第5章、模压成型工艺..教学文案

合集下载

模压成型工艺

模压成型工艺
此工艺方法生产效率高、成本较低,在汽车工业、电气及建筑等领域应用较多
PART 3
优点
优点
1.生产效率高,便于实 现专业化和自动化生产
2.产品尺寸精度高,重 复性好
3.表面光洁,无需二次 修饰
PART 4
缺点
12
缺点
1.模具制造复杂
2.投资较大
PART 5
层压成型
1.定义
是以片状或纤维状材 料作为填料,在加热 、加压条件下把相同 或不同的材料的两层 或多层结合成为一个 整体的方法
层压成型
2.4热压
1)预热、预压阶段
使树脂熔化,除去挥 发分,使熔融树 脂 进一步浸渍纤维布, 并使树脂进入凝胶状 态
层压成型
2)热压阶段——从 加全压到热压结束
为了更好地排除挥发 分,使制品内外受热 均匀,升温不能过快 。 预浸料流动性差 ,挥发分低,流胶 不严重,升温加压速 度可稍快
层压成型
层压成型
2.5冷却脱模
两种方式 ①热压结束,关闭热源,通冷却水,在 保压状态下冷却 ②取出放在冷却砧板上冷却
2.6后处理
在烘房内进行的处理 程序,目的是使树脂 进一步固化。对不同 的树 脂后固化处理 的温度、时间不同
2.7工艺参数
与模压成型一样,温 度、时间、和压力是 三个重要的工艺条件
层压成型
层压成型
1)层压温度
层压温度取决于 ①树脂类型和固化速度 ②浸胶材料的含胶量
③树脂中的挥发 份及不溶胶树脂 的含量
④层压制品的厚度
压制的温度控制一般 分为五个阶段
层压成型
层压成型
预热阶段:板坯的温 度升至树脂开始交联 反应的温度,使树脂 开始熔化,并进一步 渗入增强材料中,同 时排出部分挥发物。 此时的压力=最高压 力的三分之一到二分 之一

模压成型工艺PPT课件

模压成型工艺PPT课件

第四章 模压成型
4.2.2 模压料的制备及质量控制
课件
4.2.2 模 压 料 的 制 备 及 质 量 控 制
优点:
短纤维模压料呈混乱状态,纤维 无一定方向。模压时流动性好,适宜 制造形状复杂的小型制品。
缺点: 纤维强度损失较大;比容大,模压时 装模困难,模具需设计较大的装料室并需 采用多次预压程序合模,劳动条件欠佳。
第四章 模压成型
4.2.2 模 压 料 的 制 备 及 质 量 控 制
课件
将短切玻璃纤维均匀撒在玻璃底布上,然后用玻璃面布覆盖 预浸法 再使夹层通过浸胶、烘干、剪裁而制得。特点:短切纤维呈 硬毡状,使用方便,纤维强度损失稍小,模压料中纤维的伸 粗纱准备 热处理 浸胶 烘干 切割 展性较好,适用于形状简单、厚度变化不大的薄壁大型模压 制品。但由于有两层玻璃布的阻碍,树脂对纤维的均匀快速 树脂调配 渗透较困难,且需消耗大量玻璃布,成本增加。 存放
(1) 玻璃纤维在180℃下干燥处理40~60min; (2) 将烘干后的纤维切成30~50mm长度并使之疏松; (3) 按树脂配方配成胶液,用工业酒精调配胶液密度 1.0g/cm3左右; (4) 按纤维:树脂=55:45(质量比)的比例将树脂溶液和短 切纤维充分混合; (5) 捏合后的预混料,逐渐加入撕松机中撕松; (6) 撕松后的预混料均匀铺放在网格上晾置; (7) 预混料经自然晾置后,在80℃烘房中烘20~30min, 进一步驱除水分和挥发物; (8) 将烘干后的预混料装入塑料袋中封闭待用。 设 备: 主要有纤维切割机、捏合机、撕松机
原 料
有良好的流动特性,在室温常压下处于固体 或半固体状态(不沾手),在压制条件下具有一定 的流动性,使模压料能均匀地充满压模模腔;适 宜的固化速度,在固化时副产物少,体积收缩率 小,工艺性好(如粘度易调,与各种溶剂互溶性好, 易脱模等);满足模压制品特定的性能要求。

模压技术生产操作-成型工艺

模压技术生产操作-成型工艺

模压技术生产操作-成型工艺简介本文档旨在介绍模压技术的生产操作中的成型工艺。

模压技术是一种常见的制造工艺,用于生产各种塑料制品。

成型工艺步骤下面是模压技术生产操作中的成型工艺步骤:1. 准备模具:选择合适的模具,确保其与要生产的产品设计相符。

2. 预热:将模具加热至适当温度,以保证塑料材料能够完全流动。

3. 准备材料:将所需塑料材料准备好,并按照要求对其进行预处理。

4. 放置材料:将预处理后的塑料材料放置在模具的预定位置。

5. 关闭模具:将模具紧密闭合,确保塑料材料受到充分压力。

6. 施加压力:通过推动模具上的压力机,施加适当压力,使塑料材料充分流动并填满模具腔体。

7. 冷却:保持模具处于所需的温度和压力条件下一段时间,使塑料材料冷却和固化。

8. 打开模具:当塑料材料完全冷却和固化后,打开模具,取出成型产品。

9. 检查和修整:对成型产品进行检查,确保其质量符合要求,如有需要,进行修整和加工。

10. 包装和存储:将成型产品进行包装,并妥善存储以待出售或使用。

注意事项在进行模压技术生产操作时,需要注意以下几点:- 操作人员应熟悉模压技术的原理和工艺要求。

- 确保模具与产品设计相符,避免产生不适配或无法实现的生产问题。

- 控制好模具的预热温度和保持时间,以保证塑料材料的流动性。

- 合理选择和处理塑料材料,确保其质量和适用性。

- 控制好施加压力的力度和时间,以保证产品的成型质量。

- 注意冷却时间和温度要求,以避免产生变形或缺陷。

- 在打开模具时要小心操作,防止损坏或意外受伤。

- 对成型产品进行严格检查,确保其符合质量要求。

以上是模压技术生产操作中的成型工艺的介绍,希望对您有所帮助。

模压成型工艺—模压成型操作(塑料成型加工课件)

模压成型工艺—模压成型操作(塑料成型加工课件)

热固性塑料在一定的合模压力和模具温度下保 持一段时间,达到一定的交联程度。
在加热加压的状态下,物料快速发生化学交联 反应,交联程度快速提高,树脂分子链由线性结构 变成三维网路结构,物料固化,物理机械性能提高。 有时候,为了提高生产效率,在制品能够不变形脱 模时就暂时结束热压固化过程,然后再通过后处理 完成固化的后期过程。
首先,要检查模具是否有油污、碎屑或异物, 并清理干净,如果需要可适当喷涂脱模剂。然后, 向模具型腔加入物料,尽可能放在模具型腔的中间, 流动阻力大的部位应多放一些料。加料量直接影响 制品的密度和尺寸,加料量过多制品易产生飞边, 厚度尺寸不精确;加料量过少则预压,使树脂充满整个型腔。 在预压过程中应让模具缓慢合紧,使树脂有足 够的时间在模腔内流动,并且避免树脂因合模过快 被空气带出,使制品造成破坏。
模压成型
模压工艺操作
一、模压工艺流程
热固性塑料模压成型的工艺过程包括加料、预压、 排气、固化和脱模等。
二、操作过程
1.开机预热
先接通电源,然后启动模压机开关。将模具放 到加热板上,点击“主缸上”合模;通过控制面板 设置加热板温度,打开加热热开关启动加热,当温 度达到设置值后再恒温一段时间。
2.加料
4.排气
通过适当的卸压松模排除气体,该过程可和预 压配合进行。
热固性塑料在模压时发生化学交联反应,常伴 有水蒸汽和小分子挥发物放出,因此需要短暂的时 间打开模具,使水蒸汽、小分子挥发物和空气排除, 避免对制品造成缺陷影响。排气完成后,应在物料 还处于良好流动状态时迅速闭模,对物料加热加压。
5.固化
6.脱模
固化后让制品和模具分离。脱模速度不能过 快,否则制品容易变形,而速度过慢则会影响生 产效率。当制品脱模后,要认真清理模具,用铜 制工具取出模具上的杂志和附着物,为下一个制 品的生产做准备。

模压成型工艺流程

模压成型工艺流程

模压成型工艺流程
《模压成型工艺流程》
模压成型工艺是一种常见的塑料加工方法,其流程主要包括模具设计、原料预处理、模压成型、冷却固化和脱模等环节。

首先,在进行模压成型之前,需要设计相应的模具。

模具设计需考虑产品的形状、尺寸和结构,以及模具的开合方式和材料的选择等因素。

然后将设计好的模具进行加工制造。

随后,原料预处理是模压成型的重要环节之一。

首先是将塑料原料加热至熔融状态,然后将其注入模具腔体中。

在此过程中,需要考虑原料的温度控制、注塑速度和压力等参数。

接下来是模压成型阶段,即将熔融的塑料原料注入模具中,经过高压与高温的作用,使其填充模具腔体并成型。

在模具中保持一定的时间后,塑料原料冷却固化,形成所需的产品形状。

冷却固化完成后,即可进行脱模。

此时需要将冷却好的产品从模具中取出,通常需要采用脱模装置或其他辅助工具来辅助取出产品。

这一步骤需要注意操作方法和产品的保护,确保产品完好无损。

最后,经过脱模后的产品即为最终成型的产品,可以进行后续的加工处理,如去除刷边、组装等工序,以及进行质量检验和包装。

总的来说,模压成型工艺流程包括模具设计、原料预处理、模压成型、冷却固化和脱模等环节,每一步都需要严格控制和操作,以保证最终产品的质量和外观要求。

模压成型工艺的工艺流程

模压成型工艺的工艺流程

模压成型工艺的工艺流程模压成型工艺,是一种常见的制造工艺,适用于塑料制品、橡胶制品等的生产过程中。

本文将介绍模压成型工艺的工艺流程,希望能为读者提供一定的了解和参考。

一、材料准备阶段模压成型工艺的第一步是进行材料的准备。

在制造过程中,通常会选用颗粒状的原料,比如塑料颗粒或橡胶颗粒。

这些原料需要按照一定的配比进行混合,以确保最终产品的质量和性能。

二、预热和塑化阶段一般情况下,模压成型工艺需要将混合好的原料进行预热和塑化处理。

预热的目的是让原料达到适合成型的温度,以便在模具中得到良好的流动性和可塑性。

塑化则是将原料完全熔化,以确保产品成型后的均匀性和一致性。

三、充模和封模阶段在原料预热和塑化完毕后,下一步是将塑化好的原料充入模具中。

充模过程需要控制好原料的充填量,以避免过多或过少造成的成型缺陷。

接着,需要封闭模具并施加压力,使得原料充分填充模具的空腔,并在压力下形成所需的形状。

四、保压和冷却阶段成型过程中的保压阶段是为了确保产品内部的结构和密度达到要求。

保压时间的长短会影响最终产品的质量,需要根据具体原料和产品来进行调整。

随后是冷却阶段,通过降低模具温度以固化原料,使产品保持所需的形状和尺寸。

五、脱模和修饰阶段当产品冷却固化后,需要将成品从模具中取出,这个过程称为脱模。

脱模时需要注意避免产品变形或损坏,可以借助特殊脱模机构或处理方式。

在脱模之后,还可能需要进行一些修饰工艺,比如去除余料、切割边角或表面处理等,以提升产品的外观和性能。

结语模压成型工艺是一项常用的制造工艺,在各种行业中都有着广泛的应用。

通过以上介绍的工艺流程,希望读者能对模压成型工艺有更深入的了解,并在实际生产中能够更好地运用和掌握这一技术。

模压成型工艺凭借其高效、精准和成本低廉等优点,将继续在工业生产中扮演重要的角色。

模压工艺生产操作-成型工艺

模压工艺生产操作-成型工艺

模压工艺生产操作-成型工艺(一)预浸布层压成型工艺1. 概述层压成型工艺是指将浸渍或涂有树脂的片材层叠,组成叠合体,送入层压机,在加热和加压条件下,固化成型复合材料制品的一种成型工艺。

层压成型工艺主要是生产各种规格、不同用途的复合材料板材。

它具有机械化、自动化程度高、产品质量稳定等特点,但是设备一次性投资大。

层压成型技术特点是加压方向与制品的板面方向垂直。

层压成型技术包含两方面内容:胶布生产技术和压制成型技术。

2.层压板成型工艺在上述生产工艺中,热压过程的温度、压力和时间是三个最重要的工艺参数。

复合材料的层压工艺的热压过程,一般分为预热预压和热压两个阶段。

(1)第一阶段一预热预压阶段。

此阶段的主要目的是使树脂熔化,去除挥发物、浸渍纤维,并且使树脂逐步固化至凝胶状态。

此阶段的成型压力为全压的1/3-1/2。

(2)第二阶段-中间保温阶段这一阶段的作用是使胶布在较低的反应速度下进行固化。

保温过程中应密切注意树脂的流胶情况。

当流出的树脂已经凝胶,不能拉成细丝时,应立即加全压。

(3)第三阶段-升温阶段目的在于提高反应温度,加快固化速度。

此时,升温速度不能过快,否则会引起暴聚,使固化反应放热过于集中,导致材料层间分层。

(4)第四阶段-热压保温阶段目的在于使树脂能够充分固化。

从加全压到整个热压结束,称为热压阶段。

而从达到指定的热压温度到热压结束的时间,称为恒温时间。

热压阶段的温度、压力和恒温时间,也是由配方决定。

(5)第五阶段-冷却阶段在保压的情况下,采取自然冷却或者强制冷却到室温,然后卸压,取出产品。

冷却时间过短,容易使产品产生翘曲、开裂等现象。

冷却时间过长,对制品质量无明显帮助,但是使生产效率明显降低。

(二)预浸料模压成型工艺预浸料模压成型工艺基本过程是:将一定量经一定预处理的模压料放入预热的模具内,施加较高的压力使模压料填充模腔。

在一定的压力和温度下使模压料逐渐固化,然后将制品从模具内取出,再进行必要的辅助加工即得产品。

模压成型工艺—模压成型工艺(塑料成型加工课件)

模压成型工艺—模压成型工艺(塑料成型加工课件)

四、模压时间
模压时间是指从闭模加压起,物料在模具中升温 到固化脱模的整个阶段时间,它直接影响制品的固化 程度和生产周期。模压时间与物料的种类、制品的形 状、模压压力和温度等有关,需要合理控制模压时间。
模压时间的长短对制品的性能影响很大。模压时 间短,物料固化不完全,制品物理性能较差,脱模后 易变形。时间过长则会使物料交联程度过高,使制品 产生内应力而影响物理机械性能,严重时会使制品开 裂。
因此,对模具温度的选择要综合考虑塑化流动 效果、交联固化速率和物料的热稳定性等因素。要 保证物料能充满整个模腔的同时,缩短固化时间, 还要防止物料因过热而变质。
三、热固性塑料的模压
加热软化
流动充模
交联固化
定型脱模
(1)橡胶原材料加热软化; (2)在良好的流动状态下充满整个模腔; (3)在加热条件下,发生交联反应,橡胶固化; (4)直接打开模具,将已经固化的橡胶制品取出。
模压成型
模压工艺参数
一、模压用量
指模压时的物料用量,根据制品体积或质量进行 选择。
溢式
ห้องสมุดไป่ตู้
不溢式
半溢式
二、模压压力
模压压力是指合模时,模具对塑料所施加的压力。 模压压力具有以下作用: 1.使塑料在模具中加速流动,充满模腔;增加塑料的密 实度; 2.克服物料在固化反应中的内部压力,防止制品出现肿 胀、起泡、脱层等缺陷; 3.保持固定的形状和尺寸; 4.防止制品在冷却时发生变形。
三、模压温度
热固性塑料在模压时,模具温度是影响物料塑 化流动和固化成型的主要因素,它决定模压过程中 交联反应的速度,并影响物料的充模过程和制品的 最终性能。
物料受温度的作用,其黏度和流动性会发生很 大的变化。在较低温度内,物料的流动性随温度的 上升而增加,黏度降低;在较高的温度范围内,化 学交联反应起主导作用,随温度升高交联反应迅速 加快,流动性迅速降低,制品固化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章、模压成型工艺§5-1、概述定义:将一定量的模压料放入金属对模中,在一定的温度和压力作用下,固化成型制品的一种方法。

工艺过程:加热和加压(高压)物料角度:塑化,流动,固化三阶段。

模具要求:高强度,高精度,耐高温。

树脂在成型过程中的两个特定阶段:(1)粘流阶段:树脂受热熔化,在压力作用下粘裹纤维一起流动至填满模腔的过程。

——即物料塑化、流动阶段。

(2)硬固阶段:树脂发生交联,硬固的过程。

——即物料固化阶段。

工艺分类:是根据增强材料物态和模压料品种(模压方式)分类。

按模压材料物态分类:纤维料模压预混、预浸纤维料加热、加压成型。

(单向、线性)织物模压两向、三向、多向织物浸渍树脂后,加热、加压成型。

(平面)优点:剪切强度明显提高,质量稳定。

缺点:成本高碎布料模压预浸碎布料加热、加压成型。

(多块,小平面)SMC模压SMC片材按制品尺寸、形状、厚度等要求剪裁下料,多层片材叠合加压而成型。

(大面积,多层平面)预成型坯模压短切纤维制成与制品形状和尺寸相似的预成型坯,放入模中,倒入树脂混合物,压力成型。

(大型、深型、高强、异型、体形、均厚度制品)按模压成型方式分类:层压预浸胶布或毡剪成所需形状,层叠后放入金属模内,压制成型。

缠绕预浸的玻纤或布带,缠绕在一定模型上,加热、加压。

(管材)定向铺设单向预浸料(纤维或无维布)沿制品主应力方向铺设,然后模压成型。

§5-2、模压料树脂、增强材料、辅助剂构成模压料的三大块。

§5-2-1、原料1、树脂:酚醛型(镁、氨酚醛,改性聚乙烯醇缩丁醛),环氧型(634,648,F-46),环氧酚醛型(也可列为酚醛型),聚酯型。

2、增强材料:纤维型(玻纤,碳纤,尼龙纤),(形状有纤维状,短切毡,布或绳)3、辅助材料:稀释剂,玻纤表面处理剂,填料,脱模剂及颜料等。

目的:使模压料具有良好的工艺性和制品的特殊要求。

(1)稀释剂:丙酮、乙醇(非活性)用途:降低树脂粘度,改进树脂浸渍性能,有活性与非活性之分。

(2)表面处理剂:改进树脂与增强材料的粘结及树脂——纤维界面状态。

种类:对环氧及酚醛模压料,常用的玻纤表面处理剂有KH-550,用量为纯树脂重量的1%,不宜过多或过少。

(3)粉状填料:提高模压料的流动性,降低制品收缩率,提高制品表面的光泽度、质量和均匀性及赋予制品以某种特殊性能。

MoS2可提高制品的耐磨性。

§5-2-2、模压料的制备分为预混法和预浸法两种。

1、短切纤维模压料制备(1)预混法(手混和机混)工艺流程:树脂调配玻璃纤维热处理切割混合撕松烘干模压料机混法步骤:a、180℃处理40~60min(350℃处理10~15min),除去玻纤表面石蜡浸润剂,残油量<0.3%。

b、切割成30~50mm长度,疏松。

c、按树脂配方配成胶液,用工业酒精调配胶液密度在1.0g/cm3d、按纤维:树脂=55:45(质量比)在捏合机内充分混合。

(图4-1)e、捏合的预混料,逐渐加入撕松机撕松。

(图4-2)f、撕松的预混料在网格屏上晾置。

g、80℃烘房中烘20~30min,进一步除去水分和挥发物。

h、装入塑料袋中备用。

(2)预浸法a、纤维从导架导出,经集束环经入胶槽浸渍。

b、浸渍后,过割胶辊进入第一、二级烘箱烘干。

第一级温度110~120℃,第二级温度150~160℃。

c、牵引辊牵出、切割。

三个主要工艺参数:树脂溶液比重,环氧酚醛(6:4),d=1.00~1.025烘箱温度牵引速度2、模压料质量控制模压料呈散乱状态,纤维无一定方向,模压时流动性好,适合制造形状复杂的小型制品。

因此,控制好质量,对模压特性及制品性能有很大影响。

(1)三项质量控制指标树脂含量,挥发物含量及不溶性树脂含量。

几种典型模压料质量指标(2)指标控制方法取模压料1~1.5g,称重G1(精确至0.001g),放入105±2℃的烘箱内烘30min,取出后在干燥器内冷却至室温,称重G2。

挥发物含量:V%=(G1-G2)/G1×100%取模压料1~1.5g,称重(精确至0.001g),将其浸入丙酮溶液中浸泡15min,取出放入105±2℃的烘箱内烘30min,在干燥器内冷却至室温,称重G3。

称重后将料放入550~600℃炉中灼烧10~20min,将树脂全部烧尽,取出后在干燥器内冷却至室温,再称重G4。

树脂含量:R= [G1 (1-V) - G4]/ G1 (1-V)×100%不溶性树脂含量:C= (G3- G4)/ [G1 (1-V) - G4] ×100%测量时要三份平行实验,如模压料中含有无机填料,上述公式需加以修正。

(3)影响模压料质量的几个主要因素a、树脂溶液粘度降低粘度:有利于树脂对纤维的浸透和减少纤维强度损失。

过低:导致纤维离析,影响树脂对纤维的粘附。

用加入溶剂调整密度来实现,用密度控制粘度。

酚醛预混料树脂胶液粘度控制在1.00~1.025g/cm3。

b、纤维长度过长易结团,机混法:长度20~40mm,手混法:长度30~50mm。

c、烘干条件一般快速固化酚醛型预混料(镁酚醛)烘干温度为80℃,烘干20~30min。

慢速固化酚醛型预混料(氨酚醛)烘干温度为80℃,烘干50~70min。

环氧酚醛型预混料的烘干温度为80℃,烘干20~40min。

d、浸渍时间在确保纤维均匀浸透情况下,应尽可能缩短时间。

3、模压料的工艺性及其影响因素工艺性主要为模压料的流动性、收缩率和压缩性。

(1)流动性流动性好:成型温度与压力较低,复杂制品。

流动性差:成型温度与压力提高,不易复杂制品。

热固性聚合物熔体粘度: η=f (γ, T, α)γ:剪切速率,T :温度,α:固化度。

流动度: Φ=1/η •A e -atA, a :常数,t :加热时间。

外部影响因素:流动度与时间、温度、压力的相互关系。

加热初期 流动度增大 固化前期 流动度相对稳定固化期及后 流动度速降——交联 温度升高 流动度增大——塑化 温度续升 流动度快降——交联压力升高 流动度增大——提高剪切变形,剪切速率 压力续升 流动度增缓——功耗速增 综合评估 温度最重要Arrhenius 方程: η=A • e H η/RT 图4-3,4-4解决方法:模压温度T k ,塑化,交联的交界温度。

内部影响因素:a 、高聚物分子量,链结构,分子量分布相同温度下:分子量大、链段多,分子链重心难移——粘度大。

η0=AM w 3.4η0:剪切速率较低时的表观粘度 A :经验常数 M w :重均分子量塑化解决方法:低分子量溶剂或增塑剂降低粘度。

分子量分布对粘度影响:剪切速率小,分布宽高于分布窄。

剪切速率大,分布宽低于分布窄。

温度敏感性:分布宽,温敏低;分布窄,温敏高。

图4-5,4-6b、模压料质量指标与组分挥发份对流动性影响:挥发份增加,流动性增加挥发份过高,成型时树脂大量流失挥发份过低,流动性下降,成型难c、增强材料形态、含量线性好于平面性,短比长好,短长混用。

d、合理的压制制度,模具的结构、形状及光洁度都会有影响流动性过大的,合模时产生溢料,局部聚胶、贫胶和纤维分布不均。

(2)模压料的收缩性定义:脱模后尺寸会减小是模压料的固有特性。

Q:收缩率a、实际收缩率:模具空腔或制品在压制温度下的尺寸与制品在室温下的尺寸之间的差值。

Q实=(a-b)/b×100%a:模具空腔或制品在压制温度下的尺寸mmb:制品在室温下的尺寸mmb、计算收缩率:在室温下模具空腔尺寸与制品尺寸之间的差值。

Q计=(c-b)/b×100%c:模具空腔在室温下的尺寸mm,设计模具时的重要数据。

c、收缩的主要原因:热收缩和结构(化学)收缩。

热收缩:模压制品的线膨胀系数比模具材料大(塑料线膨胀系数25~120×10-6℃-1,钢材线膨胀系数11×10-6℃-1)因此制品脱模冷却后收缩率大于模具收缩率。

制品小,模具大(与墙地砖热压后膨胀正好相反)表4-3结构收缩:固化过程中缩聚反应产生交联。

一般高强度短纤维模压制品收缩率在0~0.3%。

d、影响收缩的因素※原材料的影响树脂与添加物的种类与含量※模具结构和制品形状的影响不溢式与溢式模具,模具刚度,薄壁制品※成型工艺条件温度制度,压力制度见表4-4,4-5(3)模压料的压缩性压缩比:模压料和模压制品二者比容的比值。

压缩比=模压料(或坯体)的比容/制品比容>1SMC,BMC压缩比较小。

纤维状模压料压缩比达6~10(蓬松)处理方法:预成型纤维§5-3、SMC成型工艺§5-3-1、SMC的特点与种类1、SMC的特点SMC——片状模塑料(Sheeting Molding Compound)1953年,美国Rubber发明不饱和聚酯的化学增稠。

1960年,德国Bayer公司实现SMC工业化生产。

定义:SMC是不饱和聚酯树脂及辅助剂、填料所成树脂糊浸渍短玻纤粗纱或玻毡,并在两边用聚乙烯或聚丙烯包覆后形成的片状模压成型材料。

特点:(1)干法生产FRP制品一种中间材料,它具有独特的增稠作用,即浸渍玻纤时体系粘度低,浸渍后粘度急剧上升,达到稳定。

(2)重现性好。

(3)操作处理方便,增稠剂化学增稠,使SMC处于不粘手状态,避免一般预成型的粘滞性。

(4)作业环境清洁。

(5)SMC能使玻纤同树脂一起流动,可成型带有肋条和凸部的制品。

(6)可压截面变化不大的大型薄壁制品。

(7)制品表面光洁度高。

(8)生产率高,成型周期短,成本低,易机械化、自动化。

2、SMC的种类(1)BMC——块状模塑料(Bulk Molding Compound)相近:与SMC组成近似。

用途:压制和挤出成型。

区别:BMC中纤维含量低,纤维短,填料含量大,强度低,小型制品。

(2)TMC——厚片状模塑料相近:组成与制作与SMC类似。

区别:比SMC厚的多(0.63cm:5.08cm),浸透性更好,成本更低。

(3)结构SMC——纤维形态和分布不同的SMCSMC—R——纤维不规则分布SMC—C——连续纤维单向分布SMC—D——不连续纤维定向分布SMC—C/R,SMC—D/R区别:纤维含量高(Wt达30~70%,多为50%以上),树脂为高反应性间苯二甲酸聚酯树脂,强度大大提高。

(4)高强SMC,即HMC和XMCHMC——少填料,多短纤,少树脂的片状模塑料。

XMC——少填料,多连续定向玻纤,少树脂的片状模塑料。

代替钢材,铝材。

(5)LS—SMC(Lom Shrinkage—SMC)——低收缩SMC尺寸精度高,表面光洁度高。

(6)ITP—SMC(Interpeneterating Thicking Process—SMC)——渗透增稠片状模塑料室温熟化,高刚性,耐冲击,尺寸稳定。

相关文档
最新文档