288–12921290explains the increase in the concentration of mobile charge carriers which ultimately results in an decrease in the E a beyond x>0.05. Hence it is reasonable to conclude that W ions in the SBWT exists as a varying valency state,i.e.at lower doping concentration they exist in hexavalent state(W6+)and at a higher doping concentra-tion,they tend to exist in lower valency states[8].The P–E loops of SrBi2(Ta1Àx W x)2O9are shown in Fig.4.It is observed that W-doping results in formation of well-defined hysteresis loops.Fig.5shows the compositional dependence of remanent polarization(2P r)and the coercivefield(2E c)of SrBi2(Ta1Àx W x)2O9samples.Both the parameters depend on W content of the samples.It is observed that2P rfirst increases with x and then decreases while2E cfirst decreases with x and then increases(Fig.5).The optimum tungsten content for maximum2P r ($25m C/cm2)is observed to be x=0.075.It is known that ferroelectric properties are affected by compositional modification,microstructural variation and lattice defects like oxygen vacancies[10,35,36].In hard ferroelectrics, with lower valent substituents,the associated oxide vacancies are likely to assemble in the vicinity of domain walls[37,38].These domains are locked by the defects and their polarization switching is difficult,leading to an increase in E c and decrease in P r[38]. On the other hand,in soft ferroelectrics,with higher valent substituents,the defects are cation vacancies whose generation in the structure generally increases P r.Similar observations have been made in many reports[38–41].Watanabe et al.[42]reported a remarkable improvement in ferroelectric properties in the Bi4Ti3O12ceramic by adding higher valent cation,V5+at the Ti4+ site.It has also been reported that cation vacancies generated by donor doping make domain motion easier and enhance the ferroelectric properties[43].Further,it is known that domain walls are relatively free in large grains and are inhibited in their movement as the grain size decreases[44].In the larger grains, domain motion is easier which results in larger P r.Also for the SBT-based system,it is known that with increase in the grain size the remanent polarization also increases[45,46].Based on the obtained results and above discussion,it can be understood that in the undoped SBT,the oxygen vacancies assemble at sites near domain boundaries leading to a strong domain pinning.Hence,as observed,well-saturated P–E loop for pure SBT is not obtained.But in the doped samples,the suppression of the oxygen vacancies reduces the pinning effect on the domain walls,leading to enhanced remanent polarization and lower coercivefield.Also,the increase in grain size in tungsten added SBT,as observed in SEM micrographs(Fig.2)contribute to the increase in polarization values.In the present study,the grain size is observed to increase with increasing W concentration.However, the2P r values do not monotonously increase and neither the E c decreases continuously with increasing W concentration(Fig.5). The variation of P r and E c beyond x>0.05,seems possibly affected by the presence of secondary phases(observed in XRD diffracto-grams),which hampers the switching process of polarization [47–50].Also,beyond x>0.05the increase in the number of charge carriers in the form of oxygen vacancies leads to pinning of domain walls and thus a reduction in the values of P r and increase in E c is observed.Fig.6shows the variation of piezoelectric charge coefficient d33 with x in the SrBi2(Ta1Àx W x)2O9.The d33values increases with increase in W content up to x=0.05.A decrease in d33values is observed in the samples with x!0.075.The piezoelectric coefficient,d33,increases from13pC/N in the sample with x=0.0to23pC/N in the sample with x=0.05.It is known that the major drawback of SBT is its relatively higher conductivity,which hinders proper poling[51].High resistivity is therefore important for maintenance of poling efficiency at high-temperature[52,53].The W-doped SBT samples show an electrical conductivity value up to three orders of magnitude lower than that of undoped sample(Fig.3).The positional variation of2P r and2E c in SrBi2(W x Ta1Àx)2O9samples.Fig.6.Variation of d33in SrBi2(W x Ta1Àx)2O9samples.Fig. 4.P–E hysteresis loops in SrBi2(W x Ta1Àx)2O9samples recorded at roomtemperature.I.Coondoo et al./Materials Research Bulletin44(2009)1288–12921291decrease in conductivity upon donor doping improve the poling efficiency resulting in the observed higher d33values.Moreover, since the grain size increases with W content in SBT,it is reasonable to believe that the increase in grain size will also contribute to the increase in d33values[54].The decrease in the value of d33for samples with x!0.075is possibly due to the presence of secondary phases as observed in diffractograms[1,51,55]and the increase in oxygen vacancies for samples with x>0.05.4.ConclusionsX-ray diffractograms of the samples reveal that the single phase layered perovskite structure is maintained in the samples with tungsten content x0.05.SEM micrographs reveal that the average grain size increases with increase in W concentration. The temperature dependence of the electrical conductivity shows that tungsten doping results in the decrease of conductivity by up to three order of magnitude compared to W free SBT.All the tungsten-doped ceramics have higher2P r than that of the undoped sample.The maximum2P r($25m C/cm2)is obtained in the composition with x=0.075.The reduced conductivity allows high-temperature poling of the doped samples.Such compositions with low loss and high P r values should be excellent materials for highly stable ferroelectric memory devices.The d33value is observed to increase with increasing W content up to x0.05.The value of d33 in the composition with x=0.05is$23pC/N as compared to$13 pC/N in the undoped sample.AcknowledgmentsThe authors sincerely thank Prof.P.B.Sharma,Dean,Delhi College of Engineering,India for his generous support and providing ample research infrastructure to carry out the research work.The authors are thankful to Dr.S.K.Singhal,Scientist, National Physical Laboratory,India for his fruitful discussion and suggestions.References[1]Y.Noguchi,M.Miyayama,K.Oikawa,T.Kamiyama,M.Osada,M.Kakihana,Jpn.J.Appl.Phys.41(2002)7062.[2]A.Bonaparta,P.Giannozzi,Phys.Rev.Lett.84(2000)3923.[3]S.Connell,E.Siderashaddad,K.Bharuthram,C.Smallman,J.Sellschop,M.Bos-senger,Nucl.Instrum.Methods B85(1994)508.[4]T.Derry,R.Spits,J.Sellschop,Mater.Sci.Bull.11(1992)249.[5]K.Salama,D.F.Lee,Supercond.Sci.Technol.7(1994)177.[6]H.Hosono,Y.Ikuta,T.Kinoshita,M.Hirano,Phys.Rev.Lett.87(2001)175501.[7]S.Noda,A.Chutinan,M.Imada,Nature407(1999)608.[8]S.Shannigrahi,K.Yao,Appl.Phys.Lett.86(2005)092901.[9]G.H.Heartling,nd,J.Am.Ceram.Soc.54(1971)1.[10]H.Watanabe,T.Mihara,H.Yoshimori,C.A.Paz De Araujo,Jpn.J.Appl.Phys.34(1995)5240.[11]T.Atsuki,N.Soyama,T.Yonezawa,K.Ogi,Jpn.J.Appl.Phys.34(1995)5096.[12]T.Noguchi,T.Hase,Y.Miyasaka,Jpn.J.Appl.Phys.35(1996)4900.[13]M.Noda,Y.Matsumuro,H.Sugiyama,M.Okuyama,Jpn.J.Appl.Phys.38(1999)2275.[14]R.E.Newnham,R.W.Wolfe,R.S.Horsey,F.A.D.Colon,M.I.Kay,Mater.Res.Bull.8(1973)1183.[15]A.D.Rae,J.G.Thompson,R.L.Withers,Acta Crystallogr.Sect.B:Struct.Sci.48(1992)418.[16]H.M.Tsai,P.Lin,T.Y.Tseng,J.Appl.Phys.85(1999)1095.[17]Y.Shimakawa,Y.Kubo,Y.Nakagawa,T.Kamiyama,H.Asano,F.Izumi,Appl.Phys.Lett.74(1999)1904.[18]Y.Noguchi,M.Miyayama,T.Kudo,Phys.Rev.B63(2001)214102.[19]J.K.Kim,T.K.Song,S.S.Kim,J.Kim,Mater.Lett.57(2002)964.[20]W.T.Lin,T.W.Chiu,H.H.Yu,J.L.Lin,S.Lin,J.Vac.Sci.Technol.A21(2003)787.[21]Wu E.,POWD,An interactive powder diffraction data interpretation and indexingprogram Ver2.1,School of Physical Science,Flinders University of South Australia, Bedford Park,S.A.JO42AU.[22]R.C.Buchanan,Ceramic Materials for Electronics:Processing,Properties andApplications,Marcel Dekker Inc.,New York,1998.[23]H.S.Shulman,M.Testorf,D.Damjanovic,N.Setter,J.Am.Ceram.Soc.79(1996)3124.[24]M.M.Kumar,Z.G.Ye,J.Appl.Phys.90(2001)934.[25]Y.Wu,G.Z.Cao,J.Mater.Res.15(2000)1583.[26]B.H.Park,S.J.Hyun,S.D.Bu,T.W.Noh,J.Lee,H.D.Kim,T.H.Kim,W.Jo,Appl.Phys.Lett.74(1999)1907.[27]C.A.Palanduz,D.M.Smyth,J.Eur.Ceram.Soc.19(1999)731.[28]C.R.A.Catlow,Superionic Solids&Solid Electrolytes,Academic Press,New York,1989.[29]M.V.Raymond,D.M.Symth,J.Phys.Chem.Solids57(1996)1507.[30]S.S.Lopatin,T.G.Lupriko,T.L.Vasiltsova,N.I.Basenko,J.M.Berlizev,Inorg.Mater.24(1988)1328.[31]M.Villegas,A.C.Caballero,C.Moure,P.Duran,J.F.Fernandez,J.Eur.Ceram.Soc.19(1999)1183.[32]Y.Wu,G.Z.Cao,J.Mater.Sci.Lett.19(2000)267.[33]B.H.Venkataraman,K.B.R.Varma,J.Phys.Chem.Solids66(2005)1640.[34]C.D.Wagner,W.M.Riggs,L.E.Davis,F.J.Moulder,Handbook of X-ray Photoelec-tron Spectroscopy,Perkin Elmer Corp.,Chapman&Hall,1990.[35]Y.Noguchi,I.Miwa,Y.Goshima,M.Miyayama,Jpn.J.Appl.Phys.39(2000)1259.[36]M.Yamaguchi,T.Nagamoto,O.Omoto,Thin Solid Films300(1997)299.[37]W.Wang,J.Zhu,X.Y.Mao,X.B.Chen,Mater.Res.Bull.42(2007)274.[38]T.Friessnegg,S.Aggarwal,R.Ramesh,B.Nielsen,E.H.Poindexter,D.J.Keeble,Appl.Phys.Lett.77(2000)127.[39]Y.Noguchi,M.Miyayama,Appl.Phys.Lett.78(2001)1903.[40]Y.Noguchi,I.Miwa,Y.Goshima,M.Miyayama,Jpn.J.Appl.Phys.39(2000)L1259.[41]B.H.Park,B.S.Kang,S.D.Bu,T.W.Noh,L.Lee,W.Joe,Nature(London)401(1999)682.[42]T.Watanabe,H.Funakubo,M.Osada,Y.Noguchi,M.Miyayama,Appl.Phys.Lett.80(2002)100.[43]S.Takahashi,M.Takahashi,Jpn.J.Appl.Phys.11(1972)31.[44]R.R.Das,P.Bhattacharya,W.Perez,R.S.Katiyar,Ceram.Int.30(2004)1175.[45]S.B.Desu,P.C.Joshi,X.Zhang,S.O.Ryu,Appl.Phys.Lett.71(1997)1041.[46]M.Nagata,D.P.Vijay,X.Zhang,S.B.Desu,Phys.Stat.Sol.(a)157(1996)75.[47]J.J.Shyu,C.C.Lee,J.Eur.Ceram.Soc.23(2003)1167.[48]I.Coondoo,A.K.Jha,S.K.Agarwal,Ferroelectrics326(2007)35.[49]T.Sakai,T.Watanabe,M.Osada,M.Kakihana,Y.Noguchi,M.Miyayama,H.Funakubo,Jpn.J.Appl.Phys.42(2003)2850.[50]C.H.Lu,C.Y.Wen,Mater.Lett.38(1999)278.[51]R.Jain,V.Gupta,A.Mansingh,K.Sreenivas,Mater.Sci.Eng.B112(2004)54.[52]I.S.Yi,M.Miyayama,Jpn.J.Appl.Phys.36(1997)L1321.[53]A.J.Moulson,J.M.Herbert,Electroceramics:Materials,Properties,Applications,Chapman&Hall,London,1990.[54]H.T.Martirena,J.C.Burfoot,J.Phys.C:Solid State Phys.7(1974)3162.[55]R.Jain,A.K.S.Chauhan,V.Gupta,K.Sreenivas,J.Appl.Phys.97(2005)124101.I.Coondoo et al./Materials Research Bulletin44(2009)1288–1292 1292。
生物陶瓷材料2

图1
几种常见的基于磷酸钙的生物陶瓷材料
www.themegallห้องสมุดไป่ตู้
LOGO
磷酸钙生物陶瓷研究背景
表1 现存的几种磷酸钙和它们的主要性质
(3) 磷酸一钙(MCPA)和磷酸二钙(DCPA)在温度高于100°C稳定。 (1) α-TCP、β-TCP和TTCP不能从水溶液中沉淀; (4) pH在5~12时,ACP相对稳定。(5)缺钙羟基磷灰石(CDHA)被称为沉淀的HA。 (2) 无定型磷酸钙(ACP)不能精确测量。在酸性缓冲液中的溶解程度: (6) 对CDHA,当x=1时,边界条件钙磷比为1.5,CDHA的分子式为 ACP>> a-TCP>> b-TCP> CDHA >>HA > FA。 Ca9(HPO4)(PO4)5(OH)。
LOGO
磷酸钙生物陶瓷的几种理化性质
粉末或压坯在 低于主要组分 烧结 机械性能 熔点温度下加 热,使颗粒间 磷酸钙生 产生连接, 产生连接,以 物陶瓷 提高制品性能 的方法。 的方法。能提 机械强度, 高机械强度, 电学性质 多孔性 增加韧性。 增加韧性。
强度和杨氏 模量较高, 模量较高, 脆性低。 脆性低。
图6 降解前后聚磷酸钙多孔支架 材料的表面形貌图( 材料的表面形貌图(x5000) )
LOGO
生物活性
新形成的骨通过在骨/材料交界处形成碳化 新形成的骨通过在骨 材料交界处形成碳化CDHA层直接连接到生物 材料交界处形成碳化 层直接连接到生物 材料上。 材料上。 几种生物陶瓷的体内体外实验 在体内,酸性环境下的细胞( 巨噬细胞,破骨细胞) ① 在体内,酸性环境下的细胞(如巨噬细胞,破骨细胞)活动会引起磷 实验对象:体外是模仿体液;体内是兔子肌肉系统。 实验对象:体外是模仿体液;体内是兔子肌肉系统。 酸钙的部分溶解。 酸钙的部分溶解。
陶瓷的英语作文

六、Challenges and Innovations
Despite its long history and widespread usage, the ceramics industry faces several challenges in the modern era. Issues such as environmental impact, energy consumption, and waste management have spurred the development of innovative techniques and materials. Advanced ceramics, such as engineered ceramics and ceramic composites, have emerged to meet the demands of diverse industries.
五、Cultural Significance
The significance of ceramics in various cultures cannot be overlooked. In China, the art of porcelain making has been highly revered and has become an integral part of its cultural heritage. Japanese tea ceremonies, which involve the use of ceramic tea sets, reflect the deep appreciation for ceramics in Japanese culture. In the Western world, ceramics have been valued for their aesthetic appeal and functional utility.
介绍陶瓷高中英语作文范文

介绍陶瓷高中英语作文范文Ceramics: A Blend of Art and Science。
Introduction:Ceramics, a versatile art form that has been practiced for centuries, is the art of creating objects from clay and other inorganic materials through the process of heating.It is not only a creative outlet but also a scientific endeavor that involves understanding the properties of materials and the chemical reactions that occur during firing. In this essay, we will explore the world of ceramics, its history, techniques, and significance in both art and science.History of Ceramics:The history of ceramics dates back to ancient civilizations. From the Neolithic period to the present day, ceramics have played a vital role in human culture. Theearliest known ceramic objects were found in China and date back to around 18,000 BCE. These objects were simple, functional vessels made from clay and fired at low temperatures.Over time, ceramic techniques evolved, andcivilizations around the world began experimenting with different materials and firing methods. In ancient Egypt, ceramics were used for both practical and decorative purposes. The Greeks and Romans developed sophisticated pottery techniques, producing intricate designs andutilizing glazes to enhance the aesthetic appeal of their creations.During the Middle Ages, Islamic ceramics reached new heights of excellence, with intricate patterns and vibrant colors. In East Asia, particularly in China and Japan, ceramics became an integral part of their cultural heritage, with unique styles such as porcelain and raku pottery emerging.Ceramics in Art:Ceramics have long been recognized as a form ofartistic expression. Artists use various techniques to shape clay into functional or decorative objects. Handbuilding, wheel throwing, and slip casting are some of the traditional techniques employed in ceramic art.One of the most famous ceramic art forms is porcelain. Porcelain is a type of ceramic made from a specific type of clay called kaolin. It is known for its delicate, translucent appearance and its ability to hold intricate details. Chinese porcelain, in particular, is highly regarded for its craftsmanship and aesthetic beauty.In contemporary art, ceramics have gained recognition as a medium for sculptural expression. Artists push the boundaries of traditional techniques, experimenting with form, texture, and glazing to create unique and thought-provoking artworks. Ceramic sculptures can range from abstract forms to figurative representations, showcasing the versatility of the medium.Ceramics in Science:Beyond its artistic significance, ceramics play a crucial role in various scientific fields. The study of ceramics involves understanding the properties of materials and their behavior under different conditions. Ceramic materials possess unique characteristics such as high melting points, thermal insulation, and resistance to corrosion, making them valuable in numerous applications.In engineering, ceramics are used in the production of cutting tools, bearings, and insulating materials. Their high strength and resistance to wear make them ideal for applications where durability is essential. Ceramics also find applications in the aerospace industry, as they can withstand extreme temperatures and provide thermal protection.In the medical field, ceramics are used in the manufacturing of dental implants, prosthetics, and bone substitutes. Ceramic materials are biocompatible, meaning they can integrate with living tissues without causingadverse reactions. This property makes ceramics anexcellent choice for medical implants.Conclusion:Ceramics, with its rich history, diverse techniques, and dual significance in art and science, continues to captivate and inspire. From ancient pottery to contemporary sculptures, ceramics have evolved as a medium for creative expression. Simultaneously, its scientific applications have contributed to advancements in various industries. Whether it is the delicate beauty of porcelain or the strength of engineering ceramics, this art form continues to leave an indelible mark on our world.。
介绍陶瓷(英文版)

Ceramics and Culture
The pottery in the Neolithic e pottery in the Neolithic (8,000-2,000BC in China) period records the survival will of the ancient people. Pigs, dogs, and cows made of clay signified people's fierce struggle with the environment at the time。
Ming Plain Tri-colored Glazed Porcelain
During the Zhengde reign of the Ming Dynasty (1368-1644), a type of colored-glazed porcelain featuring three major colors -- yellow, green and purple -became very popular in Jingdezhen, Jiangxi Province.
Classic Work of Painted Pottery
The classic one is Human Face and Fish Body Design Colored Pottery Basin, which was made in the Neolithic age (5000 to 10000 years ago) and unearthed in the 1950s in Banpo Village in Xi'an of Shaanxi Province.
Noted Ceramics
基于二氧化硅的海洋海绵生物陶瓷表面改性羟基磷灰石诱导形成

学号:2011012008北京化工大学文献翻译译文及原稿题目:光聚合齿科修复材料学院:材料科学与工程学院专业:高分子材料与工程班级:高材1101 姓名:刘晓宇指导教师:聂俊专业负责人:闫寿科指导老师意见:指导老师签字:日期: 年月日日期:2015 年5月26 日基于二氧化硅的海洋海绵生物陶瓷表面改性羟基磷灰石诱导形成Alexandre A. Barros, Ivo M. Aroso, Tiago H. Silva, Joaõ F. Mano, Ana Rita C. Duarte,* and Rui L. Reis摘要:生物材料海洋是有显着应用研究的一个新兴领域。
最近,研究人员正在致力于相当重视海洋生物材料海绵用于各种应用。
我们专注于在新型生物医学/工业应用的潜力。
煅烧后,获得从该海绵生物陶瓷结构在750℃下6小时,从该海绵生物陶瓷结构。
三维结构的形态特征,通过扫描电子显微镜(SEM)和microcomputed断层,揭示一种高度多孔且互连的结构进行了评价。
P. ficidormis的骨架是硅质基质的SiO 2的组成,其不呈现固有的生物活性。
诱导生物活性的混合物达到由1和3小时使生物陶瓷结构以碱处理(2M KOH)和酸性处理(2M HCl中)。
在生物陶瓷结构的体外生物活性在模拟生理流体(SBF),后7和14天进行评价。
结构通过SEM,加上分光元素分析(EDS)的观察,表明表面形态提出了磷酸钙磷酸钙涂层,类似于羟基磷灰石(HA)。
的Ca / P比的测定,用的HA用红外光谱和X 射线衍射的特征峰的评估一起,已被证明的HA的存在。
体外结构的生物性能使用成骨细胞株进行评价,酸性治疗已被证明是最有效的治疗。
细胞接种在生物陶瓷结构和它们的形态;活力和生长通过SEM,MTS测定评估,和DNA量化阳离子,分别表明细胞能够生长和定殖的生物陶瓷结构1.引言海洋天然产物研究的不断扩大,在新化合物的数量每年稳步增长说明,并与注册专利的数量。
生物陶瓷材料HA

生物陶瓷的特点及运用
• 4)后加工方便。通常认为陶瓷很难加工,但随陶 瓷加工设备和技术的进步,现在陶瓷的切割、研 磨、抛光等已是成熟的工艺。近年来又发展了可 用普通金属加工机床进行车铣、刨、钻等的可切 割性生物陶瓷,利用玻璃陶瓷结晶化之前的高温 流动性,可制成精密铸造的玻璃陶瓷。
• 5)易于着色。如陶瓷牙冠与天然牙逼真,利于整 容、美容。
HAP涂层钛基牙种植体
是一种安全、方便的听小 骨缺损替代品,适用于因 炎症或外伤等病症造成听 小骨缺损、畸形的患者作 听小骨置换手术。
HAP生物陶瓷听小骨置换假体
生物活性陶瓷材料
——羟基磷灰石陶瓷材料
• 羟基磷灰石的主要缺点在于本身的力学性能较差、 强度低、脆性大,这一缺点影响了它在医学临床 的广泛应用,同时也促使人们研究HA系列的各种 复合材料,以期获得力学性能优良、生物活性好 的生物医学复合材料。
自20世纪70年代起, 生物陶瓷显露头角, 世界各国 相继开展了理论和应用研究, 并且不断取得突破性进 展。
生物材料的发展历程
生物材料学是一个崭新的领域,但生物材料本身 却有着古老的历史,只是它在当代才取得了快速的 发展。追溯生物材料的历史,不得不提到人工器 官.人工器官的研究实际上是个古老的命题。
• 2)陶瓷的组成范围比较宽,可以根据实际应用的 要求设计组成,控制性能的变化。
• 例:可降解生物陶瓷在体内不同部位的使用中, 希望能针对被置换骨的生长特点获得具有不同降 解速度的陶瓷。否则,当降解速度超过骨生长速 度时, 就会产生“死区”,影响修复。如果向此 类材料中添加适当比例的非降解性生物陶瓷,就 能调整降解速度,满足临床要求。
张大海
• 采用钙乙二醇化合物和具有一定活性、由 P2O5 和n-丁醇反应生成的PO(OH)x(OR)3-x 产物为前驱体,以Ca/P=1.67的比例混合, 加 人醋酸从而得稳定混合溶液, 制备羟基磷灰 石
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fabrication and Mechanical Properties of Dense/Porous β-TricalciumPhosphate BioceramicsFaming Zhang1, a , Jiang Chang 1, b*, Jianxi Lu 1, 2, c , Kaili Lin 1, d 1 Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, ChineseAcademy of Sciences, Shanghai 200050, China 2 Shanghai Bio-lu Biomaterials Company, Shanghai 200335, China a star.zhang@, b* jchang@,c ir2bberck@,d lklsic@Keywords: Bioceramics, calcium phosphate, bone regeneration, weight bearing sitesAbstract: Attempt t o increase the mechanical properties of porous bioceramics, a dense/porous structured β-TCP bioceramics that mimic the characteristics of nature bone were fabricated. Experimental results show that the dense/porous structured β-TCP bioceramics demonstrated excellent mechanical properties with compressive strength up to 74 MPa and elastic modulus up to 960 MPa, which could be tailored by the dense/porous cross-sectional area ratio obeying the rule of exponential growth. The interface between the dense and porous bioceramics is connected compactly and tightly with some micropores distributed in the matrix of both porous and dense counterparts. The dense/porous structure of β-TCP bioceramics may provide an effective way to increase the mechanical properties of porous bioceramics for bone regeneration at weight bearing sites.IntroductionVarious methods for bone defect treatments have been developed using biological or synthetic grafts. The synthetic alternatives are promising grafts for their unlimited availability and without risk of disease transmission [1]. Calcium phosphate bioceramics, especially hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), have been extensively explored as bone grafts due to their compositions are similar to the inorganic components of nature bone [2]. The β-TCP bioceramics is well known as a biodegradable material demonstrated clinical efficacy. The porous β-TCP bioceramics is a structurally biomimetic of the cancellous bone, whose porous network could allow tissue to ingrowth exhibiting nicer osteoconductive properties. However, the porous β-TCP shows weak mechanical properties, which limit its application as bone grafts. The macrostructure feature of nature bone is porous cancellous bone inside with dense compact bone surrounding outside, which provides excellent biomechanical properties. Carotenuto et al [3] have prepared dense/porous layered HA bioceramic for orthopedic device coating by tape casting technique, whereas the bulk dense/porous bioceramics were rarely reported. Therefore in present study, a dense/porous structured β-TCP bioceramics that mimics the characteristics of nature bone were fabricated, and the microstructure and mechanical properties of such bioceramics were studied.ExperimentalThe β-TCP powders were synthesized by chemical precipitation reaction. The dense/porous structured β-TCP bioceramics were prepared by injected molding and subsequently pressureless sintering. The shrinkage rate of both porous and dense parts during sintering process was measured at different temperatures. X-ray diffraction (XRD) with Cu K α radiation was used to characterize the phase composition of the ceramics. The microstructures observation of the bioceramic samples was performed on a scanning electron microscopy (SEM).The compressive strength was conducted with a mechanical tester at 0.5 mm/min crosshead speed. The elastic modules were reanalyzed from the slope of the compressive strength-strain curve.All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the publisher: Trans Tech Publications Ltd, Switzerland, . (ID: 159.226.129.129-19/09/06,02:35:46)Results and DiscussionThe major problem in preparation of the dense/porous bioceramics is the interface adhesion between the dense and porous parts because of their different shrinkage rate during sintering process. The shrinkage rate of dense and porous bioceramics at different temperatures was measured and the results are shown in Fig.1. It can be noticed that the porous β-TCP bioceramics exhibit much higher shrinkage rate than the dense counterpart. The porous bioceramics shows about 23% shrinkage in radial direction; in contrast, the dense bioceramics presents about 17% shrinkage. It can be calculated that from 850 o C to 1100 o C, the porous β-TCP bioceramics shows about 17% shrinkage rate and almost the same with that of the dense counterpart from 600 o C to 1100 o C. So as to avoiding the shrinkage differences, the porous β-TCP bioceramics were pre-sintered at 850 o C, then the dense bioceramics were injected surrounding the porous ceramics, finally the composites were pressureless sintered at 1100 o C for 5 hours and the dense/porous structured β-TCP bioceramics were obtained.Fig.1 The radial shrinkage rate of the porous and dense β-TCP bioceramicsThe phase composition of the as prepared bioceramics was analyzed by X-ray diffraction. The XRD results show that the high temperature sintered β-TCP preserved their original β phase without transform into their α-TCP phase, as shown in Fig.2. Because the α-TCP though bioactive, have proven less useful as bone regeneration materials due to their excessively high resorption rate than the β-TCP phase. And none of the other impurity phases can be detected in the XRD patterns; resultantly, high purity β-TCP bioceramics were prepared.Fig.2 X-ray diffraction pattern of the prepared bioceramics.Fig.3 shows the optical and SEM micrographs of the prepared dense/porous β-TCP bioceramics samples. It is clear to see that the inner porous structure mimics the cancellous bone to some extent, and outer side dense structure mimics the compact bone, as shown in Fig.3(a) and indicated by theS h i n k a g e (%)Temperature (o C)1020304050607080100200300400500600 2theta (deg.)I n t e n s i t y (c p s )arrows. Fig.3 (b) shows the interface of the dense/porous β-TCP bioceramic, it can be found that the interface between the dense and porous bioceramics is connected compactly and tightly. In the porous part, the macropore size is about 500 μm in diameter; the diameter of the interconnected pores is about 100 μm. Additionally, the porosity of the porous parts is about 72%, and the interconnectivity is more than 95%. The microstructure of the macroporous wall was shown in Fig.3(c); it is obvious that there are some micropores with diameter of 1 μm distributed uniformly in the porous wall. As the results, the microstructure of porous part of the bioceramics is a combination of macroporous and microporous. Contrastively, the microstructure of the dense bioceramics shows refined particle size and few micropores, as exhibited in Fig.3(d). The dense compact part is much denser than the porous cancellous part.Fig.3 The dense/porous β-TCP bioceramic sample (a), the microstructure of dense/porous interface(b), the macroporous wall (c) and dense compact bone (d).The variation of the compressive strength and Elastic modulus of the bioceramics with different dense/porous cross-sectional area ratio (S dense /S porous ) was illustrated in Fig 4. It is exhibited that the compressive strength increases from 10 MPa to 74 MPa with the dense/porous ratio from 0.1 to 4.7 obeying rule of exponential growth. And the elastic modulus has been increased form 180 MPa to 960 MPa with the dense/porous ratio increment, also following exponential growth. Evidently, the value of the porous bioceramics is only about 2.0 MPa and the elastic modulus is about 20 MPa, indicated by the square in Fig.4. It has been achieved about 5 to 37 times increment in the mechanical properties by the dense/porous structure design. The mechanical properties of the dense/porous bioceramics could be tailored by the dense/porous cross-sectional area ratio.Porous materials always have poor mechanical properties. Applications of calcium phosphates in the body have been limited by their low strength and numerous techniques have been investigated in attempts to retain their useful bioactive properties whilst providing more suitable mechanical properties for particular applications. These include the reinforcement of β-TCP using HA fiber orbioglass additives [4, 5]; however these techniques are limited for the porous calcium phosphate Compact bone Cancellousbone (b)(c) (d)using in the load bearing sites’ bone regeneration. In this study, excellent mechanical properties of the porous β-TCP bioceramics have been achieved by the dense/porous structured design. The compressive strength of human femoral cancellous bone, weight bearing sites, is in the range of 25~90 MPa, so the dense/porous structured β-TCP is comparable to the strength of human femoral cancellous bone. The high interconnective porous structure of the dense/porous β-TCP bioceramics could allow the tissue ingrowths, and the dense structure could bear the load to some extent. The dense/porous structure of β-TCP bioceramics may provide a simple but effective way to increase the mechanical properties of porous bioceramics for the bone regeneration applications at weight bearing sites.Fig.4 The variation of the compressive strength and elastic modulus of the bioceramics withdifferent dense/porous cross-sectional area ratio. ConclusionsThe dense/porous structured β-TCP bioceramics were prepared and revealed excellent mechanical properties with compressive strength from 10 to 74 MPa and elastic modulus from 180 to 960 MPa, which is 5 to 37 times higher than that of the pure porous β-TCP and comparable to the strength of human femoral cancellous bone. The interface between the dense and porous bioceramics is connected compactly and tightly. The dense/porous structure of β-TCP bioceramics may provide a simple but effective way to increase the mechanical properties of porous bioceramics for weight bearing site’s bone regeneration.AcknowledgementFinancial supports from the Shanghai Postdoctoral Scientific Key Program and the Science & Technology Commission of Shanghai Municipality of China (No.04DZ52043) are greatly acknowledged.References:[1] Niedhart C, Maus U, Redmann E, Schmidt-Rohlfing B, Niethard FU, Siebert CH: J BiomedMater Res Vol. 65A (2003), p.17[2] Hench Larry L: Journal of the American Ceramic Society Vol. 81(1998), p.1705[3] Carotenuto G: Advanced Performance Materials Vol. 5(1998), p.171[4] Hassna R. R. Ramay, Zhang M.: Biomaterials Vol. 25(2004), p.5171[5] Ashizuka M, Nakatsu M, Ishida E: Journal of the Ceramic Society of Japan, v 98(1990), p.204. 01020304050607080012345020040060080010001200E l a st i c M o d u l u s (M P a ) C o m p r e s s i v e S t r e n g h (M P a )S dense /S porous。