第六章红外吸收光谱法

合集下载

第六章 红外吸收光谱分析

第六章 红外吸收光谱分析

active) ;反之则为红外非活性(infrared inactive)。
9
二、 分子振动方程式
10
双原子分子可以看成是谐振子,根据经典力 学(胡克定律),可导出如下公式:
1 v 2 k

k
m1 m2 m1 m2
1303 k
v
1 2 c


-1) ; k为力常 ν 为振动频率(Hz), 用波数表示 (cm v 数,表示每单位位移的弹簧恢复力 (dyncm-1) ; μ 为折合质量(g)。
实验中观察到的C=O伸缩振动频率都在1700cm-1附近。 值得注意的是:在弹簧和小球的体系中,其能量变化是 连续的,而真实分子的振动能量变化是量子化的。
13
三、 分子振动的形式
(一)分子的振动自由度
每个原子在空间的位置必须有三个坐标来确定,则由 N个原子组成的分子就有了3N个坐标,或称为有3N个运
动自由度。分子本身作为一个整体,有三个平动自由度
和三个转动自由度。
14
直线型分子的振动形式:3N - 5 非直线型分子的振动形式:3N -6
15
(二)分子的振动形式
a.直线型分子:3N-5
如CO2
16
b. 非线形分子: 3N – 6
如H2O
17
分子的振动形式:
•化学键两端的原子沿键轴方向作来回周期运动 对称伸缩振动
11
可见,影响基本振动频率 (即基频峰位置 )的直接原因是原 子质量和化学键力常数。
表15-1 某些化学键的力常数
化 学 键 键 长(A) k(N· cm-1)
C-C C=C 1.54 4.5 1.34 9.6
C≡C C-H O-H N-H C=O 1.20 15.6 1.09 5.1 0.96 7.7 1.00 6.4 1.22 12.1

红外吸收光谱s

红外吸收光谱s
2016/4/14 /96 6
(2)分析时间短。 通过检索、与标准红外吸收谱图对照, 一般可在10~30min完成分析。若用计算机 检索标准谱图,可在几分钟内完成分析。 (3)所用试样量少。 对固体和液体试祥,进行常量定性分析 只需20mg,半微量分析约5mg,微量分析约 20μg。对气体试样约200mL。
这种能量通常可由照射体系的红外线供给。振动
能级是量子化的,分子振动只能吸收一定的能量 ★吸收的能量将取决于键力常数(k)与两端连接的 原子的质量,即取决于分子内部的特征。这就是 红外光谱可以测定化合物结构的理论依据。
2016/4/14 /96 13
红外吸收光谱的术语:
基频峰:当分子吸收红外辐射后,振动能级从 基态跃迁到第一激发态时所产生的 吸收峰。
IR(远) IR(中)
UV-Vis
2016/4/14
/96
2
分子振动能级差为0.05~1.0eV,比转动 能级差(0.0001 ~ 0.05 eV)大,因此分子 发生振动能级跃迁时,不可避免地伴随转动 能级跃迁,红外光谱实际上是分子的振动转动光谱,即带状光谱。
2016/4/14
/96
3
■红外光谱 当样品受到频率连续变化的红外光照射时, 分子吸收了某些频率的辐射,并由其振动或 转动运动引起偶极矩的净变化,产生分子振 动和转动能级从基态到激发态的跃迁,使相 应于这些吸收区域的透射光强度减弱。记录 红外光的百分透射比(T%)与波数(ζ)或 波长(λ)关系的曲线,就得到红外光谱。
如:醇类的OH基在四氯化碳溶剂中伸缩振 动的强度比在乙醚溶剂中弱得多。而在不同浓 度的四氯化碳溶液中,由于缔合状态不同,强 度也有很大差别。
2016/4/14 /96 29
(3)谱带的强度与振动形式有关。

显色条件的选择

显色条件的选择
第六章 吸收光谱法
本章内容
第一节 吸光光度法的特点 第二节 吸光光度法的原理 第三节 显色反应和显色条件的选择
第四节 测量条件的选择
第五节 目测比色法和光度计的基本部件
第六节 吸光光度光法的应用
第一节 吸光光度法的特点
分光光度法的类型

红外吸收光谱法:吸收光波长范围2.51000 m ,
主要用于有机化合物结构鉴定。
返回
朗伯—比尔定律:一束平行单色光通过溶液时,溶 液的吸光度A与溶液 的浓度c 和液层厚度L成正比。
数学表达式:
A=KcL
K为常数,表示物质对光的吸收能力,与吸光物质 的本性,入射光的波长及温度等因素有关,与浓度c无 关,数值随c选择的单位变化。
3、吸光系数和摩尔吸光系数
(1)吸光系数a 当c用g/L表示,L用cm表示时,K用a表示,称为吸光 系数,单位为 L· g -1· cm-1 ,则: A=acL
显色反应主要有配位反应和氧化还原反应,其中绝大 多数是配位反应。
1、灵敏度高 选择 较大(104~105)的显色反应。避
免共存组分干扰。
2、选择性好 显色剂只与被测组分反应。 3、有色物组成固定 如:
Fe3+ + 磺基水杨酸 → 三磺基水杨酸铁(黄色)
(组成固定)
Fe3++ SCN - → FeSCN2+、 Fe(SCN)2 + ……
(组成不固定)
4、有色物稳定性高 其它离子干扰才小。如三
磺基水杨 酸铁的Kf =1042 , F- 、H3PO4 对它无干 扰。 5、显色过程易于控制 而且有色化合物与显 色剂之间的颜色差别应尽可能大。
|
回本节目录
MR max

红外吸收光谱法

红外吸收光谱法
倍频吸收:一次跃迁两个或多个 振动能级
由 V =0 V = 2 即 △V =2 V =0 V = 3 即 △V =3
3 2 1 V=0
基频吸收 倍频吸收
注:基态中不同的振动 能级用V=0,1,2,… 表示
红外吸收光谱法
5、红外光谱的概念 分子吸收红外光,由分子振动、转动发生能级的跃迁(
基态V=0至第一振动能级V=1,即△V=1)产生的光谱,称 为中红外光谱,简称红外光谱。
官能团区( 4000-1300 cm-1):在该区域内的红外吸收 均是各种基团的特征吸收峰,吸收峰比较稀。
指纹区 ( 1300-400 cm-1):在该区域内的红外吸收大 多是一些单键的伸缩振动和各种弯曲振动(如C-C、C-N、C-O )。振动类型复杂且重叠,受分子结构的影响十分敏感,任何 细致的差别都会引起光谱明显改变,如同人的指纹一样,很少 有两个化合物指纹区的吸收峰完全相同,用于确认有机化合物 是很可靠的。
红外吸收光谱法
2、红外、紫外、可见吸收光谱的区别
光谱区域 波长
分子运动形式
光谱类型
紫外可见 200-780nm 分子外层价电子跃迁 紫外可见吸收光谱
红外 0.78-500um 分子振动、转动
红外吸收光谱
△E电子 > △E振 > △E转
红外光的能量较小,分子吸收红外光不足以引起外层 价电子跃迁。
红外吸收光谱法
就得到该试样的红外吸收光谱图。
d
H
Cl
+q
-q
-q
O d
H
H
+q
+q
HCl、H2O 的偶极矩
红外吸收光谱法
三、红外光谱法的特点 除了单原子分子和同核分子如Ne、He、O2、H2等外,

第六章 红外吸收光谱

第六章 红外吸收光谱
不是所有的振动都能引起红外吸收,只有偶极矩(μ)发生变化才能有红外吸收。
二、分子振动方程式
h E h 2 k

k 1307 M
M 1M 2 M M1 M 2
沿轴振动,只改变键长,不改变键角 1 1 k



2c
K化学键的力常数,与键能和键长有关 M为双原子的折合质量 影响振动频率的因素:键两端原子的折合质量、键的力常数,即取 决于分子的结构特征。
包含C—X(X:O,H,N)单键的伸缩振动及各种面内弯曲振动
特点:吸收峰密集、难辨认→指纹
2、四分区(4000 670 cm-1)
(1)40002500 cm-1X—H伸缩振动区(X:O,N,C,S) (2)25001900 cm-1三键,累积双键伸缩振动区 (3)19001200 cm-1双键伸缩振动区 (4)1200670 cm-1X—Y伸缩,X—H变形振动区
醚:C-O-C伸缩振动位于 1250~1050 cm-1 ,确定醚类存在的唯一谱带
常见基团的红外吸收带
=C-H O-H
CC
C-H
C=C
C=O C-C,C-N,C-O C-X
O-H(氢键)
S-H
N-H
P-H CN
N-O N-N C-F C=N
C-H,N-H,O-H 3500 3000 2500 2000 1500 1000
§6.2 红外光谱分析基本原理
一、红外吸收光谱产生的条件
1、辐射应具有能满足物质产生振动跃迁所需的能量 振= 红外光 2、分子要有偶极距
红外吸收是由于分子振动引起的偶极距和红外光束的振动相互作用产生的
对称分子:没有偶极矩,辐射不能引起共振,无红外活性 。 如:N2、O2、Cl2 等 非对称分子:有偶极矩,红外活性。

红外光谱吸收

红外光谱吸收

第六章红外吸收光谱法基本要点:1.红外光谱分析基本原理;2.红外光谱与有机化合物结构;3.各类化合物的特征基团频率;4.红外光谱的应用;5.红外光谱仪.学时安排:3学时第一节概述分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。

红外吸收光谱也是一种分子吸收光谱。

当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。

记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。

一、红外光区的划分红外光谱在可见光区和微波光区之间,波长范围约为0.75 ~ 1000µm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5µm),中红外光区(2.5 ~25µm ),远红外光区(25 ~ 1000µm)。

近红外光区(0.75 ~ 2.5µm)近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。

该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。

中红外光区(2.5 ~ 25µm)绝大多数有机化合物和无机离子的基频吸收带出现在该光区。

由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。

同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。

通常,中红外光谱法又简称为红外光谱法。

远红外光区(25 ~1000µm)该区的吸收带主要是由气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。

红外吸收光谱法

红外吸收光谱法

C CH3 O
CH3
1686
H3C
CH3
C CH3
O
CH3
1693
α,β不饱和酮
23
(6)氢键效应
由于氢键改变了原来化学键的力常数,对峰位,峰强产
生极明显影响。移向低波数,增加,并变宽。 移向高波
数。
R
O
H NH R
游离
C=O
1690
HN H O
氢键 1650
N-H
3500
3400
N-H
1650-1620
T(%)
2)红外光谱的表示方法:
红外光谱以T~ (μm) 或 T~波数1/λ ( cm-1 )来表示,
苯酚的红外光谱。
可以用峰数,峰位,峰形,峰强来描述。
3
3) 红外光区划分
红外光谱 (0.75~1000m)
近红外(泛频) (0.75~2.5 m)
中红外(振动区) (2.5~25 m)
远红外(转动区) (25-1000 m)
1576cm-1 1611cm-1
CH2 CH2
CH2
1781cm-1 1678cm-1 1657cm-1
1644cm -1
CH2 1651cm-1
22
(5)位阻应效
共轭效应会使基团吸收频率移动。若分子中存在空间 阻碍,使共轭受到限制,则基团吸收接近正常值。
C CH3 O
υc=o/cm-1 1663
1000~800 (面外摇摆)
(1) = CH >3000 cm-1为不饱和碳上质子振动吸收,是与饱 和碳上质子的重要区别。
(2) C=C的 位置及强度 与烯碳的取代情况及分子对称性 密切相关。
末端烯烃 C=C吸收最强,双键移向碳链中心时结构对称 性增强, C=C带减弱。顺式较反式强。

红外吸收光谱分析法

红外吸收光谱分析法

红外吸收光谱分析法
一、红外吸收光谱分析法概述
红外吸收光谱分析法是一种利用物质的红外光吸收能力来探测它们的物质组成的技术。

它特别适用于有机化合物和无机化合物的光谱分析。

通过分析红外吸收光谱,可以检测物质中的有机键、C-H键、C-O键或N-H 键的存在和位置,从而鉴定出物质的化学结构和性质。

红外光吸收法的原理是,物质中的分子、晶体或其他结构会在不同的波长处吸收光,产生光谱,这些吸收光谱是物质的独特特征,反映出物质的特性。

根据这种特性,分析用不同波长的光照射样品,并从所得到的光谱中提取出电子激发、分子振动等信息,从而得到物质的结构和性质。

二、红外吸收光谱分析法基本原理
红外吸收光谱分析法的原理是,当物质受到红外幅射的照射时,它的分子会产生振动和旋转,这些振动和旋转的能量会转化为更高能量的电子跃迁。

这些电子跃迁会引起物质材料吸收一些具有特定波长的红外光,从而产生在不同波长的吸收光谱,通过分析这些吸收光谱,就可以求取物质分子的结构和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章红外吸收光谱法
第六章红外吸收光谱法
3、基本振动的理论数
设分子的原子数为n, 1) 对非线型分子,理论振动数=3n-6
如H2O分子,其振动数为3×3-6=3 2) 对线型分子,理论振动数=3n-5
如CO2分子,其理论振动数为3×3-5=4
第六章红外吸收光谱法
第六章红外吸收光谱法
4、吸收谱带的强度
(3000-2800) -CH2(2930,2850)
C-H
3000 左右
不饱和=C-H 末端=CH(3085) (3010~3040)
不饱和C-H 较弱(2890)、较强(3300) (2890~3300)
ArC-H 比饱和 C-H 峰弱,但峰
(3030)
形却更尖锐
第六章红外吸收光谱法
叁键及累积双键区(2500~1900cm-1)
红外吸收谱带的强度取决于分子振动时偶极矩的变化,
而偶极矩与分子结构的对称性有关。振动的对称性越高,
振动中分子偶极矩变化越小,谱带强度也就越弱。一般
地,极性较强的基团(如C=0,C-X等)振动,吸收强度 较大;极性较弱的基团(如C=C、C-C、N=N等)振动,
吸收较弱。红外光谱的吸收强度一般定性地用很强

CC,CN,C=C=C,C=C=O 等
键 RCCH
2100-2140
及 RCCR’ 2196-2260
R=R’则无红外吸收

2240-2260
分子中有 N,H,C,峰
积 CN
(非共轭) 强且锐;

2220-2230
有 O 则弱,离基团越近

(共轭) 则越弱。
第六章红外吸收光谱法
双键伸缩振动区(1900~1200cm-1)
第六章 红外光谱法
第六章红外吸收光谱法
红外光谱 (0.78~1000m)
近红外(泛频) (0.78~2.5 m)
倍频
中红外(振动区) (2.5~25 m)
分子振动转动 (常用区)
远红外(转动区) (25-1000 m)
分区及波长范围
第六章红外吸收光谱法
分子转动 跃迁类型
第一节 概述
一、红外光谱
当样品受到频率连续变化的红外光照射,分 子吸收某些频率的辐射,并由其振动或转动运 动引起偶极矩的净变化,产生分子振动和转动 能级从基态到激发态的跃迁,使相应于这些吸 收区域的透射光强度减弱。记录红外光的百分 透射比与波数或波长关系曲线,就得到红外光 谱。
第六章红外吸收光谱法
2. 辐射与物质之间有耦合作用
只有发生偶极矩变化(△≠0)的振动才能引起可观 测的红外吸收光谱,该分子称之为红外活性的; △=0的分子振动不能产生红外振动吸收,称为非红 外活性的。
第六章红外吸收光谱法
二、分子的振动基频跃迁与峰位
(一)双原子分子的振动
影响基本振动频率的直接原因: 相对原子质量 化学键的力常数
△Ev = △•h
EL=h L
于是可得产生红外吸收光谱的第一条件为:
EL =△Ev 即 L=△•
第六章红外吸收光谱法
分子吸收红外辐射后,由基态振动能级(=0) 跃迁至第一振动激发态(=1)时,所产生的吸 收峰称为基频峰。因为△=1时,L=,所以 基频峰的位置(L)等于分子的振动频率。
在红外吸收光谱上除基频峰外,还有振动能 级由基态(=0)跃迁至第二激发态(=2)、 第三激发态(=3),所产生的吸收峰称为倍 频峰。
第六章红外吸收光谱法
第六章红外吸收光谱法
三、多原子分子的振动类型和振动自由度 多原子分子的振动更为复杂(原子多、化学
键多、空间结构复杂),但可将其分解为多个 简正振动来研究,可分为两类: 1、伸缩振动(stretching vibration), 2、弯曲振动(bending bibration),
第六章红外吸收光谱法
X-H伸缩振动区:4 3650~3580 低浓度(峰形尖锐)
3400~3200 高浓度(强宽峰)
N-H 3500~3100
胺、酰胺等,可干扰 O-H 峰
饱和(3000 以下)与不饱和(3000 以上)
饱和-C-H
-CH3(2960,2870)
(vs)、强(s)、中(m)、弱(w)和很弱(vw)等
表示。按摩尔吸光系数的大小划分吸收峰的强弱等级,
具体如下:
>100
非常强峰(vs)
20< <100
强峰(s)
10< <20
中强峰(m)
1< <10
弱峰(w)
第六章红外吸收光谱法
第四节 红外光谱中的重要区段
中红外光谱区可分成4000 cm-1 ~1300cm-1和 1300 cm-1 ~ 400 cm-1两个区域。 在4000 cm-1 ~ 1300 cm-1 之间,这一区域 称为基团频率区、官能团区或特征区。 1300 cm-1 ~400 cm-1 区域内,除单键的伸 缩振动外,还有因变形振动产生的谱带。这种 振动与整个分子的结构有关。当分子结构稍有 不同时,该区的吸收就有细微的差异,并显示 出分子特征。这种情况就像人的指纹一样,因 此称为指纹区。
第六章红外吸收光谱法
第六章红外吸收光谱法
红 外光谱以T~或T~ 来表示
第六章红外吸收光谱法
二、红外吸收光谱的特征
1)红外吸收只有振-转跃迁,能量低; 2)应用范围广:除单原子分子及单核分子外,几乎所有
有机物均有红外吸收; 3)分子结构更为精细的表征:通过IR谱的波数位置、波
峰数目及强度确定分子基团、分子结构; 4)定量分析; 5)固、液、气态样均可用,且用量少、不破坏样品; 6)分析速度快;
7)与色谱等联用(GC-FTIR)具有强大的定性功能。
第六章红外吸收光谱法
第二节 基本原理
一、产生红外吸收的条件
1 . 辐射光子具有的能量与发生振动跃迁所需的跃迁能量 相等
E = ( +1/2)h (=0,1,2,)
式中为振动量子数( =0,1,2,…);E是与振动量 子数相应的体系能量; 为分子振动的频率。
C=O 1900-1650
C=OC 1680-1620
苯衍生
物 的 泛 2000-1650

强峰。是判断酮、醛、酸、酯及酸酐的 特征吸收峰,其中酸酐因振动偶合而具 有双峰。 峰较弱(对称性较高)。在 1600 和 1500 附近有 2-4 个峰(苯环骨架振动),用于 识别分子中是否有芳环。 C-H 面外、C=C 面内变形振动,很弱, 但很特征(可用于取代类型的表征)。
相关文档
最新文档