固态相变整理

固态相变整理
固态相变整理

11、在1127℃某碳氢气体被通入到一低碳钢管(管长1m ,管内径8 mm ,外径12 mm )。管外保持为纯氢气氛,有可能使管外表面的碳活度降低到最低限度。假设在碳氢气体中的碳活度是很高的,以致于在气氛中有固体颗粒碳。已知:在1127℃时,碳的扩散系数为D = 6×10-

6 cm 2/s 。试计算通碳氢气体100小时后,会有多少碳扩散到管的外面来 ? (2)

12、有一容器,其外层是低碳钢,里层为不锈钢。里层的厚度是外层的1/100。现容器内充有氢气。已知:在试验温度下,低碳钢为α相,不锈钢为γ相;在这温度下氢气在α、γ两相界面处的重量百分浓度分别为C

α=0.00028%,C γ=0.00045% ;并假设在试验温度下,D α=100 D γ。试问哪一层对阻止氢气的向外扩散起了决定性作

用 ?(2)

13、某低合金过共析钢(含0.9%C )被加热到800℃,形成了奥氏体组织,然后被快速冷却到A 1温度以下保温,直到完全转变成珠光体组织。因为是过共析钢,所以在珠光体转变前有自由渗碳体析出,会沿着晶界析出一层厚的渗碳体,损害钢的性能。已知:在550℃、650℃珠光体转变完成时间分别为10秒和10分钟。试计算在550℃转变的危害性大,还是650℃时转变的危害性大 ?(3)

14、一种没有合金化的具有粗大片状石墨的灰口铸铁,以相当缓慢的冷却速率通过A 1温度。发现其组织特点为:金属基体相主要是珠光体,但是每一片石墨都被一层先共析铁素体包围。假设通过试验已经知道,需要作为珠光体形核核心的渗碳体,直到710℃还不可能形成,另一方面,铁素体却很容易形核,如果冷却速率为1K / min 。取C 的扩散系数为

D α

=0.02exp(–Q / RT), Q=83600 J / mol 。计算一下会形成多厚的铁素体层。作为近似计算,可认为是在中间温度区间的一个等温反应过程。如果是球状石墨周围形成了所谓的牛眼状铁素体(如题14图),在放大500倍条件下,经测量铁素体平均厚度为6.5mm ,在以上条件下,试估算其冷却速率。(3)

15、为避免镍和钽直接反应,在镍和钽片中间插入一层厚0.05cm 的MgO ,如题15图所示。在1400℃时,Ni 离子将通过MgO 层向钽片扩散,试计算Ni 离子每秒的扩散量。

已知Ni 离子在MgO 中的扩散系数为9×10-12 cm 2 / s ,在1400℃时,Ni 的点阵常数是3.6×10-8 cm 。(4)

16、直径3cm 、长10cm 管子,一端装有浓度为0.5×1020atoms/cm 3的氮(N )和0.5×1020atoms/cm 3的氢(H ),另一端装有1.0×1018atoms/cm 3的氮和1.0×1018atoms/cm 3的氢,中间用一体心立方结构的铁膜片隔开,如题16图所示。气体不断地引入这管子以保证氮和氢的浓度为常数。整个系统都是在700℃下进行。系统设计要求每小时扩散通过该膜片的氮不超过1%,而允许90%的氢通过该膜片。试设计该膜片的厚度。已知:在700℃的体心立方晶体铁中,N 原子的扩散系数D=3.64×10-7 cm 2/s ,氢原子的扩散系数D=1.86×10-4 cm 2/s 。(5) 17、设计一厚度为2cm 储存氢气的球罐。要求每年由于扩散损失的氢气小于50kg ,球罐的温度保持在500℃。球罐可用镍、铝、铜、铁金属来制造,氢气在这些金属中的扩散参数和用镍、铝、铜、铁金属来制造球罐的成本如表所示(6)

18、一共析碳素钢在A 1温度于湿氢中进行脱碳处理,在钢的表面会形成一铁素体层。该铁素体层将以一定速率增厚,增厚的速度由通过表面铁素体层的碳扩散速率来控制的。取扩散系数D α = 3.6×10-

7 cm 2/s 。试分别用稳态近似法和Wagner 方法计算,表面铁素体层长到1mm 厚需要多长时间?(8)

19、含有0.3%C 和1%Al 的钢,淬火后进行回火,然后在550℃氮化处理25小时。如果氮在α-Fe 中的溶解度为T N /1580009.1)ln(%--=。问氮化层有多厚 ?(8)

20、在缓慢冷却过程中,亚共析钢中已产生了铁素体和珠光体交替隔开的带状组织,为消除这种带状组织,需要进行扩散退火。由实验知,厚度为25mm 的钢板在900℃进行扩散处理,大约两天就够了。如果把这种钢板进一步轧制成5mm 厚的钢板,并在1200℃进行扩散,问:需要处理多长时间才能得到与前面同样的效果 ?(9)

21、碳素钢的魏氏组织是在较快冷却速度下得到的组织。但是这种组织首先是在含有10%Ni 的陨石中发现的,陨石中片状组织的厚度可达到5mm ,估算一下陨石必须具有多快的冷却速度,才能形成这种组织 ? 计算时使用以下数据:如碳素钢以100K/s 的冷速,可以得到2m μ厚度的铁素体。(9)

22、在银的表面已经沉积了一层银的放射性元素,然后将整个系统进行退火,放射性元素将要扩散进入内部。

为了使深度为L 的地方得到最高的放射性元素,必须中止退火工艺。如在试样表面沉积了m 居里/cm 2的放射性元素,计算在L 处的最高浓度是多少 ?(9)

23、在奥氏体中硼(B )的含量对钢的淬透性有很大的影响,即使只有0.001%的含量,对奥氏体转变还有明显的作用。假定在钢的表面涂了一层硼,其量为1mg/cm 2。把钢加热到900℃,保温15分钟进行奥氏体化,这时硼要向里面扩散。已知:硼的密度为2.34g/cm 3, 硼在γ-Fe 中的扩散系数尚未测定,假设硼是碳在γ-Fe 中扩散系数的1/10,设碳在γ-Fe 中扩散系数为D γ

= D 0exp(–Q/RT),其中D 0 = 0.372 cm 2/s ,Q=148000 J/mol 。问硼对奥氏体转变发生影响的表面层有多厚?(10)

24、通过把一块相当薄的A 板夹在两块厚的B 板中热轧,制成一种复合板。如果在A 板表面染上了一种物质C ,因此,在复合板以后的退火工艺中,C 物质将扩散进入A 和B 板复合板。设C 物质在A 和B 板中有相同的溶解度与扩散系数。试计算:在什么时候在A 层中心将会得到最高的C 含量 ?这个数值有多高 ?(10)

25、含0.5%C 的碳素钢不幸在750℃脱碳了,因此在钢的表面形成了一层铁素体,经测定,它的厚度为0.1mm 。如将此材料在保护气氛中加热到1000℃进行热处理,碳将会由内向外表面扩散。为了使表面的碳含量达到0.2%,问需要热处理多长时间 ?

已知:D γ

= 0.372exp(–148000/RT) cm 2/s(11) 26、含0.85%C 的钢制模具在空气炉中加热到900℃,保温1小时,模具表面脱碳后的表面浓度为0%。模具技术条件要求模具表面最低含碳量为0.80%C 。已知在900℃时碳的扩散系数为)/exp(0RT Q D D -=,0D =0.21cm 2/s ,Q =142×103 J/mol 。试计算热处理后模具的最小切削余量。(11)

27、用一层薄的奥氏体不锈钢和一层厚的结构钢轧制在一起,制造复合钢板。在热轧时结构钢中的碳将会向不锈钢中扩散,因而有可能在不锈钢晶界上发生碳化铬的沉淀,从而影响复合板的性能。如果热轧本身是很快的,而后的冷却过程却很慢,假设相当于在850℃等温处理30分钟,试计算一下这种危害有多大? 假定轧制后的不锈钢厚度为0.1mm ,原来的碳量为0.03%,结构钢的碳量为0.4%。假定在不锈钢外表面层中的碳量达到0.1%时将会发生危险。同时还假定在两种钢的奥氏体中的碳活度系数相同(当然不是很好的近似)。已知:D γ

= D 0exp(–Q/RT),其中D 0 = 0.372 cm 2/s ,Q=148×103 J/mol 。如果要使不锈钢的含C 量控制在0.1以下,工艺措施上如何改进?((12)

28、18-8型奥氏体不锈钢如果被加热到一临界温度范围内,则对晶界腐蚀很敏感。在热处理过程中,碳化铬(主要是Cr 23C 6型)会在晶界上沉淀析出,沿着晶界产生一层贫铬的奥氏体,从而失去了耐蚀性。(12)

1)假设:在≤12%Cr 时,不锈钢的耐蚀性就消失;热处理过程为在600℃保温10分钟;在600℃时立即形成碳化铬核心,而且吸收铬是非常有效,以致在碳化铬和奥氏体界面上的铬全部消失;碳化铬的厚度可忽略。已知:

铬在600℃时在奥氏体中的扩散系数为γCr D = 5×10-17 cm 2/s ,试计算贫铬层的厚度? 2)假设该不锈钢经600℃保温10分钟的处理后,碳化铬析出已经稳定,即以后不再析出碳化铬了。如果要消除这已经产生的晶界贫铬层,需要在这温度下保温多长时间?

29、假定有一含0.2%C 的碳素钢,其中C 主要存在于宽度为10微米(m μ)的带状珠光体组织中。有人企图直接用高频感应加热淬火方法来硬化表面,假设高频感应加热淬火温度为1000℃,时间为1秒。为了使奥氏体中碳含量的变化范围控制在±0.01%C ,估算一下这样的加热是否足够?(13)

30、某试样原来不含B 元素,在其表面涂了一层B 元素,其量为M g /cm 2。然后在合适的温度下保温t 时间。试写出浓度分布式C( y , t )。为了使深度为L 的地方获得最高的B 元素含量,必须保温合适的时间。试求:在L 处获得最高浓度所需的时间是多少? L 处的最高浓度值是多少? (14)

31、有一块含30%Zn 的黄铜,其成分分布不均匀,在宽度为0.03mm 的平行带中的Zn 含量为40%。设平行带是等距离分布的,在平行带中间的Zn 含量为29%,如题31图所示。为了使其成分均匀,加热到815℃退火,退火后允许Zn 含量的最大偏差为±0.01%,问需要退火多长时间 ?已知:在815℃时,Zn 的扩散系数为D Zn = 6.86×10-10 cm 2/s 。(14)

32、一奥氏体不锈钢试样在1000℃进行热处理,不幸在开始1.5分钟内,保护气氛失效,以致在表面发生了渗碳。设气氛为恒定碳势,渗碳时不锈钢表面的碳含量可达到1.0%C 。但在不锈钢中允许的碳含量应≤0.04% ,设碳在1000℃时的扩散系数为D = 3×10-7 cm 2/s 。(15)

1)由于碳的有害作用是由表向里扩展的,设原不锈钢试样中含碳量为0,试求渗碳1.5分钟后,使试样表面层的性能受到损害的深度是多少?

2)在1.5分钟后,保护气氛恢复了作用。保护气氛与不锈钢之间没有碳的交换。在1000℃长期保温后,开始

1.5分钟所吸收的碳会扩散到钢的内部,在保温期间,使钢表层内含碳量达到的最大有害深度是多少?

3)如果使碳在表层中的有害作用完全消除,问至少要保温多长时间才可消除碳的有害影响?

33、某一含质量分数0.2%C 的Cr-Mo 钢件在510℃下暴露于强脱碳条件下达一年之久。已知510℃下该钢(铁素体)中碳的扩散系数为1.0×10-9 cm 2/s 。钢件为两相混合物(α+Fe 3C ),试计算其脱碳层厚度。(16)

34、考虑铜合金固溶体的均匀化问题.(17)

1)设某铜-锌合金的最高含锌(Zn )量与平均含Z n 量之差为5%Zn ,最高含Zn 量区与最小含Zn 量区之间的距离为0.1mm 。请使用公式)/2sin()/4exp(220l y l Dt C C ππ?-=计算使上述含Zn 量之差降低到1%Zn 所需的时间。已知:均匀化温度为815℃,D 0 = 2.1×10-

5 m 2 / s ,Q=171×103 J/mol 。 2) 如果是铜-镍合金,情况同上,则需要多少时间 ?已知:在815℃时,镍(Ni)在Cu 中的扩散系数为D = 7×10-

11 cm 2 / s 。为加快Cu-Ni 合金的均匀化速度,缩短均匀化时间,可采用什么有效措施 ? 35、有一块含0.5%C 的钢,已经在A 1以下温度发生了脱碳。脱碳层厚度为1mm 。而后将这块钢在保护气氛中加热到910℃进行很长时间的热处理。由于内部的扩散,脱碳层的碳含量又会增加。如果要求表面碳含量增加到0.1%C ,问需要热处理多长的时间? 已知:在910℃时,碳的扩散常数D 0 = 0.37 cm 2 / s ,碳的扩散激活能Q=148×103 J/mol 。(18)

36、有一时效硬铝合金,在高温固溶处理后淬火,然后在150℃时效强化。在时效过程中,形成了许多很细小的析出物。通常发现:时效析出物的形成具有一定的速度,而且这速度常常快于合金元素的扩散系数(D 0 = 0.2 m 2 / s ,Q=125×103 J/mol )所决定的速度。其原因是由于淬火使合金在低温下保存了过量的空位。在较低的温度,空位的平衡数量要下降,并且可用空位形成能E 来描述,在铝中E ≈75×103 J/mol 。(19)

冷却到低温后,过剩的空位有消失的趋势。如可以通过在晶界上的沉淀来实现。这样,靠近晶界的空位将要快速下降,而且在那里的扩散系数将很快接近它的正常值。所以,在晶界附近的合金元素的扩散将减慢,其结果是沿着晶界会造成无沉淀区(Precipitation Free Zone ,简称PFZ )。试验表明,这种材料加热到150℃时效保温10分钟,才观察到有沉淀析出。试计算:在150℃时效时,在材料中这些无沉淀区的宽度。

37、曾经对一片快速形成的片状马氏体的温度进行估算,认为相变后的温度应比相变前的温度高出200℃。当然,它的冷却是快的。感兴趣的是应该测定一下是否有时间让马氏体发生一定的回火作用。计算片状马氏体的温度比周围高出100℃的情况,能维持多长时间假定片状马氏体的厚度为10微米(m μ)。为简化,奥氏体和马氏体均使用下列系数:导热率K = 0.8 J/cm ?s ?K ,密度ρ=7.8g/cm 3,比热C P =0.46J/g ?K 。(20)

38、含有0.8%C 和1.0%Mn 的钢在700℃进行软化退火,其结果会形成球状的渗碳体颗粒。假定Mn 有时间在渗碳体和铁素体α相基体之间按分配系数进行分布,Mn 在渗碳体/铁素体之间的分布系数K=15。而后钢加热到780℃,保温1分钟。1分钟对于得到均匀分布的碳活度来说是足够的,但是Mn 没有怎么移动。铁素体基体很快地转变为奥氏体,而且一些碳会溶入奥氏体中。假使在780℃时,Mn 在渗碳体和奥氏体中的分布系数为3,那么,碳在奥氏体中的含量会是多少?(20)

39、在白口铸铁中,碳的活度是很高的,因此有很高的石墨化驱动力。现有一白口铸铁,其主要成分为:3.96%C ,2.0%Si ,1.0%Mn 。已知,在900℃时Si 在渗碳体与奥氏体的分配系数为零,而Mn 的分配系数为2。试计算:在900℃处理时,石墨化驱动力是否很高,以致反应可能快速进行,并且是由碳的扩散所控制。(21)

40、在1000℃时,Cr 、Si 在渗碳体和奥氏体的分配系数为分别为5.5及0。如果碳的含量为1.7%,计算钢中含有多少Cr 才能抵偿1000℃时由于4%Si 而提高的石墨化驱动力?设1000℃时碳在奥氏体中最大饱和度为1.35%,Si 、Cr 、Fe 的原子量分别取28、52、56 。(22)

41、在1000℃下,Cr 往Fe 中扩散。在Fe 的表面上Cr 浓度为50%,Fe-Cr 系具有封闭的γ区。在1000℃下Cr 在γ区的最大含量为12%,而在α相中的扩散系数比在γ相中的大。请用图示法表明Cr 浓度与其渗入深度的关(23)

42、不同截面尺寸的Al-5%Cu 合金试样在单相区淬火加热固溶处理,急剧快冷后时效。根据试验结果,给出了

合金固溶体点阵常数和硬度变化的特征,如题42图所示。试分析:(23)

(1)时效刚开始时固溶体点阵常数较低,在时效一定时间后固溶体点阵常数增大;

(2)在单相区的淬火加热温度相同,但不同截面试样淬火后固溶体点阵常数不同;

(3)时效开始阶段硬度下降,随时效过程的进行硬度先上升后下降。

43、利用在不同温度下的硬度随时效时间变化的数据(见题43图1),估计铍青铜时效过程的有效激活能,将结果与已知的扩散特性比较。铜的自扩散激活能为2.03~2.13电子伏特,空位形成能为0.95~1.17电子伏特,空位迁移能0.80~1.10电子伏特。(注:电子伏特单位换算,1eV=16.0218×10-

20 J )(24) 44、计算9SiCr 钢在840℃奥氏体化处理时的石墨化倾向。设该钢的主要成分(质量分数)为1.4%Si ,1.1%Cr ,

0.9%C 。已知:9=γk Cr K ,0=γk Si K ,近似设840℃时,Cr 元素都在氏体中,γ/K 相界面上C 的度为0.75。(25)

45、某合金相形核核胚呈球形。设*?G 为临界晶核自由能,*V 为临界晶核体积,系统自由能变化

επσππG r r G r G V ??+?+??-=?3233

4434。试证明:)(21εG G V G V ?-?=?**。(26) 46、试述具备热弹性马氏体合金的必要条件及机理。(26)

47、已知某材料的δ→α相变动力学方程为:3/2)1(f f K dt df -=。式中:f 为α相的体积分数浓度,

120exp 1067.1-???

? ??-??=S RT Q K ,5104.6?=Q J 。在1190℃保温3.6×103秒,测得α相体积分数为68%。问:保温4.4×103秒后,α相体积分数为多少?(27)

48、合金钢在渗碳时,在表层有可能析出碳化物,这就是所谓的“CD ”渗碳。为了达到渗碳时析出细小弥散的碳化物,需要控制气氛的碳势。现有含质量分数1.5%Cr 、3%Ni 的钢,在900℃时进行“CD ”渗碳,试计算需要

的临界碳势。设Cr 、Ni 在900℃时,在碳化物和奥氏体之间的分配系数分别为7和0.1;在900℃,Fe-C 系统中0c

a = 1.045。(27)

49、假设在固态相变过程中,新相形核率N

和长大率G 为常数,经t 时间后所形成新相的体积分数X 可用Johnson-Mehl 方程来描述,即:??

? ??--=433exp 1t G N X π。已知形核率N = 1000/ cm 3?s ,长大率G=3×10-5cm/s 。试计算:(28)

(1)发生相变速度最快的时间;

(2)过程中的最大相变速度;

(3)获得50%转变量所需的时间。

50、Spinodal 分解和形核长大型脱溶沉淀之间主要区别是什么?(28)

51、与常规材料的相变规律相比,纳米材料的相变有什么特点?(28)

52、薄膜晶核生长有哪几种方式?其表面能和界面能对晶核生长起什么作用?(29)

53、试用能量或扩散观点解释下列现象:(29)

(1)过饱和固溶体脱溶过程中,往往会产生中间过渡相。

(2)脱溶沉淀相的形貌有球状、片状、针状等形态。

(3)Al-Ag 等时效合金往往在晶界附近产生无沉淀析出区。

(4)含有第二相粒子耐热合金的设计,对第二相组元的扩散系数D 、第二相与基体的界面能σ、第二相组元在基体中的固溶度C 0,一般都要求尽可能地小。

(5)晶界先共析铁素体增长的动力学为线性,而增厚动力学是抛物线关系。

(6)位错促进相变形核。

54、试用能量学观点阐述铁合金中马氏体形貌变化规律。(30)

55、设扩散微分方程的高斯解为:???? ??-=Dt y Dt S

C 4exp 42π。S 的物理意义是什么?试证明。高斯解适用于什么情况?为什么高斯解中扩散距离的平方平均值是和Einstein 处理的一维空间无规行走规律的结果是一致的?(30)

56、在一块厚度为1cm 的钢板表面电镀了一层很薄的Ni 。问:这块钢板在1200℃时需保温多长时间,才能使钢板中心的Ni 含量达到最终完全均匀化含量的一半?

已知:D Ni (1200℃) = 4×10-

11 cm 2 / s . 57、高速钢正常淬火,冷却到室温后,还含有大量的残留奥氏体A R 。但是经回火后,再冷却到室温,大部分的A R 会淬火成马氏体M 。其原因是因为A R 中的碳和合金元素扩散到碳化物中去了,碳化物是在附近形成的,所以A R 中碳和合金元素量降低,提高了相变临界点Ms (>室温),当钢冷却时,提高了Ms 的A R 就转变成M 了。设:

(1)A R 可近似地认为是厚度为5μm 的平面片;

(2)Ms=561-474×%C+合金元素的作用;开始时,奥氏体中的Ms 为120℃;

(3)A R 回火前的含C 量为0.6%;靠近回火M 的A R 处含C 量是极低的,可设为0;

(4)回火工艺:550℃,保温1小时;

(5)??

? ??-?+=RT C D c 163000exp )%06.007.0(γ 试计算A R 中部地区,这种脱C 效应将进行到什么程度?然后,估计出Ms 提高了多少?

58、一块纯铁与大量的含14%Cr 的钢屑放在一起,在1200℃进行真空退火。假定在很短时间内在纯铁表面就建立起了14%Cr 的Cr 势,为了在铁试样1mm 深处能得到含Cr 量8%,问需要退火多长时间?纯铁在1200℃时为奥氏体

相,但当渗入一定量Cr (>8%)后,表面层会形成铁素体相α。已知:1200℃时,s cm D Cr /1023.128-?=α,

s cm D Cr /1052.2210-?=γ。

59、有一含0.4%C (质量分数)的合金钢薄壳在800℃的温度下与0.1%C 相平衡的CO 和CO 2气氛中进行奥氏体化处理。在这些条件下其表面会生成一些α铁素体。问经过30分钟后生成的α铁素体层有多厚?已知在800℃时,

αc

D =2×10-6cm 2/s ,γc D =3×10-8cm 2/s 。 60、一含有0.77%C 的共析钢,由于缓慢冷却,已经形成了粗大的珠光体组织,其片间距为12μm 。现加热到

800℃进行奥氏体化,问至少要保温多长时间?已知:在800℃时,γC D =10-

8 cm 2/s ,0/==γααc c x x ,85.0/=k c w γ,30.0/=αγc w ,并假定奥氏体在α/γ界面上有同样的形核率。

61、固态相变时,假设新相晶胚为球形,单个原子的体积自由能变化ΔG V = 200ΔT/T S (J/cm 3),临界转变温度T S = 1000K ,应变能E S =4 J/cm 2,共格界面能γ共 =40erg/cm 2 , 非共格界面能γ非共 = 400erg/cm 2。试计算:

(1)ΔT=50℃时临界形核功*?共G /*?非共G 之比;

(2)求*?共G =*

?非共G 时的ΔT

62、Al -Cu 合金的亚平衡相图如题62图所示,指出Al -4%Cu 合金经过固溶处理的合金在T 1和T 2温度时效时的脱溶顺序。并解释为什么稳定相一般不首先形成?

63、将一块纯铜放入650℃的锌熔体中,假设使铜块表面含锌保持在25%的条件下,求表面以下1.5mm 处含锌达到0.01%所需要的时间。已知650℃时锌在铜中的扩散系数D=2.3×10-10m 2/s 。 64、Ostwald 熟化过程粒子长大速率遵循

??? ??-?∞=r r r RT C DV dt dr m 111)(2ασ关系,如第二相粒子初始平均半径为0.5μm ,已知σV m DC α(∞)/R = 2.5×10-13K?cm 3/s ,试求在1000K 保温少量时间后(设粒子体系未变),原来半径

为0.3μm 和0.55μm 粒子的长大速率,并判断其是长大还是溶解?

65、A -B 二元系,α相和β相达到平衡,富B 的β相颗粒分布在α相中,颗粒尺寸不均匀,平均半径为0.1μm 。α-β界面能为0.5J / m 2,1000K 时B 组元在α相中扩散系数为1110- m 2/ s ,两相的摩尔体积近似为2×710-m 3,α相和β相的平衡浓度分别为2%和90%:

(1)在此时,半径为0.05μm 及1.5μm 颗粒的界面移动速率是多少?

(2)平均半径从0.1μm 长大到0.3μm 所需要的时间为多少?

66、由内耗法测出Fe 3C 在α-Fe 中的平衡浓度(或溶解度)为C=0.736exp(-4850/T),式中,T (K )为温度。求:在627℃时,颗粒半径分别为10nm 、100nm 以及1000nm 的Fe 3C 在α-Fe 中的平衡浓度。已知,α-Fe 3C 的界面能为0.71J/m 2,Fe 3C 摩尔体积为23.4cm 3/mol 。

67、 Al -Ag 和Al -Cu 合金中,从以Al 为基的固溶体分别析出富Ag 和富Cu 的析出物。Al 、Ag 和Cu 的原子半径分别为0.143nm 、0.144nm 和0.128nm 。如简单地由原子半径估计错配度δ,并简单地认为析出物的非共格界面能为0.5J /m 2,共格界面能为0.05J /m 2,Al 的切变模量μ =2.6×1010Pa.。估计这两种析出物丧失共格的尺寸。

设析出物的切变模量和Al 相同,)

1(2νμ+=E ,ν=0.33。 68、Al -Mg 置换固溶体,试估计溶质原子Mg 产生的错配应变能,以J ·mol -1和eV/原子表达,说明估算时所

用的假设。已知Al 的原子半径为0.143nm ,切变模量μ=2.5×1010Pa ,Mg 的原子半径为0.160nm 。已知,1eV=16.0218×10-20 J ,每摩尔原子数为n=6.02×1023

原子/mol 。假设析出相与母相具有相同的弹性模量。 69、设母相和析出相的切变模量G 相同,母相是各向同性连续介质。如形成共格的核心,请导出圆盘状和透镜状核心长大时丧失共格的尺寸表达式。

70、Al -Cu 合金的α过饱和固溶体脱溶析出θ″,θ″相呈圆盘状,厚度c 为2nm ,与母相间的错配度为δ= 8%。设两相具有相同的弹性模量,当θ″→θ′时共格破坏。求θ″相与基体共格破坏时的圆盘直径。已知:弹性模量E=80GPa ,非共格界面能非σ=0.7 J/ m 2,泊桑比ν为0.33 。

71、设析出相的切变模量G 较母相大,为不可压缩。设母相是各向同性连续介质,没有切变应力,不考虑共格界面能。如形成共格的核心,请导出圆盘状和球状核心长大时丧失共格的临界尺寸表达式。设单位非共格界面能为αβσ,单位应变能为εG

72、试说明:在达到平衡后,脱溶沉淀相聚集长大过程中,为什么总是以小质点溶解、大质点增大的方式长大。

73、有一合金系发生固态相变,新相以球状颗粒从母相中析出。设单位体积的自由能变化为108J/m 3,比表面能为1J/m 2,应变能忽略不计。试求表面能为体积自由能的1%时的新相颗粒直径。

74、已知某合金在时效过程中θ″呈薄圆盘状析出长大,点阵错配度δ为10%,片厚为3nm 。由共格界面引起的畸变能为22

3δμε??=V E ,式中V 为每个原子的体积,μ为平均弹性模量。设μ=2.7×104MPa ,共格破坏后的非共格界面能为0.5 J/m 2。试计算共格破坏时圆盘的直径。

75、试简要讨论马氏体相变的能量参数ζ、A 和形状参数c 、r 之间的关系。

76、低碳钢的马氏体形态为板条状,高碳钢马氏体形态常常是透镜状。

77、什么叫自组织,固态相变系统自组织的条件是什么?

78、什么叫涨落(或起伏)?试述涨落在固态相变中的作用。

79、举例说明钢中相变的非线性相互作用。

80、试述位移式转变、均匀切变、不均匀切变、准马氏体相变的基本概念。

81、试述经典的均匀形核理论与相变变温长大理论。

82、试述ε-马氏体相变的特点。

天津大学2008~2009学年第二学期期末考试试卷《合金固态相变》B卷 答案

天津大学2008~2009学年第二学期期末考试试卷《合金固态相变》B卷答案 一、名称解释(10分,每题2分) 1. 回火马氏体:淬火钢在低温回火时得到的组织。 2. 回火脆性:随回火温度升高,一般是钢的强度、硬度降低,塑性升高,但冲击韧性不一定总是随回火温度升高而升高,有些钢在某些温度回火时,韧性反而显著下降的现象。 3. 二次硬化现象:当M中K形成元素含量足够多时,500°C以上回火会析出合金碳化物,细小的弥散分布的合金K将使已经因回火温度升高而下降的硬度重新升高,故称二次硬化。 4. 晶粒度:设n为放大100倍时每645mm2(lin2)面积内的晶粒数,则下式中的N被用来表示晶粒大小的级别,被称为晶粒度。N=2N-1 5. 形状记忆效应:将某些金属材料进行变形后加热到某一特定温度以上时,能自动恢复原来形状的效应。 二、填空:(20分,每空0.5分) 1. M转变的切变模型有Bain模型,K-S模型,G-T模型。 2.奥氏体转变的四个阶段是A形核,A长大,渗碳体溶解,A均匀化。 3.固相界面根据其共格性有共格界面,半共格界面,非共格界面,其中非共格界面的弹性应变能最小。 4.A转变时,转变温度与临界点A1之差称为过热度,它随加热速度的增大而增大。5.奥氏体是碳溶于γ-铁固溶体,碳原子位于八面体中心位置,钢中马氏体是 碳在α铁中的过饱和固溶体,具有体心立方点阵 6.影响钢的Ms点的最主要因素是碳含量,Ms随碳含量升高而降低。 7.一般退火采取的冷却方式为炉冷,正火的冷却方式为空冷,正火后强度略高于于退火后的强度,组织更细小。 8.M回火加热时,回火转变过程依次为M中碳原子的偏聚和聚集,M的分解,残余A分解,碳化物类型变化,a相回复与再结晶。 9.时效硬化机制有内应变强化,切过颗粒强化,绕过析出相(Orowan机制)。 10.高碳钢为了改善其切削加工性能,淬火后进行高温回火,工业中也称为派登处理。11.马氏体转变时K-S关系是指{110}α’|| {111}γ(晶面关系),﹤111﹥α’|| ﹤110﹥γ(晶向关系)。 12.常用的淬火介质中,淬火时伴随有物态变化的介质有:水,水溶液(油)等;没有物态变化的介质有熔盐,碱(熔融金属)等。 三、选择(20分,每题1分) 1.亚共析钢在AC3下加热后的转变产物为__c_。 (a) F (b) A (c) F+A (d) P+F 2. 由于形成F与Fe3C的二相平衡时,体系自由能最低,所以A只要在A1下保持足够长时间,就会得到__c__的二相混合物P。 (a)A+P (b)A+Fe3C (c)F+Fe3C (d)A+F 3.合金时效时随时间的延长硬度发生下降是发生了_b__。 (a) 冷时效(b) 过时效(c) 温时效(d) 自然时效 4.选出过冷奥氏体向贝氏体转变时的相变阻力__b,c_ (a)新相和母相的自由能差(b)两相间的表面能(c)弹性应变能(d)塑性应变能 5.亚共析钢的先共析铁素体是在__d__以上向奥氏体转变的。 (a) AC1 (b) T0 (c) A1 (d) AC3

北科大《固态相变》12道练习题

北科大《固态相变》12道练习题

《固态相变》课程12道复习题 北科大 chenleng老师 1.什么是一级相变?什么是二级相变?并举例说明。 ? 分类标志:热力学势及其导数的连续性。自由能和内能都是热力学函数,它们的第一阶导数是压力(或体积)和熵(或温度)等,而第二阶导数是比热、膨胀率、压缩率和磁化率等。 第一类相变(一级相变):凡是热力学势本身连续,而第一阶导数不连续的状态突变,称为第一类相变。第一阶导数不连续,表示相变伴随着明显的体积变化和热量的吸放(潜热)。普通的气液相变、液固相变、金属和合金的多数固态相变、在外磁场中的超导转变,属于第一类相变。 第二类相变(二级相变):热力学势和它的第一阶导数连续变化,而第二阶导数不连续的情形,称为第二类相变。这时没有体积变化和潜热,但膨胀率、压缩率和比热等物理量随温度的变化曲线上出现跃变或无穷的尖峰。超流、没有外磁场的超导转变、气液临界点、磁相变、合金中部分有序-无序相变,属于第二类相变。习惯上把第二类以上的高阶相变,通称为连续相变或临界现象。玻色-爱因斯坦凝结现象是三级相变。 按相变方式分类:形核长大型相变、连续型相变……<材基P595> 按原子迁移特征分类:扩散型相变、无扩散型相变 2.回答以下问题:(1)经典形核理论的均匀形核和非均匀形核的临界核心的曲 率半径哪个更大?为什么?(2)均匀形核和非均匀形核的临界核心形成功哪个更大,为什么?(3)均匀形核和非均匀形核的形核速率哪个更大,为什么?(4)经典形核理论对再结晶核心的形成是否适用,为什么?(5)两相转变的平衡温度与再结晶温度的本质有何区别,并给出解释。 ? 非均匀形核: (1)应该特别注意到,在相同的过冷度下,非均匀形核的临界曲率半径和均匀形核临界半径是相同的。 (2)非均匀形核时,因为和浸润角有关的f(θ)总是小于1,所以非均匀形核的临界形核功总比均匀形核小。 (3)在凝固时液相中都含有大量的形核靠背,例如盛放液体的容器模壁、液体中含的微小固态微粒等。所以,实际的凝固过程中非均匀形核率总比均匀

最新固态相变原理考试试题+答案资料

固态相变原理考试试题 一、(20分) 1、试对固态相变的相变阻力进行分析 固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量。 界面能:是指形成单位面积的界面时,系统的赫姆霍茨自由能的变化值。与大小和化学键的数目、强度有关。为表面张力, 为偏摩尔自由能,为由于界面面积改变而引起的晶粒内部自由能变化 (1)共格界面的化学键数目、强度没有发生大的变化,σ最小;半共格界面产生错配位错,化学键发生变化,σ次之;非共格界面化学键破坏最厉害,σ最大。 (2)应变能 ①错配度引起的应变能(共格应变能):共格界面由错配度引起的应变能最大,半共格界面次之,非共格界面最小。 ②比容差引起的应变能(体积应变能):和新相的形状有关,,球状由于比容差引起的应变能最大,针状次之,片状最小。 2、分析晶体缺陷对固态相变中新相形核的作用 固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核。 (1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核。 (2)位错: ①形成新相,位错线消失,会释放能量,促进形核 ②位错线不消失,依附在界面上,变成半共格界面,减少应变能。 ③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核。 ④位错是快速扩散的通道。 ⑤位错分解为不全位错和层错,有利于形核。 Aaromon总结: 刃型位错比螺型位错更利于形核;较大柏氏矢量的位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成。 (3)晶界:晶界上易形核,减小晶界面积,降低形核界面能 二、(20分) 已知调幅分解浓度波动方程为: ,其中: 1、试分析发生调幅分解的条件 只有当R(λ)>0,振幅才能随时间的增长而增加,即发生调幅分解,要使R(λ)>0,得G”<0且| G”|>2η2Y+8π2k/λ2 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项8π2k/λ2很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,8π2k/λ2下降,易满足| G”|>2η2Y+8π2k/λ2,可忽略梯度项,调幅分解能发生。 2、说明调幅分解的化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中的变化轨迹 化学拐点:当G”=0时。即为调幅分解的化学拐点; 共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点的浓度范围变窄了,温度范围也降低了。 3、请说明调幅分解与形核长大型相变的区别

固态相变 知识点总结

固态相变 By Dong大魔王 固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种状态到另一种状态的改变,这种转变称为固态相变。 按热力学分类: 一级相变:相变时新旧两相的化学势相等,但化学势的一级偏微熵不等的相变称为一级相变; 二级相变:相变时新旧两相的化学势相等,且化学势的一级偏微熵也相等,但化学势的二级偏微熵不相等的相变称为二级相变。 按平衡状态图分类: ①平衡相变指在缓慢加热或冷却过程中所发生的能获得的符合平衡状态相图的平衡组织的相变。主要有同素异构转变、多形性转变、平衡脱溶沉淀、共析相变、调幅分解、有序化转变。 ②非平衡相变:伪共析相变、马氏体相变、贝氏体相变、非平衡脱溶相变 按原子迁移情况分类: ①扩散型相变:相变时,相界面的移动是通过原子近程或远程扩散而进行的相变称为扩散型相变。基本特点是:相变过程中有原子扩散运动,相变速率受原子扩散速度所控制;新相和母相得成分往往不同;只有因新相和母相比容不同而引起的体积变化,没有宏观形状改变。 ②非扩散型相变:相变过程中原子不发生扩散,参与转变的所有原子的运动是协调一致的相变称为非扩散型相变。一般特征是:存在由于均匀切变引起的宏观形状改变,可在预先制备的抛光试样表面上出现浮突现象;相变不需要通过扩散,新相和母相的化学成分相同;新相和母相之间存在一定的晶体学位向关系;某些材料发生非扩散相变时,相界面移动速度极快,可接近声速。 试述金属固态相变的主要特征 ①相界面:金属固态相变时,新相和母相的界面分为两种。 ②位相关系:两相界面为共格或半共格时新相和母相之间必然有一定位相关系,两项之间没有位相关系则为非共格界面。 ③惯习面:新相往往在母相一定晶面上形成,这个晶面称为惯习面。 ④应变能:圆盘型粒子所导致的应变能最小,其次是针状,球状最大。固态相变阻力包括

《固态相变理论》作业3,4

《固态相变理论》作业3 1.试述贝氏体转变的基本特征。 答:1)孕育期的预相变:在贝氏体孕育期内,母相发生成分的预分配和结构的预转变。预相变期发生了原子的偏聚,形成贫碳区即为贝氏体相变的 形核位置。相变机制存在扩散和切变学派的争论。 2)贝氏体相变形核:贝氏体相变是非均匀形核,上贝氏体一般在奥氏体晶界处形核,而下贝氏体一般在奥氏体的晶内形核。 3)贝氏体的长大机制:存在三种观点1.马氏体型的贝氏体切变长大机制,这种学派认为,贝氏体长大与马氏体相似,以切变方式进行,但贝氏体 长大的速度比马氏体慢的多。判断依据是贝氏体的表面浮凸效应现象。 切变包括滑移切变和孪生切变。2.扩散台阶长大机制,台阶机制可以为 扩散长大所利用,也可以为切变长大利用。3.扩散-切变复合长大模型, 这种模型首要条件是界面位错必须是刃型位错或刃型分量为主导的。因 为只有刃型位错才能攀移,而螺位错是不能攀移的。 2.试述影响贝氏体性能的基本因素。 答:1)上贝氏体的形成中温转变,在350~550℃,组织为BF+Fe3C。形态为羽毛状上贝氏体的转变速度受碳在奥氏体中的扩散所控制。 2)下贝氏体的形成低温转变,小于350℃。BF大多在奥氏体晶粒内通过共格切变方式形成,形态为透镜片状。由于温度低,BF中的碳的过饱和 度很大。同时,碳原子已不能越过BF/A相界扩散到奥氏体中去,所以就 在BF内部析出细小的碳化物。同样,下贝氏体的转变速度受碳在铁素体 中的扩散所控制。 3)碳含量及合金元素的影响奥氏体中的碳含量的增加,转变时需要扩散的原子数量增加,转变速度下降。除了铝和钴外,合金元素都或多或少 地降低贝氏体转变速度,同时也使贝氏体转变温度范围下降,从而使珠 光体与贝氏体转变的C曲线分开。 4)奥氏体晶粒度大小的影响奥氏体晶粒度越大,晶界面积越少,形核部位越少,孕育越长,贝氏体转变速度下降。 5) 应力和塑性变形的影响拉应力加快贝氏体转变。在较高温度的形变使 贝氏体转变速度减慢;而在较低温度的形变使得转变速度加快。 6)冷却时在不同温度下停留的影响

固态相变B(09)答案

一.填空题(每空1分,共10分) 1、在钢的各种组织中,奥氏体的比容最小(选填大还是小)。可利用这一 点调整残余奥氏体的量,以达到减少(选填减少还是增大)淬火工件体积变化的目的。 2、化学热处理的基本过程是——分解————、、———吸收———、————扩散————。 2、钢的淬透性主要取决于——临界淬火冷却速度———,钢的淬硬性主要取决于————含碳量—。 3、贝氏体主要有_上贝氏体__和__下贝氏体__两种,其中 _下_贝氏体强韧性好。 二.单项选择题(每题2分,共20分,将答案填入下表) A.氧化 B.脱碳 C.过热 D.过烧 2、防止或减小高温回火脆性的较为行之有效的方法是() A.回火后缓冷 B.回火后空冷 C.回火后水冷或油冷 D.回火后保温 3、下列对珠光体团的描述中正确的是:() A.珠光体团就是铁素体和渗碳体的混合物 B.珠光体团就是由一层(片)铁素体和一层(片)渗碳体所组成的区域 C.一个奥氏体晶粒所占区域转变成珠光体后。就称为珠光体团 D.珠光体中由层(片)方向大致相同的区域称为珠光体团 4、某钢的A C3为780℃,如在820℃保温并随炉冷却。此工艺最有可能属于 A.完全退火B.再结晶退火 C.扩散退火D.球化退火 5、对奥氏体实际晶粒度的描述中不正确的是:() A.某一热处理加热条件下所得到的晶粒尺寸 B.奥氏体实际晶粒度比起始晶粒度大 C.加热温度越高实际晶粒度也越大 D.奥氏体实际晶粒度与本质晶粒度无关 6、在A1温度以下发生的P转变,奥氏体与铁素体界面上的碳浓度___奥氏体与渗碳体界面上碳浓度,引起奥氏体中的碳的扩散。 A.低于 B.高于 C.等于 D.小于等于 7、在A1下,_____的过冷奥氏体最稳定。 A.亚共析钢 B.共析钢 C.过共析钢 8、贝氏体转变时,由于温度较高,会存在____的扩散。

(完整版)金属固态相变原理考试复习思考题

复习思考题 1.复习思考题 1.固态相变和液-固相变有何异同点? 相同点:(1)都需要相变驱动力(2)都存在相变阻力(3)都是系统自组织的过程 不同点:(1)液-固相变驱动力为自由焓之差△G 相变,阻力为新相的表面能△G表,基本能连关系为:△G = △G 相变+△G表,而固态相变多了一项畸变能△G畸,基本能连关系为:△G = △G 相变+△G界面+△G畸(2)固态相变比液-固相变困难,需要较大的过冷度。 2.金属固态相变有那些主要特征? 相界面;位向关系与惯习面;弹性应变能;过渡相的形成;晶体缺陷的影响;原子的扩散。 3. 说明固态相变的驱动力和阻力? 在固态相变中,由于新旧相比容差和晶体位向的差异,这些差异产生在一个新旧相有机结合的弹性的固体介质中,在核胚及周围区域内产生弹性应力场,该应力场包含的能量就是相变的新阻力—畸变自由焓△G畸。则有: △G = △G 相变+△G界面+△G畸 式中△G 相变一项为相变驱动力。它是新旧相自由焓之差。 当:△G 相变=G 新 -G 旧 <0 △G 相变小于零,相变将自发地进行 (△G界面+△G畸)两项之和为相变阻力。 (1)界面能△G界面 界面能σ由结构界面能σst和化学界面能σch组成。即:σ=σst+σch 结构界面能是由于界面处的原子键合被切断或被削弱,引起了势能的升高,形成的界面能。 (2)畸变能阻力—△G畸 4.为什么在金属固态相变过程中有时出现过渡相? 过渡相的形成有利于降低相变阻力, 5. 晶体缺陷对固态相变有何影响? 晶核在晶体缺陷处形核时,缺陷能将贡献给形核功,因此,晶体通过自组织功能在晶体缺陷处优先性核。 晶体缺陷对形核的催化作用体现在: (1)母相界面有现成的一部分,因而只需部分重建。 (2)原缺陷能将贡献给形核功,使形核功减小。 (3)界面处的扩散比晶内快的多。 (4)相变引起的应变能可较快的通过晶界流变而松弛。 (5)溶质原子易于偏聚在晶界处,有利于提高形核率。 6.扩散型相变和无扩散型相变各有那些特征? (1)扩散型相变 原子迁移造成原有原子邻居关系的破坏,在相变时,新旧相界面处,在化学位差驱动下,旧相原子单个而无序的,统计式的越过相界面进入新相,在新相中原子打乱重排,新旧相排列顺序不同,界面不断向旧相推移,此称为界面热激活迁移,是扩散激活能与温度的函数。 新相与母相的化学成分不同。 (2)无扩散型相变 相变的界面推移速度与原子的热激活跃迁因素无关。界面处母相一侧的原子不是单个而无序的,统计式的越过相界面进入新相,而是集体定向的协同位移。界面在推移的过程中保持宫格关系。 新相与母相的结构不同,化学成分相同态相变具有形核阶段? 固态相变分为有核相变与无核相变,大多数固态相变都是有核相变, 8.为什么金属固态相变复杂多样? 见4页。 9.晶粒长大的驱动力?晶粒长大时界面移动方向与晶核长大时的界面移动方向有何不同?为什么? 晶粒长大的驱动力:界面能或晶界能的降低。晶粒长大时界面移动方向与曲率中心相同,晶核长大时的界面移动方向与曲率中心相反。 10.什么是自组织?自组织的条件是什么? 如果系统在获得其空间结构,时间结构过程中没有特定的外界干预,而是一个自发的组织化,有序化,系统化的过程,称自组织。其条件是:(1)开放系统(2)远离平衡态(3)随机涨落(4)非线性相互作用

固态相变新理论论文

固态相变论文 班级:材料08-01 姓名:郑国阔 学号:0808010130

金属固态相变理论研究的最新进展 摘要:已经研究形成一套金属固态相变理论,但有的知识陈旧,且存在错误,因此,开拓创新具有理论意义和应用价值。本文就钢的珠光体和贝氏体转变做了深入研究。通过分析得出钢中共析分解的新机制,对于“相间沉淀”机理做了新的解释,重申了珠光体的新概念。认为:珠光体是共析铁素体和共析渗碳体(或碳化物)构成的整合组织,不是机械化合物。珠光体的形核--长大是以界面扩散为主进行的相变,铁素体和渗碳体两相是共析共生,协同长大,不存在领先相;发现了珠光体转变在预先抛光的试样表面也具有浮凸效应;指出过渡性是贝氏体相变的主要特征,提出了贝氏体和贝氏体相变的新定义。认为以往的热力学计算不准,贝氏体铁素体的相变驱动力约为-905J/mol。提出了切变-扩散整合机制,贝氏体相变的晶核是单相BF,不是共析分解,贝氏体铁素体(BF)在贫碳区形核,是贫碳的γ→α的无扩散相变,不是切变过程,而是以界面替换原子热激活跃迁方式形核长大;钢中贝氏体碳化物(Bc)在γ/α相界面上形核,向奥氏体和铁素体中长大,最终被铁素体包围,是以原子热激活跃迁方式进行的相变。 关键词:固态相变;珠光体;贝氏体;界面扩散;热激活跃迁;扩散;切变;整合。 金属固态相变过程和相变机理极为复杂,而钢中的相变是金属相变中最为复杂的,各种相变机制也存在争议,在争论中金属固态相变理论不断更新和发展发展[1~7]。科学技术哲学告诉人们,自然物质的演化是从量变到质变的过程。应当把“奥氏体珠光体、贝氏体、马氏体”转变系列作为一个整合系统来研究。从整合机制和自组织功能方面以系统整合的方法进行研究。 21世纪以来,奥氏体的形成、马氏体相变和回火转变研究欠活跃,进展缓慢,本文主要介绍珠光体转变和贝氏体相变的最新进展情况。 珠光体是钢中发现比较早的组织,20世纪上半叶对珠光体转变理论进行了大量的研究工作,但60~80年代在马氏体和贝氏体研究的热潮中,珠光体相变的研究被冷落。80年代以后,索氏体组织及在线强化;非调质钢取代调质钢;高强度冷拔钢丝的研究开发等,使珠光体转变的研究有了一定的新进展。但是,共析分解的许多问题实际上并没有真正搞清楚。本文就珠光体的定义、共析分解机理;领先相问题;相间沉淀等阐述其新理论、新认识。 20世纪50年代柯俊第一次对贝氏体相变的本质进行了研究。60年代末,美国冶金学家H.I.Aaronson等学者从能量上否定贝氏体转变的切变可能性。贝氏体相变机制方面形成了切变机制、扩散-台阶机制,切变-扩散复合机制等,并且经历了长达30多年的论争。进入21世纪以来,刘宗昌等人提出了切变-扩散整合机制。继承各类学术观点之所长,开拓创新,实现各类学术观点的整合,以便促进贝氏体相变理论的发展。 1. 珠光体转变新理论 20世纪80年代电镜观察发现了珠光体组织中的长大台阶,提出了台阶转变机制。近年来,作者本人依据对共析分解机理和珠光体本质的研究,发表了

固态相变试题库及答案

固态相变课程复习思考题2012-5-17 1.说明金属固态相变的主要分类及其形式 2.说明金属固态相变的主要特点 3.说明金属固态相变的热力学条件与作用 4.说明金属固态相变的晶核长大条件和机制 5.说明奥氏体的组织特征和性能 6.说明奥氏体的形成机制 7.简要说明珠光体的组织特征 8.简要说明珠光体的转变体制 9.简要说明珠光体转变产物的机械性能 10.简要说明马氏体相变的主要特点 11.简要说明马氏体相变的形核理论和切边模型 12.说明马氏体的机械性能,例如硬度、强度和韧性 13.简要说明贝氏体的基本特征和组织形态 14.说明恩金贝氏体相变假说 15.说明钢中贝氏体的机械性能 16.说明钢中贝氏体的组织形态 17.分析合金脱溶过程和脱溶物的结构 18.分析合金脱溶后的显微组织 19.说明合金脱溶时效的性能变化 20.说明合金的调幅分解的结构、组织和性能 21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子? 22.影响珠光体片间距的因素有哪些? 23.试述影响珠光体转变力学的因素。 24.试述珠光体转变为什么不能存在领先相 25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体 26.试述马氏体相变的主要特征及马氏体相变的判据 27.试述贝氏体转变与马氏体相变的异同点 28.试述贝氏体转变的动力学特点 29.试述贝氏体的形核特点 30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。 31.试述Al-Cu合金的时效过程,写出析出贯序 32.试述脱溶过程出现过渡相的原因 33.掌握如下基本概念: 固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率

金属固态相变原理

*本答案基本根据录音整理所得,课本有的标了页码* 金色固态相变原理 简答题 1.简述共析钢加热奥氏体化的过程。(P42) 答:(1)奥氏体形核奥斯体的形核是通过形核和长大完成的。奥氏体的晶核是依靠系统的能量起伏、浓度起伏和结构起伏形成的;(2 )奥氏体晶核长大奥氏体的长大过程是两个新旧界面向原来的铁素体和渗碳体中推移的过程,驱动力为奥氏体中的碳浓度差;(3)剩余碳化物的溶解奥氏体中铁素体的溶解速度大了渗碳体的溶解速度,使渗碳体过剩而逐渐溶入奥氏体中;(4)奥氏体的均匀化继续加热或保温,借助碳原子的扩散使碳原子的分布趋于均匀。 2.马氏体相变的主要特征有哪些?(P76) 答:(1)切变共格和表面浮突现象马氏体转变时奥氏体中的原子基集体有规则的向新相中迁移,形成切变共格界面,表面产生浮突效应;(2)无扩散性仅由面心立方点阵通过切边改组为体心立方点阵,而无成分的变化;(3)具有特定的位向关系和惯习面;(4)在一个温度范围内完成相变温度在Ms-Mf完成,但是转变不能完全进行,有一定量的残余奥氏体存在;(5)可逆性 3.什么是第一类回火脆性,避免其发生的方法有哪些?(P143) 答:在250-400°C之间出现的回火脆性称为第一类回火脆性,也称低温回火脆性,也称为不可逆回火脆性。 避免方法:(a)降低钢中杂质元素的含量;(b)用Al脱氧或加入Nb、V、Ti等合金元素以细化奥氏体晶粒;(c)加入Mo、W等能减轻第一类回火脆性的合金元素;(d)加入Cr、Si以调整发生第一类回火脆性的温度范围,使之避开所需的回火温度;(e)采用等温淬火工艺代替淬火加回火工艺。 4.板条马氏体和片状马氏体那种会出现显微裂纹,为什么?(根据录音所得) 答:片状马氏体。显微裂纹是片状马氏体形成是产生的,先形成的第一片马氏体贯穿整个晶粒,将奥氏体晶粒分成两个部分,而后形成的马氏体片大小受到限制,所以马氏体的大小是不同的。后形成的马氏体片不断的撞击先形成的马氏体。由于马氏体的形成速度非常快,所以相互撞击,同时还与奥氏体晶界撞击,产生较大的应力场,另外片状马氏体的含碳量比较高,不能通过滑移和孪晶等变形方式消除应力,所以片状马氏体容易出现显微裂纹。 板条马氏体之间的夹角比较小,基本上是平行的,相互撞击的几率较小,残余奥氏体的存在可以缓解应力,所以板条马氏体没有出现显微裂纹。 5.什么是材料的热处理?其目的是什么?常见的热处理工艺有哪些?(根据录音所得)答:材料的热处理是通过特定的加热保温和冷却方式来获得工程上所需的组织的一种工艺过程的总称。目的:改变金属及合金的内部组织结构使其满足服役条件所提出的性能要求。常见的热处理工艺有淬火、正火、退火和回火。 6.如何区别高碳钢中的回火马氏体与下贝氏体?(根据录音所得) 答:(1)高碳钢回火马氏体表面浮突呈锥字型,它的相变是通过共格切变机制完成的。而下贝氏体的表面浮突是不平行的相交成V字形,而且它的铁素体不是通过切变共格完成的;(2)高碳钢回火马氏体中存在位错和孪晶,而下贝氏体中的铁素体中只有位错盘结没有孪晶结构存在,其韧性较好。(3)下贝氏体中碳沿着与贝氏体长轴呈50-60°倾斜的直线规则排列与相间析出相似。回火马氏体中碳在铁素体中是均匀分布的。 7.奥氏体的晶核最容易在什么地方形成?为什么?(P40)

固态相变 习题学习资料

固态相变习题

第一章自测题试卷 1、固态相变是固态金属(包括金属与合金)在()和()改变时,()的变化。 2、相的定义为()。 3、新相与母相界面原子排列方式有三种类型,分别为()、()、(),其中()界面能最低,()应变能最低。 4、固态相变的阻力为()及()。 5、平衡相变分为()、()、()、()、()。 6、非平衡相变分为()、()、()、()、()。 7、固态相变的分类,按热力学分类:()、();按原子迁动方式不同分类:()、();按生长方式分类()、()。 8、在体积相同时,新相呈()体积应变能最小。 A.碟状(盘片状) B.针状 C.球状 9、简述固态相变的非均匀形核。 10、简述固态相变的基本特点。 第二章自测题试卷 1、分析物相类型的手段有()、()、()。 2、组织观测手段有()、()、()。 3、相变过程的研究方法包括()、()、()。 4、阿贝成像原理为()。 5、物相分析的共同原理为()。 6、扫描电镜的工作原理简单概括为:()。

7、透射电子显微镜的衬度像分为()、()、()。 第三章自测题试卷 1. 根据扩散观点,奥氏体晶核的形成必须依靠系统内的(): A.能量起伏、浓度起伏、结构起伏 B. 相起伏、浓度起伏、结构起伏 C.能量起伏、价键起伏、相起伏 D. 浓度起伏、价键起伏、结构起伏 2. 奥氏体所具有的性能包括:() A.高强度、顺磁性、密度高、导热性差; B.高塑性、顺磁性、密度高、导热性差; C.较好热强性、高塑性、顺磁性、线膨胀系数大; D.较好热强性、高塑性、铁磁性、线膨胀系数大。 3. 影响奥氏体转变的影响因素包括()、()、()、()。 4.控制奥氏体晶粒大小的措施有:(),(),(),()。 5.奥氏体是Fe-C合金中的一种重要的相,一般是指(),碳原子位于()。 6. 绘图说明共析钢奥氏体的形成过程。 7. 奥氏体易于在铁素体和渗碳体的相界面处成核的原因是什么? 8. 简述连续加热时奥氏体转变的特点。 9. 说明组织遗传的定义和控制方法。 10. 从奥氏体等温形成动力学曲线出发说明珠光体到奥氏体的转变特征。 第四章自测题试卷 1、填空题 1) 根据片层间距的大小,可以将珠光体分为________ 、________、 ________。

金属固态相变原理名词解释

1.固态相变:金属盒陶瓷等固体材料在温度和压力改变时,其内部组织或结构会发生变化,即从一种相状态到另一种相状态的转变 2.平衡转变;在缓慢加热或冷却时所发生的能获得复合平衡状态图的平衡组织的相变。 3.共析相变;合金在冷却时由一个固相分解为两个不同固相的转变 4.平衡脱溶相变;在缓慢冷却条件下,由过饱和固溶体中析出过剩相的过程 5.扩散性相变;相变时相界面的移动是通过原子近程或远程扩散而进行的相变也称非协调型 6.无扩散性相变;相变过程中原子不发生扩散,参与转变的所有原子的运动是协调一致的相变也称协同型 7.均匀形核;晶核在母相中无择优地任意均匀分布 8.形核率;单位时间形成的晶核数 9.混晶;置换固溶体,两种或多种元素相互溶解而形成的均匀晶相 10.异常长大:正常晶粒长大过程被第二相微粒、织构、表面热蚀沟等阻碍,使得大多数晶粒不能长大,从而使少数较大的晶粒得以迅速长大。 11.奥氏体;碳及各种化学元素在γ-Fe中形成的固溶体 12.珠光体;共析碳钢加热奥氏体化后缓慢冷却,在稍低于A1温度时奥氏体将分解为铁素体和渗碳体的混合物称为珠光体 13.粒状珠光体;通过片状珠光体中渗碳体的球状化而获得的 14.贝氏体;钢在奥氏体化后被过冷到珠光体转变温度区间以下,马氏体转变温度区间以上这一中温度区间(所谓“贝氏体转变温度区间”)转变而成的由铁素体及其内分布着弥散的碳化物所形成的亚稳组织,即贝氏体转变的产物。 15.马氏体;对固态的铁基合金(钢铁及其他铁基合金)以及非铁金属及合金而言,是无扩散的共格切变型相转变,即马氏体转变的产物。就铁基合金而言,是过冷奥氏体发生无扩散的共格切变型相转变即马氏体转变所形成的产物。铁基合金中常见的马氏体,就其本质而言,是碳和(或)合金元素在α铁中的过饱和固溶体。就铁-碳二元合金而言,是碳在α铁中的过饱和固溶体。 16.屈氏体;通过奥氏体等温转变所得到的由铁素体与渗碳体组成的极弥散的混合物。是一种最细珠光体类型组织,其组织比索氏体组织还细 17.索氏体;马氏体于回火时形成的,在光学金相显微镜下放大五六百倍才能分辨出为铁素体内分布着碳化物(包括渗碳体)球粒的复相组织。 18.组织遗传;将晶界有序组织加热到Ac3,可能导致形成的奥氏体晶粒与原始晶粒具有相同的形状、大小和取向。 19.相变孪晶;相变过程中形成的孪晶。 20.热稳定化;淬火时因缓慢冷却或在冷却过程中因停留而引起奥氏体稳定性提高,使马氏体转变迟滞的现象。 21.反稳定化;当等温温度超过一定限度后,随等温温度升高,奥氏体稳定化程度反而下降的现象。 22.不变平面应变;相变过程中虽然发生了变形,但变形为均匀切变,且相变过程中惯习面为不变平面的应变。 23.惯习面;固态相变时,新相往往在母相的一定晶面开始形成,这个晶面称 24.热弹性马氏体;在冷却转变与加热逆转变时呈弹性长大与缩小的马氏体 25.形状记忆合金;具有这种形状记忆效应的金属发生较大变形后,经加热至某一温度之上,能恢复到变形前形状的合金。 26.正方度;c/a表示晶格畸变程度,具有体心正方点阵结构的马氏体的c/a值。 27.伪共析组织;过冷奥氏体以极快冷速转变形成的p组织,其成分因奥氏体含碳量不同而不同。 28.回火;淬火处理后将工件加热到低于临界点的某一温度,保温一定时间,然后冷却到室温的一种热处理操作。 29.回火屈氏体;铁素体加片状或者小颗粒状渗碳体的混合组织 30.回火马氏体;残余奥氏体向低碳马氏体和e-碳化物分解的过程,所得组织马氏体经分解后的立方马氏体+e-碳化物的混合组织。 31.回火索氏体;等轴铁素体加尺寸较大的粒状渗碳体的混合组织 32.回火脆性;随回火温度升高,冲击韧性反而下降的现象 33.二次硬化;当马氏体中含有足够量的碳化物形成元素时,在500°c以上回火是将会析出细小的特殊碳化物,导致因回火温度升高, -碳化物粗化而软化的刚再度硬化 34.二次淬火;在冷却回火是残余奥氏体转变为马氏体的现象叫二次淬火 35.时效;合金在脱溶过程中,其机械性能物理性能化学性能等均随之发生变化的现象 36.脱溶;从饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚集区以及亚稳定过渡相

固态相变 习题

第一章自测题试卷 1、固态相变是固态金属(包括金属与合金)在()和()改变时,()的变化。 2、相的定义为()。 3、新相与母相界面原子排列方式有三种类型,分别为()、()、(),其中()界面能最低,()应变能最低。 4、固态相变的阻力为()及()。 5、平衡相变分为()、()、()、()、()。 6、非平衡相变分为()、()、()、()、()。 7、固态相变的分类,按热力学分类:()、();按原子迁动方式不同分类:()、();按生长方式分类()、()。 8、在体积相同时,新相呈()体积应变能最小。 A.碟状(盘片状)B.针状 C.球状 9、简述固态相变的非均匀形核。 10、简述固态相变的基本特点。 第二章自测题试卷 1、分析物相类型的手段有()、()、()。 2、组织观测手段有()、()、()。 3、相变过程的研究方法包括()、()、()。 4、阿贝成像原理为()。 5、物相分析的共同原理为()。 6、扫描电镜的工作原理简单概括为:()。 7、透射电子显微镜的衬度像分为()、()、()。 第三章自测题试卷 1. 根据扩散观点,奥氏体晶核的形成必须依靠系统内的(): A.能量起伏、浓度起伏、结构起伏 B. 相起伏、浓度起伏、结构起伏 C.能量起伏、价键起伏、相起伏 D. 浓度起伏、价键起伏、结构起伏 2. 奥氏体所具有的性能包括:() A.高强度、顺磁性、密度高、导热性差; B.高塑性、顺磁性、密度高、导热性差; C.较好热强性、高塑性、顺磁性、线膨胀系数大; D.较好热强性、高塑性、铁磁性、线膨胀系数大。 3. 影响奥氏体转变的影响因素包括()、()、()、()。 4.控制奥氏体晶粒大小的措施有:(),(),(),()。 5.奥氏体是Fe-C合金中的一种重要的相,一般是指(),碳原子位于()。 6. 绘图说明共析钢奥氏体的形成过程。 7. 奥氏体易于在铁素体和渗碳体的相界面处成核的原因是什么? 8. 简述连续加热时奥氏体转变的特点。 9. 说明组织遗传的定义和控制方法。 10. 从奥氏体等温形成动力学曲线出发说明珠光体到奥氏体的转变特征。 第四章自测题试卷 1、填空题 1) 根据片层间距的大小,可以将珠光体分为________ 、________、________。 2) 获得粒状珠光体的途径有________ 、__________ 、___________ 、___________ 。 3) 珠光体的长大方式有__________ 、___________ 、___________。

固态相变原理

固态相变原理 1、相变的基础理论涉及三个方面的共性问题: 1)相变能否进行,相变的方向 2)相变进行的途径及速度 3)相变的结果,即相变时结构转变的特征。 分别对应相变热力学、相变动力学和相变晶体学。 相变是朝着能量降低的方向进行; 相变是选择阻力最小、速度最快的途径进行; 相变可以有不同的终态,但只有最适合结构环境的新相才易于生存下来。 2、固态相变的特殊性 (相界面、弹性应变能、位向关系与惯习面、亚稳过渡相、原子迁移率、晶体缺陷)。 固态相变除满足热力学条件外,还须获得额外能量来克服晶格改组时原子间的引力,即存在相变势垒。相变势垒由激活能决定,也与是否有外加机械应力有关。 3、相变驱动力和相变阻力 驱动力:体积自由能,来自晶体缺陷(点,线,面缺陷)的储存能。 储存能由大到小的排序:界面能,线缺陷,点缺陷。 界面能中界隅提供的能量最大,但体积分数小,界棱次之,界面最小,但体积分数最大。 相变阻力是界面能和弹性应变能。 弹性应变能与新旧相的比容差和弹性模量,及新相的几何外形有关。从能量的角度来看:共格界面的弹性应变能最大,非共格界面的界面能最大。球形新相界面能最小,但应变能最大,圆盘状新相相反,针状新相居中。 4、长大方式 新相晶核的长大分为协同(共格或半共格,切变)和非协同(非共格或扩散)两种,前者速度快,后者速度慢。原子只能短程扩散时,长大速度与过冷度(温度)存在极大值;长程扩散时,长大速度与扩散系数和母相的浓度梯度成正比,与相界面处两相的浓度差呈反比。 5、相变速率

相变速率满足Johnson-Mehl方程或Avrami经验方程。相变之初和相变结束其,相变速率最小,转变量约50%时,相变速度最大。扩散型相变的动力学曲线呈“C”形。是由驱动力和扩散两个矛盾因素共同决定的。 6、C曲线 “C”曲线建立的原理:一定外界条件下,只要发生了相变,宏观上就能检测出某种变化(组织,结构,性能等),确定该条件下这种变化与新相转变量的关系。相变进行的难以程度决定“C”曲线的位置。“C”曲线可分为六种类型,影响“C”曲线的因素有:化学成分,奥氏体化条件和奥氏体晶粒尺寸,原始组织及外界能量(塑性变形等)。凡是使过冷奥氏体稳定的因素均使“C”曲线右移(右移,说明相变所需要的临界冷却速率越小,相变越容易)。连续冷却时,“C”曲线“滞后”,即向右下方向漂移。 7、用TTT曲线和CCT曲线判断组织组成的原则。 只要过冷奥氏体经过或停留在那个区,就转变为该区对应的组织。过冷奥氏体全部转变完后,再经过任何区域都不会发现任何变化,是其自然冷却。冷速越快,硬度越高。冷速超过某临界值时(临界冷却速度),过冷奥氏体全部转变成马氏体。

《固态相变理论》作业2

《固态相变理论》作业 2 1.试对珠光体片层间距随温度的降低而减小做出定性的解释。 答:珠光体片层间距S与ΔT成反比,且 3 010 02 . 8 T S ,这一关系可定性解 释如下:珠光体型相变为扩散型相变,是受碳、铁原子的扩散控制的。当珠光体 的形成温度下下降时,ΔT增加,扩散变得较为困难,从而层片间距必然减小(以缩短原子的扩散距离),所以S与ΔT成反比关系。在一定的过冷度下,若S过大,为了达到相变对成分的要求,原子所需扩散的距离就要增大,这使转变发生困难;若S过小,则由于相界面面积增大,而使表面能增大,这时ΔG V不变,σS 增加,必然使相变驱动力过小,而使相变不易进行。可见,S与ΔT必然存在一定的定量关系,但S与原奥氏体晶粒尺寸无关。 2. 试述粒状珠光体的形成机制。 答:由铁素体和粒状碳化物组成的机械混合物。它由过共析钢经球化退火或马氏体在650℃~A1温度范围内回火形成。其特征是碳化物成颗粒状分布在铁素体上。(1)片状渗碳体的表面积大,界面能高,球化退火时,将会自发球化。 (2)与渗碳体尖角接壤处的铁素体碳浓度Cα-k大于与平面接壤处的碳浓度,在铁素体内将引起碳原子扩散,结果界面碳浓度平衡被打破,为维持碳浓度平衡, 渗碳体尖角处会溶解,而平面处会向外生长,最后形成各处曲率半径相近的粒状渗碳体。 (3)渗碳体片内亚晶界的存在,会产生界面张力,为保持界面张力平衡,在亚 晶界处会出现沟槽。由于沟槽两侧曲率半径较小,此处渗碳体将溶解,而使曲率半径增大,破坏了界面张力的平衡,为恢复平衡,沟槽将进一步加深,直至渗碳 体溶断。 (4)当奥氏体化不充分时,也会以未溶颗粒状渗碳体作为形核核心,直接形成 球状珠光体。 3. 分析影响珠光体转变动力学的因素。 答:(1)P转变的形核率与长大速度。与温度的关系:随温度降低先增后减,550o C 达最大值。与时间的关系:I随等温时间增大而增大,随时间延长,晶界上形核 位置达到饱和,I急剧下降到零;v与时间无关。 (2)形核率 为界面厚度,L晶粒平均直径,i=0,1,2分别表示界隅,界线,界面,Q为原子扩散激活能,v为原子振动频率。 (3)形核率与长大速度 与温度的关系:随温度降低先增后减,550o C达最大值与时间的关系:I随等温时间增大而增大,随时间延长,晶界上形核位置达到饱和,I急剧下降到零;v 与时间无关 4 . 试述马氏体相变的主要特征,并作简要的分析说明。 答:(1)马氏体相变的无扩散性。钢中马氏体相变时无成分变化,仅发生点阵 改组。可以在很低的温度范围内进行,并且相变速度极快。原子以切变方式移动,相邻原子的相对位移不超过原子间距,近邻关系不变。 (2)表面浮凸现象和不变平面应变①表面浮凸现象,如下图 1

固态相变

作业一 2.奥氏体形核时需要过热度△T ,那么金属熔化时(S-L ),要不要过热度,为什么? 答:固态金属熔化时会出现过热度。原因:由热力学可知,在某种条件下,熔化能否发生取决于液相自固态金属熔化时会出现过热。原因:自由度是否低于固相的自由度,即0<-=?S L G G G ,只有当温度高于理论结晶温度Tm 时,液态金属的自由能才能低于固态金属的自由能,固态金属才能自发转变为液态金属。因此,金属熔化时移动要有过热度。 3.相变热力学条件是什么? 答:金属固态相变的热力学条件: (1)相变驱动力 相变热力学指出,一切系统都有降低自由能以达到稳定状态的自发趋势。若具备引起自由能降低的条件,系统将由高能到低能转变转变,称为自发转变。金属固态相变就是自发转变,则新相自由能必须低于旧相自由能。新旧两相自由能差既为相变的驱动力,也就是所谓的相变热力学条件。 (2)相变势垒 要使系统有旧相转变为新相除了驱动力外,还要克服相变势垒。所谓相变势垒是指相变时改组晶格所必须克服的原子间引力。 4.简述固态相变的主要特征。 答:⑴相界面:根据界面上新旧两相原子在晶体学上匹配程度的不同,可分为共格界面、半共格界面和非共格界面。 ⑵位向关系与惯习面:在许多情况下,金属固态相变时新相与母相之间往往存在一定的位向关系,而且新相往往在母相一定的晶面上开始形成,这个晶面称为惯习面通常以母相的晶面指数来表示。 ⑶弹性应变能:金属固态相变时,因新相和母相的比容不同可能发生体积变化。但由于受到周围母相的约束,新相不能自由膨胀,因此新相与其周围母相之间必将产生弹性应变和应力,使系统额为地增加了一项弹性应变能。 ⑷过渡相的形成:当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是先形成晶体结构或成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。 ⑸晶体缺陷的影响:固态晶体中存在着晶界、亚晶界、空位及位错等各种晶体缺陷,在其周围点阵发生畸变,储存有畸变能。一般地说,金属固态相变时新相晶核总是优先在晶体缺陷处形成。 ⑹原子的扩散:在很多情况下,由于新相和母相的成分不同,金属固态相变必须通过某些组织的扩散才能进行,这时扩散便成为相变的控制因素。 5.固态相变的阻力是哪几项? 答:固态相变阻力包括界面能和应变能。这是由于发生相变时形成新界面,比容不同都需要消耗能量。 (1)界面能:是指形成单位面积的界面时,系统的赫姆霍茨自由能的变化值。与大小和化学键的数目、强度有关。共格界面的化学键数目、强度没有发生大的变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大。 (2)应变能 A .错配度引起的应变能(共格应变能)共格界面由错配度引起的应变能最大;半共格界面次之,非共格界面最小。 B .比容差引起的应变能(体积应变能)和新相的形状有关,球状由于比容差引起的应变能最大,针状次之,片状最小。 6.什么是共格界面,根据其共格性界面有哪几类?请比较它们的界面能和弹性应变能的大小。 答:共格界面是指在两相界面上,原子成一一对应的完全匹配,即界面上的原子同时处于两相晶格的节点上,为相邻晶体所共有的界面。 7.综述奥氏体的主要性能。(200字以内)

固态相变学习指导

第八章固态相变学习指导 固态相变是材料进行热加工的基础理论。固态相变的种类很多,若按相变时原子迁移的情况可分为两类:一类是扩散型相变,如同素异构转变、固熔体的脱熔转变、共析转变、调幅分解和有序化等;另一类是无扩散型相变,如马氏体转变;第三类是兼有扩散、无扩散特征的相变,如贝氏体转变、块状转变等。 本章的重点是介绍固态相变的基本特点及遵循的一般规律,大多数固态相变与结晶相变类似,也是形核和核长大的过程。但是,由于新相和母相都是晶体,所以与结晶相变相比又有其特点,主要表现: (1) 固态相变时阻力较大:在固态相变时,除了新、旧相间由于产生相界面而引起的界面自由能升高外,还会由于新、旧相比体积差而导致应变能力产生,后者对相变过程有很重要的影响。 (2) 固态相变主要依靠非均匀形核:由于材料中本身存在各种晶体缺陷,这些缺陷分布又不均匀,所具有的能量高低不同,这就为非均匀形核创造了条件;同时,均匀形核所需要的形核功大,势必过冷度要相当大,这会使扩散困难,不利于均匀形核。 固态相变后,新生相α的某一晶面和某一晶向往往分别与母相β的给定界面和晶向相平行;相界面易形成共格或半共格界面。 (3) 新相的长大呈现惯习现象:相变过程中新相长大易于沿着母相的某些特定的晶面和晶向以针状或片状的形态优先发展。这种惯习现象可借金相显微镜进行观察。 (4) 新生相的组织形态比较复杂:一般来说,新生相的形态也是为了适应母相的结构和组织特点,克服相变阻力而表现出来的综合结果,所以它既受应变能和界面能的影响,也受母相结构组织的影响。 (5) 固态相变易于出现过渡相:形成过渡相是固态相变克服相变阻力的另一重要途径。凡过渡相都不是真正的稳定相,只要条件允许,就会自发地再向稳定相转变。 作为扩散型相变的例子,主要介绍了脱熔转变及其类型,调幅分解及其特点。作为无扩散型相变的例子,介绍了马氏体相变及多晶型转变的有关概念,其目的仍在于掌握固态相变的一般规律。

相关文档
最新文档