真菌α-淀粉酶的研究和应用

合集下载

实验六十淀粉酶产生菌株的筛选

实验六十淀粉酶产生菌株的筛选

实验六十淀粉酶产生菌株的筛选实验项目性质:设计性涉及的知识点:无菌技术、浓缩培养、纯种子分离、淀粉酶特性和酶活性测定。

计划学时:8学时一、实验目的1.掌握从环境中采集样本并从中分离纯化某些微生物的完整操作步骤。

2.巩固之前所学的微生物学实验技术。

3.掌握产酶微生物的筛选方法。

二、实验原理α-淀粉酶是一种液化淀粉酶。

其产生菌芽孢杆菌广泛分布于自然界,尤其是在含有淀粉的土壤样品中。

从自然界筛选菌株的具体方法大致可分为以下四个步骤:取样、增殖培养、纯种子分离和性能测定。

1、采样:即采集含菌的样品在收集含有细菌的样本之前,你应该调查和研究你打算筛选的微生物分布在哪里,然后你可以开始做各种具体的工作。

几乎所有种类的微生物都可以在土壤中找到,因此土壤可以说是微生物的基础。

在土壤中,细菌数量最多,其次是放线菌、第三种霉菌和酵母。

除土壤外,各种物体上都有相应的优势微生物。

例如,枯枝、腐叶、腐土和腐木中的纤维素分解细菌较多,厨房土壤、面粉加工厂和菜园土壤中的淀粉分解细菌较多,水果和蜜饯表面的酵母较多;植物奶中含有较多的乳酸菌,油田和炼油厂附近的土壤中含有较多的石油分解菌。

2、增殖培养(又称丰富培养)增殖培养是在采集的土壤和其他含有细菌的样本中添加一些物质,并创造一些其他有利于待分离微生物生长的条件,以便能够分解和利用这些物质的微生物能够大量繁殖,以便我们从中分离出这些微生物。

因此,增殖培养实际上是选择性培养基的实际应用。

3、纯种分离在生产实践中,一般都应用纯种微生物进行生产。

通过上述的增殖培养只能说我们要分离的微生物从数量上的劣势转变为优势,从而提高了筛选的效率,但是要得到纯种微生物就必须进行纯种分离。

纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。

4.业绩衡量分离得到纯种这只是选种工作的第一步。

所分得的纯种是否具有生产上所要求的性能,还必须要进行性能测定后才能决定取舍。

α-淀粉酶

α-淀粉酶

α-淀粉酶在结构上的相似性使人们相信它们具有相似的 催化机制。McCarter、Davies均提出α-淀粉酶的催化过 程包括三步,共发生2次置换反应。第一步,底物某个 糖残基要先结合在酶活性部位的-1亚结合位点,该糖基 氧原子被充当质子供体的酸性氨基酸(如Glu)所质子化;第 二步,-1亚结合位点的另一亲核氨基酸(如Asp)对糖残基 的Cl碳原子进行亲核攻击,与底物形成共价中间物,同 C 时裂解Cl-OR键,置换出底物的糖基配基部分;第三步, 糖基配基离去之后,水分子被激活(可能正是被刚去质 子化的Glu所激活),这个水分子再将Asp的亲核氧与糖残 基的C1之间的共价键Cl-Asp水解掉,置换出酶分子的Asp 残基,水解反应完成。在第二次置换反应中,如果进攻 基团不是水分子,而是一个带有游离羟基的糖(寡 糖)ROH,那么酶分子的Asp残基被置换出后,就发生了 糖基转移反应而非水解反应。
在米曲霉的Taka-淀粉酶A(TAA)中,在活性部 位发现有三个酸性氨基酸残基,Asp206, Glu230,Asp 297,定点突变研究发现它们 是催化所必需的氨基酸。研究发现TAA中这 三个催化所必需的氨基酸在其它的α-淀粉酶 以至于α-淀粉酶家族中也是共有的。
Tonozaka(1993)通过对不同来源的37个α-淀粉酶基因分支酶基因,异 淀粉酶基因等进行同源序列的比较,微生物与动物和植物产生的α-淀 粉酶的氨基酸序列之间的同源性不超过10%,但发现这些淀粉酶有 ABCD四个区域有高度的保守性,推测这些保守区域与其底物的结合 或催化中心有关。 尽管不同来源的α-淀粉酶在氨基酸序列上是不同的,但它们却共同拥 有相同的基本次级结构,如(β/α)8结构(亦称之为TIM-桶)——由8个螺 旋包围8个β-折叠组成的筒状结构。该结构被认为具有催化能力的结 构。 YJanec k,S.通过对α-淀粉酶家族研究发现大部分α-淀粉酶除了含有 八个(β/α)桶状结构的催化中心(domain A)外,还包括domains B、C和 D。其中domain B具有三个β折叠和三个α螺旋,长度和结构随来源的 不同而变化。Domain C区是催化区域后面的区域,主要由β折叠组成, 该区被认为有保护催化中心疏水氨基酸的稳定性的作用。 另外,有一些α-淀粉酶包含一个没有催化功能的淀粉结合位点(starchbinding domain)。 此外,几乎所有α-淀粉酶都是金属酶,每个酶分子至少含有一个钙离 子,钙离子使酶分子保持适当的构象,从而维持其最大的活性和稳定 性。

α淀粉酶在畜禽生产中的作用机理及应用进展

α淀粉酶在畜禽生产中的作用机理及应用进展

α-淀粉酶在畜禽生产中的作用机理及应用进展摘要随着近代酶技术及生物技术的发展,高效能生物活性物质——酶制剂已能大规模地工业化生产,并被应用于饲料工业中,许多实验和实际应用结果都表明,饲用酶制剂作为一种饲料添加剂能有效地提高饲料的利用率、促进动物生长和防治动物疾病的发生,与抗生素和激素类物质相比,具有卓越的安全性,引起了全球范围内饲料行业的高度重视。

饲用酶种类繁多,淀粉酶作为其中的一种,在畜禽生产中取得了相当好的效果。

本文主要介绍淀粉酶的组成、基本性质以及在畜禽生产中的应用。

关键词:α-淀粉酶畜禽生产作用机理应用进展正文:1、α-淀粉酶的简介1.1 α-淀粉酶的定义淀粉酶是一类能分解淀粉糖苷键的酶的总称,广泛存在于动植物和微生物中,是利用最早、用途最广、工业产量最大的酶制剂品种。

按照水解淀粉酶的方式,淀粉酶主要可分为四大类:α-淀粉酶(α-amylase)、β-淀粉酶(β-amylase)、葡萄糖淀粉酶(glucoamylase)和异淀粉酶(isoamylase)。

[1]其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶,EC3.2.1.1)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键,而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶。

[2]-[3]1.2 α-淀粉酶的分类和结构依α-淀粉酶产物不同可将它们分为糖化型和液化型两种:液化型α-淀粉酶,能将淀粉酶快速液化,其终产物为寡聚糖和糊精:糖化型α-淀粉酶有较强的酶切活性,在水解可溶性淀粉时,随着水解时间的延长而产生寡聚糖,麦芽糖直至葡萄糖。

按照其使用条件可以分为低温型、中温型、高温型、耐酸耐碱型。

按产生菌不同又可以分为细菌、真菌、植物和动物淀粉酶。

[4]研究表明所有α-淀粉酶均为分子量在50ku左右的单体,由经典的三个区域(A、B、C)组成:中心区域A由一个(β/α)8圆筒构成;区域B由一个小的β-折叠突出于β3和α3之间构成;而C-末端球型区域C则由一个Greek-key 基序组成,为该酶的活性部位,负责正确识别底物并与之结合。

α-淀粉酶在工业上的应用

α-淀粉酶在工业上的应用

固体发酵的优点
• SSF也有许多优于SmF的优点,包括先进的生产 能力,更简单的技术,较低的资本投资,较低的 能量需求和较少的污水排量,更好的产品回收和 不产生泡沫,另外,据报道称其是对发展中国家 最适合的方法。
淀粉酶的纯化
• 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结 晶或制剂。
• 酶的提取:使用盐溶液、酸溶液、碱溶液、有机溶剂等 • 沉淀分离:盐析沉淀、等电点沉淀、有机溶剂沉淀、复合
耐高温 α-淀粉酶
• 耐高温 α-淀粉酶适合于高温(105~110℃ )下液化 淀粉, 不仅反应快,淀粉不易形成难溶性颗粒, 而且杂 质容易过滤清除, 液化淀粉一步即可完成,钙离子用量 少, 有利于糖化液精制。
• 耐高温α-淀粉酶在酒精生产的应用中,中温蒸煮、较 高温蒸煮用汽量减少30%左右, 糖化酶减少20-30u/g, 发酵质量在酒度、酸度、挥发酸、还原糖、总糖等方 面均好于高温蒸煮,甲醇含量低,原料出酒率, 淀粉 出酒率提高, 降低酒精成本。
其中耐热性淀粉酶在工业中已经大规模的使用耐高温淀粉酶耐高温淀粉酶适合亍高温105110下液化淀粉不仅反应快淀粉不易形成难溶性颗粒质容易过滤清除液化淀粉一步即可完成钙离子用量耐高温淀粉酶在酒精生产的应用中中温蒸煮较高温蒸煮用汽量减少30左右糖化酶减少2030ug収酵质量在酒度酸度挥収酸还原糖总糖等方面均好亍高温蒸煮甲醇含量低原料出酒率淀粉出酒率提高降低酒精成本
耐碱性α-淀粉酶
• 许多种微生物都能产生碱性 α-淀粉酶. 这些 α-淀粉酶的最 适反应 pH 分别在8 ~ 11的范围内, pH稳定范围也基本在 6.0~11的碱性环境中。
• 对于加酶洗涤剂, 不耐高pH值的酶种是其不能广泛应用的 限制性因素, 矛盾在于绝大多数洗涤剂配方为碱性条件下 洗涤效果好, 但此时酶活力损失大, 不能充分发挥酶助剂的 功能, 中性条件下酶活力虽然保持较高水平, 但洗涤效果差。

α淀粉酶

α淀粉酶

6制药和临床化学分析
已有报道,基于α一淀粉酶的液体稳定试剂已应用于全自动生化分析仪(CibaComingExpress)临床化学系统。
二α—淀粉酶的研究现状
1国内α一淀粉酶研究现状
1965年,我国开始应用淀粉芽孢杆菌BF一7658生产一淀粉酶,当时只有无锡酶制剂厂独家生产。1967年杭州怡糖厂实现了应用α一淀粉酶生产饴糖的新工艺,可以节约麦芽7%~10%,提高出糖率10%左右。1964年我国开始了酶法水解淀粉生产葡萄糖工艺的研究。l979年9月通过了酶法注射葡萄糖新工艺的鉴定,并先后在华北制药厂、河北东风制药厂、郑州嵩山制药厂等单位得到应用,取得了良好的经济效益。
2淀粉的液化作用和糖化作用
α一淀粉酶的主要市场是淀粉水解的产物,如葡萄糖和果糖。淀粉被转化为高果糖玉米糖浆(HFCS)。由于他们的高甜度,被用于饮料工业中软饮料的甜味剂。这个液化过程就用到在高温下热稳定性好的α一淀粉酶。α一淀粉酶在淀粉液化上的应用工艺已经相当成熟,而且有很多相关报道。
3纤维脱浆
由于α一淀粉酶是具有重要应用价值的工业酶,周内外很多课题组对它进行了研究。国内有代表性的研究单位有:四川大学,主要研究α一淀粉酶的生产菌株及其培养条件;江南大学,主要研究α一淀粉酶的结构以及应用性能,如耐热性、耐酸性;西北大学,主要研究α一淀粉酶的变性机理以及环境对α一淀粉酶的影响;华南理工大学,主要研究α一淀粉酶的固定化和动力性质;还有华中农业大学,中国科学院沈阳应用生态研究所,天津科技大学,南开大学生命科学学院,中国农业科学院,中国科学院微生物研究所等多家研究机构对多种α一淀粉酶生产菌的一淀粉酶基因进行了克隆以及表达研究。国外有代表性的研究单位有:加拿大的UniversityofBritishColumbia,他们对人胰腺的一淀粉酶结构和作用机理进行了深入的研究;丹麦的Carlsberg实验室主要研究大麦α一淀粉酶结构域与结合位点;美国的WesternRegionalResearchCenter主要研究大麦的α一淀粉酶与抗菌素的作用以及大麦α一淀粉酶的活性位点。

a-淀粉酶概述及应用

a-淀粉酶概述及应用
耐高温 α-淀粉酶的生产工艺,向成熟的发酵液中加入占发酵液重量 1%-3% 的钙离子保护剂或 2%-5%淀粉中的至少一种,在 70-90℃的条件下,进行热处理。 将制得的纯化的耐高温。-淀粉酶送至压力喷雾塔进行喷雾干燥,制得酶粉,将酶 粉调配后,分装即得成品。该耐高温。- 淀粉酶呈固体状态,酶活力达 2 万单位 /g 以上,具有较高的稳定性,易贮存和运输。
面包等焙烤食品储存一定时间后逐渐变干变硬,易碎,风味变差,这些都是 由于面包的陈化造成的,每年由于面包老化造成巨大的损失。传统的用于抑制老 化,提高焙烤食品质地和风味的添加剂主要有化学试剂,食糖,奶粉,糖酯,卵 磷脂和抗氧化剂等,近几年,酶 制剂越来越多的作为面团改良剂和抗老化剂用在 焙烤工业中,包括α-淀粉酶、分支酶、去分支酶、β-淀粉酶和普鲁兰酶等,其 中将α-淀粉酶和普鲁兰酶联合使用可以有效的延迟焙烤食品陈化,提高产品的货 价期。但是 ,在使用α-淀粉酶时,对其加入量要求比较严格,稍微过量就会导 致面包等焙烤食品粘度的增加。因此,最近人们逐渐使用中温α-淀粉酶,由于其 最适作用温度在 50℃~70℃左右,所以其在淀粉糊化时具有活性,而在焙烤过程 中则会逐渐失活,最终在焙烤完成时活性丧失。而且,在加工过程中α-淀粉酶会 水解淀粉生成聚合度在 4~9 的糊精,这些糊精也具有抗老化性。但是,现在中温 α-淀粉酶仅能从极少的一些微生物中提取[9-10]。
4.α-淀粉酶的工业应用
α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶,其最早 的商业化应用在 1984 年,作为治疗消化紊乱的药物辅助剂。现在,α-淀粉酶已 广泛应用于食品、清洁剂、啤酒酿造、酒精工业等。
4.1 在焙烤工业中的应用
各种酶制剂在食品工业中的应用已有上百年的历史,最近几十年α-淀粉酶广 泛地应用于焙烤工业中焙烤工业中使用的酶制剂有很多,如蛋白酶、脂肪酶、普 鲁兰酶、木聚糖酶、纤维素酶、糖化酶等,但没有一种酶能取代α-淀粉酶在焙烤 食品中的应用。α-淀粉酶用于面包加工中可以使面包体积增大,纹理疏松;提高 面团的发酵速度;改善面包心的组织结构,增加内部组织的柔软度;产生良好而 稳定的面包外表色泽;提高入炉的急胀性;抗老化,改善面包心的弹性和口感; 延长面包心储存过程中的保鲜期。

α-淀粉酶

α-淀粉酶

根据淀粉酶对淀粉的水解方式不同,可将其分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶等。

其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键,而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶。

α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。

它可以由微生物发酵制备,也可以从动植物中提取。

不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。

目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。

如在淀粉加工业中,微生物α-淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。

其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。

相对地,关于α-淀粉酶抑制剂国内外也有很多研究报道,α-淀粉酶抑制剂是糖苷水解酶的一种。

它能有效地抑制肠道内唾液及胰淀粉酶的活性,阻碍食物中碳水化合物的水解和消化,降低人体糖份吸收、降低血糖和血脂的含量,减少脂肪合成,减轻体重。

有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。

α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶,其最早的商业化应用在1984年,作为治疗消化紊乱的药物辅助剂。

现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业和造纸工业。

在焙烤工业中的应用:α-淀粉酶用于面包加工中可以使面包体积增大,纹理疏松;提高面团的发酵速度;改善面包心的组织结构,增加内部组织的柔软度;产生良好而稳定的面包外表色泽;提高入炉的急胀性;抗老化,改善面包心的弹性和口感;延长面包心储存过程中的保鲜期在啤酒酿造中的应用:啤洒是最早用酶的酿造产品之一,在啤洒酿造中添加α-淀粉酶使其较快液化以取代一部分麦芽,使辅料增加,成本降低,特别在麦芽糖化力低,辅助原料使用比例较大的场合,使用α-淀粉酶和β-淀粉酶协同麦芽糖化,可以弥补麦芽酶系不足,增加可发酵糖含量,提高麦汁率,麦汁色泽降低,过滤速度加快,提高了浸出物得率,同时又缩短了整体糊化时间。

生物化学实验

生物化学实验
生物化学实验
-
1
α-淀粉酶分离提纯技术研究进展
2
α-淀粉酶分离提纯的研究历史
3
α-淀粉酶的研究现状
生物化学实验
α-淀粉酶,系统名称为1,4-α-D-葡聚糖 葡聚糖水解酶,别名为液化型淀粉酶、液 化酶、α-1,4-糊精酶。黄褐色固体粉末 或黄褐色至深褐色液体,含水量5%~8%。 溶于水,不溶于乙醇或乙醚
α-淀粉酶分离提纯技术研究进展
具有反应速度快、效率高、成本低等优势
2
α-淀粉酶分离 提纯的研究历史
α-淀粉酶分离提纯的研究历史
1991年中科院北京微生物研究所孔显良等将米曲霉 (Aspergillur oryzae)突变株6-193的麦麸固体培养物,经水 浸泡其中α-淀粉酶活力为每克于曲600单位 以此来研究其性质,对其与可溶性淀粉溶液作用后的产物经 薄层色谱分析,根据扫描结果,葡萄糖、麦芽糖、麦芽三糖、 麦芽四糖分别占6.4%、32.3%、37.1%、10.9% 米曲霉α-淀粉酶作为面包添加剂比细菌α-淀粉酶耐热性低, 避免面包在制造过程中造成过度液化现象,而使生产的面包 发粘,在当时此酶是目前较理想的面包食品类的添加剂
1964年我国开始了酶法水解淀粉生产葡萄 糖工艺的研究
与传统的酸法相比可以提高收率10%,降 低成本15%以上
1967年杭州怡糖厂实现了应用α-淀粉酶 生产饴糖的新工艺,可以节约麦芽7%~10%, 提高出糖率10%左右
1979年9月通过了酶法注射葡萄糖新工艺 的鉴定,并先后在华北制药厂、河北东风 制药厂、郑州嵩山制药厂等单位得到应用, 取得了良好的经济效益
另外我国以酶法进行柠檬酸生产、谷氨酸 发酵、糖化制啤酒、酒精发酵、黄酒酿造、 酱油制造、醋生产等方面也已经研究成功 并投入生产
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真菌α-淀粉酶的研究和应用16120901 20092348 王德美摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。

α-淀粉酶在现代淀粉糖浆、焙烤制品、啤酒酿制及生料酒精等行业已得到广泛的应用。

随着现代制糖工业与发酵工业的发展及其对真菌α-淀粉酶的使用需求,使得真菌α-淀粉酶在现代工业酶制剂中占有重要地位。

对真菌α-淀粉酶的研究和利用,为满足国内市场需求、调整我国酶制剂工业结构和带动相关食品或发酵行业的发展等具有重要意义。

关键词:真菌α-淀粉酶,可发酵性糖,固态发酵,冷冻沉析,食品应用1.真菌α-淀粉酶的结构及其催化机制1.1真菌α-淀粉酶的结构与大多数α-淀粉酶类似,真菌α-淀粉酶通常含有三个结构域,分别称为A、B和C。

结构域A为酶的催化反应中心区域,其典型结构为(a/b)8TIM-桶状结构,结构域B和结构域C基本上位于结构域A得到对立两端【1】。

其中,Ca2+的保守结合位点位于结构域A和结构域B之间的表面区域,而大多数情况下Ca2+的存在对于α-淀粉酶家族保持其酶活力和稳定性是必须的。

结构域B位于TIM-桶状结构域的第三个β-折叠和第三个α-螺旋之间,该区域富含不规则的β-片层结构,在不同的淀粉酶中的大小和结构差异较大,被认为与α-淀粉酶的第五特异性有关。

同时,通过定点突变或随机突变结果表明,该部位在淀粉酶中核能相对比较脆弱,与α-淀粉酶的总体稳定性关联密切,其中部分氨基酸的改变对酶的pH稳定性和热稳定性影响较为显著。

结构域C形成α-淀粉酶蛋白质羧基端,并含有α-淀粉酶家族所特有的希腊钥匙β-sandwich结构,通常认为其通过将结构域A的疏水区域与溶剂相隔离以稳定催化区域或TIM桶状结构【2】。

1.2真菌α-淀粉酶的催化机制通过X-射线晶体结构、化学修饰和定点突变等手段,表明Asp206、Glu230和Asp2973个氨基酸可能是α-淀粉酶、家族的核心催化位点【3】。

在α-淀粉酶的催化过程中,酶首先固定住异头物(α-构象),然后通过双替换反应进行催化。

在第一个替换过程中,酶的酸性基团(Glu230)使糖苷中的氧原子质子化,并使碳和氧的链接键断裂,形成一种鎓盐转换状态,继而在第二个替换过程中由蛋白的亲质子酸性基团对糖的异头物中心进行攻击,形成β-糖基和酶复合的一种临时状态,继而底物的糖基配基离开活性位点。

2.真菌α-淀粉酶的分类在目前已报道的文献中,各种真菌来源的α-淀粉酶可以粗略的按酶学性质或作用条件将真菌α-淀粉酶分为3种类型:2.1中性真菌α-淀粉酶与细菌α-淀粉酶不同,真菌α-淀粉酶的来源相对较少,大多数真菌α-淀粉酶的作用温度和pH都比较温和,如最适作用pH在5.0~5.5之间,最适作用温度为50~55℃左右,当温度超过60℃酶开始失活。

目前商品化生产最多、应用也最为广泛的来源于米曲霉(变种)的α-淀粉酶即属于这一酶种。

2.2耐热或耐酸性真菌α-淀粉酶此类酶在pH2.5~4.5之间,作用温度在超过60℃时仍具有良好的热稳定性。

与中性真菌α-淀粉酶相比,具有耐热或耐酸性真菌α-淀粉酶可以简化液化、糖化过程,减少制糖等淀粉深加工过程中染菌几率并降低相应生产成本【4】。

这部分酶种目前工业上已经开始生产使用,且具有很大的开发利用潜力。

2.3具有生淀粉酶活力的真菌α-淀粉酶该酶除具有水解可溶性淀粉或其他糊化淀粉能力外,还具有生淀粉水解能力,在生料酒精行业的同步糖化发酵(SSF)中,与糖化酶配合使用,可以大幅度提高淀粉的利用速率和效率,并有效提高酒精产率【5】。

3.产淀粉酶的真菌的分离筛选及初步鉴定生淀粉酶能将未经蒸煮糊化的生淀粉直接转化成葡萄糖等可发酵性糖供微生物生长与代谢,其比传统的高温蒸煮糖化节约25%~30%的能耗。

因此,在生料酒精发酵、酿酒、酿造调味品以及饲料蛋白生产等领域有着巨大的应用价值。

据有关资料报道【6】,很多微生物诸如黑曲霉、根霉等真菌具有直接降解生淀粉的能力,生料发酵具有可行性,其关键是选育出生淀粉分解能力强的菌株。

朱文优等人醋曲、大曲及酿造厂附近土壤样品中,筛选出Y14、Y15、Y19、Y18和Y22等5株具有较强生淀粉分解能力的菌株,并对其进行了初步鉴定。

富集培养基为玉米淀粉40g,麸皮10g,酵母膏3g,K2HPO41g,MgSO4•7H2O 0.5g,KCl 0.5g,FeSO4•7H2O 0.01g,氯霉素0.005g,pH5.5~6.0,定容1L后灭菌。

分离培养基为玉米淀粉20g,NaNO33g,K2HPO41g,MgSO4•7H2O 0.5g,KCl 0.5g,FeSO4•7H2O 0.01g,琼脂粉13g,氯霉素0.005g,定容1L中,pH5.5~6.0。

制备时,将除玉米淀粉以外的成分于121℃灭菌30min,冷却到45℃,红薯淀粉用甲醛熏蒸2h灭菌,再经105℃干热2h,最后两者混合。

初选培养基为玉米淀粉15g,酵母膏1.5g,K2HPO41.0g,NaNO31.5g,MgSO4•7H2O 0.5g,KCl 0.5g,FeSO4•7H2O 0.01g,琼脂粉13g,定容1L中,pH5.5~6.0。

制备时,将除玉米淀粉以外的成分于灭菌,冷却到45℃,玉米淀粉用甲醛熏蒸2h灭菌,再经105℃干热2h,最后两者混合。

复选培养基为麸皮12.5g,水为12.5mL,装于300mL三角瓶中灭菌进行粗酶制备时向复选培养基中接入3~4环菌株,然后置于30℃恒温培养箱中培养72h,培养期间每隔24h翻动一次。

经初步鉴定,这5株有较强生淀粉分解能力的菌株,分解能力分别为31.87%、30.04%、29.15%、23.98%和23.6%。

菌株Y14和Y18为米曲霉,菌株Y15为少根根霉,菌株Y19和Y22为黑曲霉。

上述5株真菌作为出发菌株,通过诱变育种和混株发酵研究,以期获得可工业化应用的复合生料糖化曲【7】。

4.真菌α-淀粉酶固态发酵条件研究真菌α-淀粉酶热稳定性较差,65℃以下就已失活,不会造成面团心发粘的质量问题。

因此近年来,在我国面粉生产企业中,真菌α-淀粉酶已逐步得到推广与应用,并取得了良好的经济与社会效益。

而且除了在面粉工业中的应用外,真菌α-淀粉酶在淀粉糖工业和酿造工业中也有非常广泛的用途【8】。

真菌α-淀粉酶也成为一个引人关注的高效新型工业酶种,引起了许多研究者的关注【9】。

刘仲敏等人通过对米曲霉ZLF13固态发酵生产真菌α-淀粉酶的培养基要求及发酵工艺条件进行研究,采用500L固体发酵罐进行放大试验,最终确定发酵生产真菌α-淀粉酶的培养基配比、工艺条件和工艺参数,为该酶的批量生产提供了可靠的工艺技术依据。

在完成工艺研究的基础上,又对真菌α-淀粉酶的酶学性质进行了试验研究,了解和掌握了该酶的相关酶学性质,为真菌α-淀粉酶的应用提供了参考依据【10】。

结果表明,以麸皮和适量淀粉为主要原料,添加1号复合无机盐,保持培养基水体积分数为60%~65%,控制培养温度30~34℃,发酵周期65~70h。

中试平均酶活力1283U/g。

通过对其酶学性质的研究发现,米曲霉ZLF13所产真菌α-淀粉酶最适作用温度为55℃,最适作用pH值为4.8~5.4;65℃以上迅速失活【11】。

5.真菌α-淀粉酶制剂的提纯及保存方法酶制剂作为一类重要的催化剂和添加剂,其物理性状应满足应用行业的加工工艺要求。

固态发酵生产的真菌α-淀粉酶粗制品(发酵曲)虽然在酶学作用方面可以满足相关应用行业的需要,但由于粗制品的杂质多,导致其在部分食品工业中的应用受到限制。

目前国内尚不能工业化批量生产真菌α-淀粉酶,对于该酶的分离、提纯方面所做的研究工作也甚少。

近年来,刘仲敏等人在完成了真菌α-淀粉酶高产菌株诱变选育和固态发酵工艺及酶学性质研究的基础上,开展了真菌α-淀粉酶的分离、提纯工艺研究和产品保存研究,确定了以浸提、压滤、超滤浓缩和冷冻沉析为主的工艺技术路线和工艺条件,形成了一套完整的真菌α-淀粉酶分离提取工艺技术。

并采用该工艺技术开发生产了食品级精制真菌α-淀粉酶制剂。

同时,通过试验研究,确定了食品级真菌α-淀粉酶制剂的保存方法。

通过对真菌α-淀粉酶提取工艺条件的研究和优化试验,其最佳提取工艺条件为:培养好的发酵曲采用40℃温水,pH值7.5左右,加水比为1:4,浸泡3h。

压滤滤液经超滤浓缩后,在10—15℃,pH6.0—6.5,加入食用酒精至体积分数为70%,静置过滤,40℃鼓风干燥。

采用该工艺条件,产品综合回收率稳定在70%以上,最高达到74%,产品酶活力最高达25416u/g,平均达16608u/g。

经过对精制酶保存方法的研究,确定了一种可有效保存真菌A-淀粉酶的稳定剂配方,用于精制酶的保存,半年的酶活力保存率可达到95%以上,1年的保存率达到90%以上,产品经国家轻工业食品质量监督监测郑州站检测,完全符合中华人民共和国行业标准(QB180511)1993工业用A-淀粉酶制剂)食品级要求【12】。

6.α-淀粉酶的应用由于真菌α-淀粉酶所特有的性质,如反应温度温和,作用pH偏中性等,使得真菌α-淀粉酶在实际应用中主要应用于淀粉的糖化。

与细菌α-淀粉酶相比,真菌α-淀粉酶的应用主要集中在食品应用领域。

6.1高麦芽糖浆的生产麦芽糖浆是以淀粉质为原料,经酶或酸酶结合的方法水解而成的以麦芽糖为主的糖浆,根据麦芽糖的含量不同大致可以分为饴糖(麦芽糖含量20%-30%)、高麦芽糖浆(麦芽糖含量40%-60%)、超高麦芽糖浆(麦芽糖含量大于70%)和结晶麦芽糖等。

高麦芽糖浆的甜度低而温和,可口性强,在高温和酸性条件下比较稳定,具有熬煮温度高、不易发生美拉德反应等优点。

在食品行业,对面包、糕点及烘焙食品等加工过程具有防止淀粉老化、保湿和延长保质期等作用;在蜜饯、方便食品、酱油、糖果、口服液、保健饮品、麦乳精和冷冻食品等食品行业作为营养甜味剂、填充剂得到广泛应用;在医药行业,可添加至多种中药中使用,具有润肺、补虚、止咳及治疗腰痛等作用。

此外,超高麦芽糖浆在加氢氢化后可生成麦芽糖醇。

麦芽糖醇是一种甜度与蔗糖相当而热量值较低的甜味剂,也是制备另一种功能性食品原料麦芽糖酮糖和低聚异麦芽糖的原料。

6.2焙烤制品美国和英国分别在1955年和1963年确定了真菌α-淀粉酶为一般视为安全的(GRASstatus)添加剂,并允许在面包焙制过程中使用。

目前,在全世界范围内均得到不同程度的应用。

由于中性真菌α-淀粉酶不耐热等特点,在面团发酵过程中容易通过加热使之失活,利于控制面团的发酵速度和程度,以免作用时间过长产生大量糊精以致面包心发黏。

真菌α-淀粉酶可水解面粉中的受损淀粉生成小分子糊精,通过酵母的进一步发酵产生醇类物质和二氧化碳,从而使面包体积增大。

相关文档
最新文档