〈word版〉八年级上册数学月考试卷共3份

合集下载

八年级上册数学月考试卷

八年级上册数学月考试卷

八年级(上)数学月考试卷班级: 姓名 座位号 得分:一、选择题(每小题3分,共30分)1.4的算术平方根是( )A .4B .2C .2D .2±2.在给出的一组数0,π,5,3.14,39,722中,无理数有( )A .1个B .2个C .3个D .5个3..以下四组数值分别作为三条线度的长,不能构成直角三角形的是( )A .31,41,51B .0.6,0.8,1C .5,12,13D .11,60,614.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .42+=x yB .13-=x yC . 13+-=x yD .42+-=x y5.有一组数据如下:a 、3、6、4、7他们的平均数是5,那么这组数据的标准差是( )A. 10B. 10C. 2D. 26.下列各式中,正确的是A ±4BC = -3D = - 47.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位D .关于y 轴对称8.已知方程组⎩⎨⎧=+=+5242y x y x ,则x-y 的值为( )A. -1B. 0C. 2D. 39.已知点P 坐标为(1-a ,2a+4),且点P 到两坐标轴的距离相等,则点P 的坐标是( )A. (2,2)B. (2,-2)C. (6,-6)D. (2,2)或(6,-6)10.如图①,在边长为2cm 的正方形ABCD 中,点P 以每秒1cm 的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止,过点P 作BD PQ //,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm )与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动3秒时,PQ 的长是( )A .231cmB .221 cm C .2cm D .22cm二、填空题(每小题4分,共28分)11.比较大小:38 5 (选用<、=、>填空).12.如图,数轴上表示1,2的点分别为A 、B ,且AB=AC ,则点C 表示的数是_____.13.已知y+3与x+1成正比例,且当x=1时,y=1,则y 与x 之间的函数关系式是_____________.14.小明某学期的数学平均成绩为80分,期中考试为80分,期末考试为90分。

人教版八年级上册数学《月考》测试卷及答案【可打印】

人教版八年级上册数学《月考》测试卷及答案【可打印】

人教版八年级上册数学《月考》测试卷及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( )A .2019-B .12019-C .12019D .20192.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=6.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等51的值( )A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.若n边形的内角和是它的外角和的2倍,则n=__________.3.因式分解:a2-9=_____________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.3.解不等式组:3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、A6、D7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、63、(a+3)(a﹣3)4、8.5、1 (21,2) n n--6、20三、解答题(本大题共6小题,共72分)1、x=1.2、42xx+;1x=时,原式52=(或当2x=时,原式32=.)3、-7<x≤1.数轴见解析.4、略5、(1)见详解;(2)见详解6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。

新部编人教版八年级数学上册月考考试卷及答案【A4打印版】

新部编人教版八年级数学上册月考考试卷及答案【A4打印版】

新部编人教版八年级数学上册月考考试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.4的平方根是.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、C5、D6、D7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、-153、±2.4、135°5、46、15.三、解答题(本大题共6小题,共72分)1、2x =2、x 2-,32-. 3、(1)12,32-;(2)略.4、(1)略;(2).5、24°.6、(1)2元;(2)至少购进玫瑰200枝.。

新部编人教版八年级数学上册月考测试卷及答案【A4打印版】

新部编人教版八年级数学上册月考测试卷及答案【A4打印版】

新部编人教版八年级数学上册月考测试卷及答案【A4打印版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.若613x ,小数部分为y ,则(2x 13y 的值是( )A .5-13B .3C .13 5D .-35.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21a+8a=__________.∆的周长为____________.3.在△ABC中,AB=15,AC=13,高AD=12,则ABC4.如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD7,则图中阴影部分的面积为________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、A6、B7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、13、32或4245、706、12x y =⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、x+2;当1x =-时,原式=1.3、(1)102b -≤≤;(2)2 4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略 5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。

(人教版)八年级(上学期)月考数学试卷(10月份)共3份

(人教版)八年级(上学期)月考数学试卷(10月份)共3份

2020-2021学年上学期月考试题八年级数学(无答案)(考试时间:120分钟试卷满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.2、一个多边形的内角和为1800°,则这个多边形的边数为( )A.12 B.11 C.10 D.93、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )A.180°B.270°C.300°D.360°4、一个三角形的两边长分别为3和7,第三边长为整数,则第三边长度的最小值是( )A.4 B.5 C.6 D.75、下列四组中一定是全等三角形的是( )A.两条边相等的两个直角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形6、如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为( )A.13 B.3 C.4 D.67、如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2B. 3C. 4D. 58、到三角形三个顶点距离相等的是( )A.三边高线的交点B.三条中线的交点C.三条垂直平分线的交点D.三条内角平分线的交点9、如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于21BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD.若CD=AC ,∠A=50°,则∠ACB 的度数为( ) A.90° B.95° C.100° D.105°10、如图,在△ABC 中,∠B =∠C ,D 为BC 中点,若由点D 分别向AB 、AC 作垂线段DE 、DF ,则能说明△BDE ≌△CDF 的理由是( )A .AASB .SASC .HLD .SSS11、如图,AD 垂直平分线段BC ,垂足为D ,∠ABC 的平分线BE 交AD 于点E ,连接EC ,若∠ABC =50°,则∠C 的度数是( )A .25°B .20°C .50°D .65°(9) (10) (11) (12)12、如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法:①△EBD 是等腰三角形,EB =ED ;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13、若正多边形的一个外角是40°,则这个正多边形的边数是__________.14、如图,已知△ABC ≌△BAD ,若∠DAC =20°,∠C =88°,则∠DBA =__________度.15、如图所示,在△ABC 中,∠C =90°,AB =8,AD 是△ABC 的一条角平分线.若CD =2,则△ABD 的面积为__________.5) (16) (17)(17)16、如图,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于点D ,AB=6cm,BC=3cm,则∠DBC=_______,△DBC 的周长是_______cm17、如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =,则下列结论:①DE DF =;②AD 平分BAC ∠;③AE AD =;④2AC AB BE -=,正确的是__________.18、如图,在△ABC 中,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推….已知∠A =α,则∠A 2018的度数为__________(用含α的代数式表示).三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19、(8分)如图,有公路l 1同侧、l 2异侧的两个城镇A ,B ,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不写作法)20、(10分)在如图的方格中,每个小正方形的边长都为1,△ABC 的顶点均在格点上.在建立平面直角坐标系后,点B 的坐标为(-1,2).(1)把△ABC 向下平移8个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出A 1坐标.(2)画出与△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点B 2的坐标.(3)求出△A 2B 2C 2的面积21、(10分 )如图,点A 、F 、C 、D 在同一条直线上,已知AF=DC ,∠A=∠D ,BC ∥EF ,求证:AB=DE .22、(12分)如图,(1)AD是△ABC的外角∠EAC的平分线,AD∥BC.求证:△ABC是等腰三角形;(2)AD是△ABC的外角∠EAC的平分线,AB=AC.求证:AD∥BC.23、(12分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.24、(12分)如图,AO,BO,CO,DO分别是四边形ABCD四个内角的平分线.(1)判断∠AOB与∠COD有怎样的数量关系,为什么?(2)若∠AOD=∠BOC,则AB,CD有怎样的位置关系?为什么?25、(14分)动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系(写出说理过程)。

部编人教版八年级数学上册月考测试卷及答案【A4打印版】

部编人教版八年级数学上册月考测试卷及答案【A4打印版】

部编人教版八年级数学上册月考测试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2-的相反数是( )A .2-B .2C .12D .12- 2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4) 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C. D.8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO 的周长是()A.10 B.14 C.20 D.22二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =6,BC =8,则EF 的长为______.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、A7、D8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、13、如果两个角互为对顶角,那么这两个角相等4、2≤a+2b≤5.5、46、1三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、22x-,12-.3、(1)12b-≤≤;(2)24、(1)y=x+5;(2)272;(3)x>-3.5、24°.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。

〈word版〉八年级(上)月考数学试卷(10月份)共3份

〈word版〉八年级(上)月考数学试卷(10月份)共3份

重庆一中初2021级19-20学年度上期第一次定时作业数学试题(无答案)(满分:150分;考试时间:120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中是无理数的是( )A .1.020020002B .4 C.2π D .13 2.在平面直角坐标系中,已知点P 的坐标为()1,3-,则点P 在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.若代数式4x +有意义,则x 的取值范围是 ( )A .4x ≤-B .4x ≥C .4x ≠-D . 4x ≥-4. 下列方程组中,是二元一次方程组的是( )A .3235x y x y -=⎧⎨+=⎩B .2024x y x y k ++=⎧⎨-=⎩C . 3010x y xy -+=⎧⎨+=⎩D .2135x y x y +=⎧⎪⎨+=⎪⎩5. 重庆一中寄宿学校北楼、食堂、含弘楼的位置如图所示,如果北楼的位置用()1,2-表示,食堂的位置用()2,1表示,那么含弘楼的位置可以表示成( )A .()0,0B .()0,4C . ()2,0-D .()1,56.若点A 的坐标是()2,1-,4AB =,且AB 平行于y 轴,则点B 的坐标为 ( )A . ()2,5-B .()6,1-或()2,1--C . ()2,3D .()2,3或()2,5-7. 已知12x y =-⎧⎨=⎩是关于x y 、的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为( )A .52-B .1C . 7D .11 8. “阅读与人文滋养内心”,重庆一中初二年级正掀起一股阅读《红星照耀中国》的浪潮.小明4天里阅读的总页数比小颖5天里阅读的总页数少100页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( )A .41005210x y y x -=⎧⎨=-⎩B .41005210x y y x +=⎧⎨=+⎩C . 45100210x y y x =-⎧⎨=-⎩D .45100210x y y x =+⎧⎨=+⎩9.已知23,23x y =+=-,则2y x x y +-的值为 ( ) A .14 B . 12 C . 16 D .2310. 如图,点F 是长方形ABCD 中BC 边上一点,将ABF ∆沿AF 折叠为AEF ∆,点E 落在边CD 上,若5,4AB BC ==,则BF 的长为( )A . 73B . 52C . 136D .5611. 若0abk ≠,且a b k 、、满足方程组74813a b k a b k -=⎧⎨+=⎩,则34223a b k a b k +-++的值为( ) A .56 B .12 C . 57D .1 12. 如图,在平面直角坐标系中,已知点()10,1A ,2A 在x 轴的正半轴上,且01260OA A ∠=,过点2A 作2312A A A A ⊥交y 轴于点3A ;过点3A 作3423A A A A ⊥交x 轴于点4A ;过点4A 作4534A A A A ⊥交y 轴于点5A ;过点5A 作5645A A A A ⊥交x 轴于点6A ;…….按此规律进行下去,则点2019A 的坐标为( )A .()()20180,3-B .()()20193,0-C . ()()20180,3D .()()20193,0 二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在答题纸上)13.64的平方根是 .14.点()2,5A -关于x 轴的对称点的坐标是 .15.若最简根式3a +与113a -是可以合并的二次根式,则a 的值是 .16.比较大小(填“>”“<”或“=”):23__________2314-. 17.若()232232a b a x y ---+=是关于,x y 的二元一次方程,则a b -=__________.18.已知点()()7,0,0,A B m ,且直线AB 与坐标轴围成的三角形面积等于14,则m 的值是_________. 19.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一定的速度匀速前往铁山坪体验“飞越从林”.出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车、取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行.小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的43倍匀速按原路赶往铁山坪.由于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙车行驶时间x (小时)之间的部分图象如图所示,则乙车出发___________小时到达目的地.20.“八月十五月儿圆,中秋月饼香又甜”,每逢中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是__________.三、计算题(本大题共2个小题,21题16分,22题10分,共26分.解答应写出文字说明、证明过程或演算步骤.)21.计算:(1(2)()(03221π--+--+ (3⎛+ ⎝(4)()212-+ 22.解下列方程(1)352526x y x y -=⎧⎨+=⎩(2)()()()31242255x y y x y x y ⎧-+=⎪⎨⎪+=++⎩四、解答题(本大题共个6个题,其中23、24、25、26题,每题10分,27题每题12分,共52分,解答时每小题必须给出必要的演算过程或推理步骤)23.如图,在平面直角坐标系中,ABC ∆的顶点为()()()5,1,1,0,1,5A B C ---.(1)作出ABC ∆关于y 轴对称图形111A B C ∆;(2)若点P 在x 轴上,且ABP ∆与ABC ∆面积相等,求点P 的坐标.24.“无夜景,不重庆”,以“祖国万岁”为主题的庆祝中华人民共和国成立70周年灯光秀,9月21日至10月10日在“山水之城,美丽之地”重庆上演.据了解,此次以重庆大剧院灯光“领舞”,临近的12栋楼宇灯光联动变化的“梦幻江北嘴”灯光秀共使用LED 照明灯和LED 投射灯共50万个,共花赏860万元.已知LED 照明灯的售价为每个8元,LED 投射灯的售价为每个100元.请用方程或方程组的相关知识解决下列问题:(1)本次“梦幻江北嘴”灯光秀使用LED 照明灯和LED 投射灯各多少个?(2)某栋楼宇计划安装LED 照明灯18000个,LED 投射灯500个;因楼宇本身的设计原因,实际安装时LED 投射灯比计划多安装了20%,LED 照明灯的数量不变,商家为祖国70华诞而让利把LED 照明灯和LED 投射灯售价分别降低了%m 、3%5m ,实际上这栋楼宇LED 照明灯和LED 投射灯的总价为159000元,请求出m 的值.25.一个多位数()10N N ≥乘以11,得到一个新的数,我们把新数去掉首位和末位上的数字剩下的数叫做这个多位数N 的“C 位数”.如果两个多位数的“C 位数”的数字之和相同,我们就称这两个多位数是“黄金搭档”.例如:∵2311253⨯=,7811858⨯=,∴23和78是黄金搭档,∵4311473⨯=,98111078⨯=,∴43和98是黄金搭档.(1)35的“C 位数”是___________,35和99____________(是/不是)黄金搭档;(2)已知一个两位数M ,十位数字为a ,个位数字为b ,满足()3213a b a b +=≤,求不大于110的自然数中有多少个数M 的“黄金搭档”?26.在ABC ∆中,AB AC =,点D 在射线BC 上,连接AD .(1)如图1,当点D 在线段BC 上时,若5,8,2AB BC CD ===,求ABD ∆的面积;(2)如图2,当点D 在线段BC 的延长线上时,过B 作BE AC ⊥分别交AC 于点E ,交AD 于点F ,截取AC 中点G ,延长BG 到点H ,连接AH ,使AHB ACB ABH ∠=∠-∠,若045ADB ∠=,求证:2AH DF =.27.如图1,在平面直角坐标系中有长方形OABC ,点()0,4C ,将长方形OABC 沿AC 折叠,使得点B 落在点D 处,CD 边交x 轴于点E ,030OAC ∠=.(1)求点D 的坐标;(2)如图2,在直线AC 以及y 轴上是否分别存在点,M N ,使得EMN ∆的周长最小?如果存在,求出EMN ∆周长的最小值;如果不存在,请说明理由;(3)点P 为y 轴上一动点,作直线AP 交直线CD 于点Q ,是否存在点P 使得CPQ ∆为等腰三角形?如果存在,请求出OAP ∠的度数;如果不存在,请说明理由.2020-2021学年广东省广州市越秀区铁一中学八年级(上)月考数学试卷(10月份)(解析版)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列银行图标中,属于轴对称图形的是()A.B.C.D.2.(3分)如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是()A.∠B=∠E,BC=EF B.∠A=∠D,BC=EFC.∠A=∠D,∠B=∠E D.BC=EF,AC=DF3.(3分)等腰三角形的一个外角是80°,则其底角是()A.100°B.100°或40°C.40°D.80°4.(3分)如图,到△ABC的三个顶点距离相等的点是△ABC的()A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点5.(3分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.2.5C.3D.56.(3分)已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形7.(3分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm8.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)9.(3分)如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A的度数等于()A.70°B.60°C.50°D.40°10.(3分)如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知等腰三角形的两边长是5cm和11cm,则它的周长是.12.(3分)若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.13.(3分)如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是.14.(3分)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.15.(3分)AD是△ABC中∠BAC的平分线,DE⊥AB于点E,若S△ABC=10,DE=2,AB=4,则AC的长是.16.(3分)如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=.三、解答题(本大题共8题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(8分)如图,在长方形网格中有一个△ABC.(1)画出△ABC关于y轴对称的△A1B1C1.(2)若网格中的最小正方形边长为1,求△A1B1C1的面积.18.(8分)如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.19.(8分)已知:如图,已知点B、E、F、C在同一直线上,AB=CD,AE⊥BC,DF⊥BC,E,F是垂足,CE=BF,求证:AB∥CD.20.(8分)如图,△ABC中,∠C=90°,AC=BC.(1)用直尺和圆规作∠BAC的平分线交BC于点D(保留作图痕迹);(2)过点D画△ABD的边AB上的高DE,交线段AB于点E,若△BDE的周长是5cm,求AB的长.21.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.22.(8分)已知,如图,△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD.23.(12分)如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC 上截取CD=CE,连接AD、DE,并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD⊥BE;(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.24.(12分)如图1,已知A(a,0),B(0,b)分别为两坐标轴上的点,且a、b满足(a﹣b)2+=0,OC:OA=1:3.(1)求A、B、C三点的坐标;(2)若D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为x E、x F.当BD平分△BEF的面积时,求x E+x F的值;(3)如图2,若M(2,4),点P是x轴上A点右侧一动点,AH⊥PM于点H,在HM上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否改变?若不变,请求其值;若改变,请说明理由.2020-2021学年广东省广州市越秀区铁一中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列银行图标中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:B.2.(3分)如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是()A.∠B=∠E,BC=EF B.∠A=∠D,BC=EFC.∠A=∠D,∠B=∠E D.BC=EF,AC=DF【分析】将所给的选项逐一判断、分析,即可解决问题.【解答】解:不能添加的一组条件是B;理由如下:在△ABC与△DEF中,∵∠A=∠D,BC=EF,AB=DE,即在两个三角形中满足:有两边和其中一边所对的对应角相等,∴这两个三角形不一定全等,故选:B.3.(3分)等腰三角形的一个外角是80°,则其底角是()A.100°B.100°或40°C.40°D.80°【分析】题目没有明确80°的外角是顶角还是底角的外角,要进行讨论,然而,当80°的外角在底角处时,是不成立的,所以本题只有一种情况.【解答】解:当80°的外角在底角处时,则底角=180°﹣80°=100°,因此两底角和=200°>180°,故此种情况不成立.因此只有一种情况:即80°的外角在顶角处.则底角=80°÷2=40°;故选:C.4.(3分)如图,到△ABC的三个顶点距离相等的点是△ABC的()A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点【分析】根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.【解答】解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选:A.5.(3分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.2.5C.3D.5【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选:C.6.(3分)已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:B.7.(3分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C.8.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)【分析】过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.9.(3分)如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A的度数等于()A.70°B.60°C.50°D.40°【分析】根据翻折不变性和三角形的内角和定理及角平分线的性质解答.【解答】解:∵∠1+∠2=100°,∴∠ADF+∠AEF=360°﹣100°=260°,∴∠ADE+∠AED=130°,∴∠A=180°﹣130°=50°.故选:C.10.(3分)如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④【分析】根据等腰直角三角形的性质可得∠CAD=∠B=45°,根据同角的余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出③正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出①正确;再求出AE=CF,判断出②正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出④错误.【解答】解:∵∠B=45°,AB=AC,∴△ABC是等腰直角三角形,∵点D为BC中点,∴AD=CD=BD,AD⊥BC,∠CAD=45°,∴∠CAD=∠B,∵∠MDN是直角,∴∠ADF+∠ADE=90°,∵∠BDE+∠ADE=∠ADB=90°,∴∠ADF=∠BDE,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),故③正确;∴DE=DF、BE=AF,∴△DEF是等腰直角三角形,故①正确;∵AE=AB﹣BE,CF=AC﹣AF,∴AE=CF,故②正确;∵BE+CF=AF+AE∴BE+CF>EF,故④错误;综上所述,正确的结论有①②③;故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知等腰三角形的两边长是5cm和11cm,则它的周长是27cm.【分析】题目给出等腰三角形有两条边长为5cm和11cm,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当三边是5,5,11时,5+5<11,不符合三角形的三边关系,应舍去;当三边是5,11,11时,符合三角形的三边关系,此时周长是27.故答案为:27cm.12.(3分)若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为﹣2.【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点是(﹣x,y),进而得出m,a的值.【解答】解:∵点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),∴3+m=﹣3,a﹣2=2,解得:m=﹣6,a=4,则m+a的值为:﹣6+4=﹣2.故答案为:﹣2.13.(3分)如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是ASA.【分析】根据垂直的定义、全等三角形的判定定理解答即可.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故答案为:ASA.14.(3分)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【分析】连接BE,根据三角形的内角和定理即可证得∠C+∠D=∠MBE+∠BEM,则∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF,根据四边形的内角和定理即可求解.【解答】解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.15.(3分)AD是△ABC中∠BAC的平分线,DE⊥AB于点E,若S△ABC=10,DE=2,AB=4,则AC的长是6.【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:作DF⊥AC交AC于点F,∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴10=×4×2+×AC×2,∴AC=6.故答案为:616.(3分)如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=50.【分析】求出∠F=∠AGB=∠EAB=90°,∠FEA=∠BAG,根据AAS证△FEA≌△GAB,推出AG=EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,求出FH=14,根据阴影部分的面积=S梯形EFHD ﹣S△EF A﹣S△ABC﹣S△DHC和面积公式代入求出即可.【解答】解:∵AE⊥AB,EF⊥AF,BG⊥AG,∴∠F=∠AGB=∠EAB=90°,∴∠FEA+∠EAF=90°,∠EAF+∠BAG=90°,∴∠FEA=∠BAG,在△FEA和△GAB中∵,∴△FEA≌△GAB(AAS),∴AG=EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,∴FH=2+6+4+2=14,∴梯形EFHD的面积是×(EF+DH)×FH=×(6+4)×14=70,∴阴影部分的面积是S梯形EFHD﹣S△EF A﹣S△ABC﹣S△DHC=70﹣×6×2﹣×(6+4)×2﹣×4×2=50.故答案为50.三、解答题(本大题共8题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(8分)如图,在长方形网格中有一个△ABC.(1)画出△ABC关于y轴对称的△A1B1C1.(2)若网格中的最小正方形边长为1,求△A1B1C1的面积.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出△A1B1C1;(2)直接利用割补法即可得到△A1B1C1的面积.【解答】解:(1)△A1B1C1即为所求;(2)△A1B1C1的面积为:3×5﹣×2×3﹣×2×3﹣×1×5=15﹣3﹣3﹣2.5=6.5.18.(8分)如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.【分析】依据∠ABC=∠C=70°,BD平分∠ABC,即可得出∠DBC=35°,再根据三角形外角性质,即可得到∠ADB的度数.【解答】解:∵∠ABC=∠C=70°,BD平分∠ABC,∴∠DBC=35°,∴∠ADB=∠C+∠DBC=70°+35°=105°.19.(8分)已知:如图,已知点B、E、F、C在同一直线上,AB=CD,AE⊥BC,DF⊥BC,E,F是垂足,CE=BF,求证:AB∥CD.【分析】由“HL”可证Rt△ABE≌Rt△DCF,可得∠B=∠C,可得结论.【解答】解:∵AE⊥BC,DF⊥BC,∴∠DFC=∠AEB=90°,∵CE=BF,∴CF=BE,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),∴∠B=∠C,∴AB∥CD.20.(8分)如图,△ABC中,∠C=90°,AC=BC.(1)用直尺和圆规作∠BAC的平分线交BC于点D(保留作图痕迹);(2)过点D画△ABD的边AB上的高DE,交线段AB于点E,若△BDE的周长是5cm,求AB的长.【分析】(1)利用尺规周长∠CAB的角平分线即可.(2)利用尺规过点D作DE⊥AB即可.证明△BDE的周长=AB即可.【解答】解:(1)如图,线段AD即为所求.(2)如图,线段DE即为所求.∵∠DAC=∠DAE,∠C=∠AED=90°,AD=AD,∴△ADC≌△ADE(AAS),∴AC=AE,DC=DE,∵CA=CB,∴CB=AE,∵△DEB的周长=5cm,∴DE+BD+BE=DC+BD+BE=BC+BE=AE+BE=AB=5(cm).21.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°22.(8分)已知,如图,△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD.【分析】在AB上截取AE=AC,由“SAS”可证△ADE≌△ADC,可证DE=DC,∠C=∠AED,可证∠B=∠BDE,可得BE=DE=DC,即结论可得.【解答】证明:如图,在AB上截取AE=AC,∵AE=AC,∠1=∠2,AD=AD∴△ADE≌△ADC(SAS)∴DE=DC,∠C=∠AED,∵∠C=2∠B,∠AED=∠B+∠BDE,∴∠B=∠BDE∴BE=DE=DC,∵AB=AE+BE,∴AB=AC+CD23.(12分)如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC 上截取CD=CE,连接AD、DE,并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD⊥BE;(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.【分析】(1)利用SAS证明△BCE≌△ACD,根据全等三角形的对应边相等得到AD=BE.(2)根据△BCE≌△ACD,得到∠EBC=∠DAC,由∠BDP=∠ADC,得到∠BPD=∠DCA=90°,即可得到AD⊥BE;(3)AD⊥BE不发生变化.由△BCE≌△ACD,得到∠EBC=∠DAC,由对顶角相等得到∠BFP=∠AFC,根据三角形内角和为180°,所以∠BPF=∠ACF=90°,即AD⊥BE.【解答】解:(1)∵BC⊥AE,∠BAE=45°,∴∠CBA=∠CAB,∴BC=CA,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BDP=∠ADC,∴∠BPD=∠DCA=90°,∴AD⊥BE.(3)AD⊥BE不发生变化.理由:如图(2),∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BFP=∠AFC,∴∠BPF=∠ACF=90°,∴AD⊥BE.24.(12分)如图1,已知A(a,0),B(0,b)分别为两坐标轴上的点,且a、b满足(a﹣b)2+=0,OC:OA=1:3.(1)求A、B、C三点的坐标;(2)若D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为x E、x F.当BD平分△BEF的面积时,求x E+x F的值;(3)如图2,若M(2,4),点P是x轴上A点右侧一动点,AH⊥PM于点H,在HM上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否改变?若不变,请求其值;若改变,请说明理由.【分析】(1)由偶次方和算术平方根的非负性质求出a和b的值,得出点A、B的坐标,再求出OC,即可得出点C的坐标;(2)作EG⊥x轴于G,FH⊥x轴于H,由三角形的面积关系得出DF=DE,由AAS证明△FDH≌△EDG,得出DH=DG,即可得出结果;(3)作MQ⊥x轴于Q,连接CM、AG、M,证出△MCQ是等腰直角三角形,得出∠MCQ=45°,同理:△MPQ是等腰直角三角形,∠MAQ=45°,△AHG是等腰直角三角形,得出∠AGH=45°=∠MCQ,证出A、G、M、C四点共圆,由圆周角定理即可得出结论.【解答】解:(1)∵(a﹣b)2+=0,∴a﹣b=0,b﹣6=0,∴a=b=6,∴A(6,0),B(0,6),∴OA=OB=6,∵OC:OA=1:3.∴OC=2,∴C(﹣2,0);(2)作EG⊥x轴于G,FH⊥x轴于H,如图1所示:则∠FHD=∠EGD=90°,∵BD平分△BEF的面积,∴DF=DE,在△FDH和△EDG中,,∴△FDH≌△EDG(AAS),∴DH=DG,即﹣x E+1=x F﹣1,∴x E+x F=2;(3)∠CGM的度数不改变,∠CGM=45°;理由如下:作MQ⊥x轴于Q,连接CM、AG、M,如图2所示:则MQ=4,OQ=2,∴CQ=2+2=4,∴△MCQ是等腰直角三角形,∴∠MCQ=45°,同理:△MQA是等腰直角三角形,∴∠MAQ=45°,∵AH⊥PM,HG=HA,∴△AHG是等腰直角三角形,∴∠AGH=45°=∠MCQ,∴A、G、M、C四点共圆,∴∠CGM=∠MAQ=45°.2020-2021学年湖南省长沙市天心区长郡外国语实验中学八年级(上)第一次月考数学试卷(解析版)一.选择题(本题包括12小题,共36分)1.(3分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.(3分)已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为()A.(﹣5,6)B.(﹣6,5)C.(5,﹣6)D.(6,﹣5)3.(3分)如果点P(m,1﹣2m)在第四象限,那么m的取值范围是()A.0<m<B.﹣<m<0C.m<0D.m>4.(3分)点M的坐标为(2,3),若将点M先向右平移3个单位长度,再向下平移2个单位长度后,所得点的坐标为()A.(5,5)B.(﹣1,1)C.(5,1)D.(0,0)5.(3分)如图,点P是△ABC内的一点,若PB=PC,则()A.点P在∠ABC的平分线上B.点P在∠ACB的平分线上C.点P在边AB的垂直平分线上D.点P在边BC的垂直平分线上6.(3分)为了解上河中学1500名学生的视力情况,随机抽查了500名学生的视力进行统计分析,下列说法正确的是()A.500名学生的视力是总体的一个样本B.500名学生是总体C.500名学生是总体的一个体D.样本容量是1500名7.(3分)具有下列条件的两个等腰三角形,不能判断它们全等的是()A.顶角、一腰对应相等B.底边、一腰对应相等C.两腰对应相等D.一底角、底边对应相等8.(3分)如图,风筝的图案是以直线AF为对称轴的轴对称图形,下列结论不一定成立的是()A.AF垂直平分线段EGB.BC∥EGC.连接BG、CE,其交点在AF上D.AB∥DE,AC∥DG9.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH 分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°10.(3分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个11.(3分)如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4,则BC的长为()A.4B.8C.12D.1612.(3分)如图,在等腰三角形ABC中,AB=AC=13,BC=10,D是BC边上的中点,AD=12,M,N 分别是AD和AB上的动点,则BM+MN的最小值是()A.10B.C.12D.二.填空题(本题包括4小题,共12分)13.(3分)在平面镜里看到其对面墙上电子钟显示的数字时间如图所示,那么实际时间是.14.(3分)已知等腰三角形一腰上高与另一腰夹角30°,则顶角的度数为.15.(3分)如图,平面直角坐标系中,点A在第一象限,∠AOx=40°,点P在x轴上,若△POA是等腰三角形,则满足条件的点P共有个.16.(3分)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论:①PQ ∥AE;②∠AOE=120°;③CO平分∠BCD;④△CPQ是等边三角形,⑤OC+BO=AO恒成立的是.三.解答题(本题包括9小题,共72分,解答应写出必要的说明、证明过程或演算步骤)17.(6分)解不等式组,并把解集在数轴上表示出来.18.(6分)如图,△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)写出△ABC三个顶点的坐标.(2)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标.19.(6分)如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.20.(8分)“中秋”是我国的传统佳节,历来有吃“月饼”的习俗.我市网红“巢娘驰”食品厂为了解长沙市民对销量较好的莲蓉馅、豆沙馅、五仁馅、蛋黄馅(以下分别用A、B、C、D表示)这四种不同口味月饼的喜爱情况,在节前对我市某小区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图(不完整).请根据以上信息回答:(1)将两幅不完整的图补充完整;(2)本次参加抽样调查的居民有多少人?(3)若居民区有20000人,请估计爱吃蛋黄馅月饼的人数.21.(8分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.22.(9分)如图,已知:在△ABC中,A、B两点的坐标分别是A(0,4)、B(﹣2,0),∠BAC=90°,AB=AC.(1)求C点的坐标;(2)求△ABC的面积.23.(9分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.(1)求证:△ADC≌△BEC.(2)求∠AEB的度数.(3)试探究线段CM,AE,BE之间的数量关系,并说明理由.24.(10分)如图所示,直线AB交x轴于点A(a,0)交y轴于点B(0,b),且a、b满足=0,P为线段AB上的一点.(1)如图1,若AB=6,当△OAP为AP=AO的等腰三角形时,求BP的长.(2)如图2,若P为AB的中点,点M、N分别是OA、OB边上的动点,点M从顶点A、点N从顶点O同时出发,且它们的速度都为1cm/s,则在M、N运动的过程中,S四边形PNOM的值是否会发生改变?如发生改变,求出其面积的变化范围;若不改变,求该面积的值.(3)如图3,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别于F、D 两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.25.(10分)如图1,等边△ABC,∠BAC的平分线交y轴于点D,C的坐标为(0,6).(1)求D点的坐标;(2)如图2,E为x轴上任一点,以CE为边在第一象限内作等边△CEF,FB的延长线交y轴于点G,求OG的长;(3)如图3,在(2)的条件下,且∠CEO=30°,以CE为边在第一象限内作等边△CEF,EH⊥EC 交OE的垂直平分线于H,连接FH交CE于P,求PF与PH的数量关系.。

2020—2021年部编人教版八年级数学上册月考试卷及答案【可打印】

2020—2021年部编人教版八年级数学上册月考试卷及答案【可打印】

2020—2021年部编人教版八年级数学上册月考试卷及答案【可打印】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.化简二次根式 )A B C D 4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,△ABC 中,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则下列结论不正确的是( )A .BF =DFB .∠1=∠EFDC .BF >EFD .FD ∥BC9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1123=________.2.比较大小:23133x 2-x 的取值范围是________.4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年湖南省长沙市雨花区广益实验中学八年级(上)第一次月考数学试卷(解析版)一、选择题(每小题3分,共计36分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中图案部分是轴对称图形的是()A.协和医院B.湘雅医院C.齐鲁医院D.华西医院2.下列运算正确的是()A.2x•3y=5xy B.(a2)3=a5C.(﹣ab)3=﹣ab3D.(﹣2x)2=4x23.如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°4.《中共中央国务院关于促进农民增加收入若干政策的意见》中提出“进一步精简乡镇机构和财政供养人员,积极稳妥地调整乡镇建制,有条件的可实行并村”.《中共中央国务院关于积极发展现代农业扎实推进社会主义新农村建设的若干意见》中明确提出“治理农村人居环境,搞好村庄治理规划和试点,节约农村建设用地”.以上两个政策出台后,山东陆陆续续开展了村庄合并某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在()A.三条边的垂直平分线的交点处B.三个角的平分线的交点处C.三角形三条高线的交点处D.三角形三条中线的交点处5.若点P(m﹣1,5)与点Q(3,2﹣n)关于y轴对称,则m+n的值是()A.﹣5B.1C.5D.116.如果等腰三角形两边长是4cm和8cm,那么它的周长是()A.16 cm B.20cm C.21 cm D.16或20cm7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,若C也是图中的格点,则使得△ABC是以AB为一腰的等腰三角形时,点C的个数是()A.8B.6C.4D.78.如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A、B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为()A.15海里B.20海里C.30海里D.求不出来9.比较255、344、433的大小()A.255<344<433B.433<344<255C.255<433<344D.344<433<25510.如图,△ABC是等腰三角形,点O是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE+OF的值为()A.5B.7.5C.9D.1011.若(3x﹣m)(x﹣1)中不含x的一次项,则()A.m=1B.m=﹣1C.m=﹣3D.m=312.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④二.填空题[每小题3分,共计18分)13.等腰三角形有一个底角的度数是80°,则另两个角的度数分别是.14.计算:0.252019×42020=.15.已知ab=a+b+1,则(a﹣1)(b﹣1)=.16.如图.现有正方形卡片A类,B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(3a+2b)的大长方形,那么需要C类卡片的张数是.17.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,垂足为D.若∠F=30°,BE=4,则DE的长等于.18.如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是.三、解答题(共计66分)19.(6分)计算(1)2x2yz•3xy3z2;(2)(﹣2x3)3﹣3x3(x6﹣y2).20.(6分)先化简,再求值3x•(2x2+x﹣1)+x2(﹣4x﹣3),其中x=﹣2.21.(8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,△ABC的三个顶点A、B、C 都在格点上.(1)在图中画出与△ABC关于直线y成轴对称的△A1B1C1;(2)求△ABC的面积;(3)在x轴上找出一点P,使得PB+PC的值最小.(不需计算,在图上直接标记出点P的位置)22.(8分)如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:△ABC为等腰三角形.23.(9分)甲乙两人共同计算一道整式乘法:(3x+a)(2x﹣b),甲把第二个多项式中b前面的减号抄成了加号,得到的结果为6x2+16x+8;乙漏抄了第二个多项式中x的系数2,得到的结果为3x2﹣10x﹣8.(1)计算出a、b的值;(2)求出这道整式乘法的正确结果.24.(9分)如图,在Rt△ABC中,∠ABC=90°,点D在边AC上,且∠DBC=∠DCB(1)求证:AD=CD;(2)若∠A=30°,DE⊥AC,交AB于E,求的值.25.(10分)在平面直角坐标系中,我们不妨把横纵坐标相等的点称为“梦之点”,如(﹣1,﹣1),(0,0),(,)…都是梦之点.(1)若点P(32x+4,27x)是“梦之点”,请求出x的值;(2)若n为正整数,点M(x4n,4)是“梦之点”,求(x3n)2﹣4(x2)5n的值;(3)若点A(x,y)的坐标满足方程y=3kx+s﹣1(k,s是常数),请问点A能否成为“梦之点”若能,请求出此时点A的坐标,若不能,请说明理由.26.(10分)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.2020-2021学年湖南省长沙市雨花区广益实验中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共计36分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中图案部分是轴对称图形的是()A.协和医院B.湘雅医院C.齐鲁医院D.华西医院【分析】利用轴对称图形的定义进行解答即可.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意;故选:C.2.下列运算正确的是()A.2x•3y=5xy B.(a2)3=a5C.(﹣ab)3=﹣ab3D.(﹣2x)2=4x2【分析】用单项式乘以单项式法则计算A,用幂的乘方法则计算B,用积的乘方法则计算C、D.【解答】解:∵2x•3y=6xy≠5xy,故选项A错误;(a2)3=a6≠a5,故选项B错误;(﹣ab)3=﹣a3b3≠﹣ab3,故选项C错误;(﹣2x)2=4x2,故选项D正确.故选:D.3.如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°【分析】利用三角形内角和定理求出∠B,再利用轴对称的性质解决问题即可.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠B′=∠B,∵∠B=180°﹣∠A﹣∠C=180°﹣50°﹣20°=110°,∴∠B′=110°,故选:A.4.《中共中央国务院关于促进农民增加收入若干政策的意见》中提出“进一步精简乡镇机构和财政供养人员,积极稳妥地调整乡镇建制,有条件的可实行并村”.《中共中央国务院关于积极发展现代农业扎实推进社会主义新农村建设的若干意见》中明确提出“治理农村人居环境,搞好村庄治理规划和试点,节约农村建设用地”.以上两个政策出台后,山东陆陆续续开展了村庄合并某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在()A.三条边的垂直平分线的交点处B.三个角的平分线的交点处C.三角形三条高线的交点处D.三角形三条中线的交点处【分析】根据性的垂直平分线的性质解答即可.【解答】解:∵电动车充电桩到三个出口的距离都相等,∴充电桩应该在三条边的垂直平分线的交点处,故选:A.5.若点P(m﹣1,5)与点Q(3,2﹣n)关于y轴对称,则m+n的值是()A.﹣5B.1C.5D.11【分析】根据关于y轴对称的点的坐标特点可得m﹣1=﹣3,2﹣n=5,再解即可.【解答】解:由题意得:m﹣1=﹣3,2﹣n=5,解得:m=﹣2,n=﹣3,则m+n=﹣2﹣3=﹣5,故选:A.6.如果等腰三角形两边长是4cm和8cm,那么它的周长是()A.16 cm B.20cm C.21 cm D.16或20cm【分析】腰长为8cm和4cm两种情况,再利用三角形的三边关系进行判定,再计算周长即可.【解答】解:当腰长为8cm时,则三角形的三边长分别为8cm、8cm、4cm,满足三角形的三边关系,此时周长为20cm;当腰长为4cm时,则三角形的三边长分别为4cm、4cm、8cm,此时4+4=8,不满足三角形的三边关系,不符合题意;故选:B.7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,若C也是图中的格点,则使得△ABC是以AB为一腰的等腰三角形时,点C的个数是()A.8B.6C.4D.7【分析】根据AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,【解答】解:如图,以AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.8.如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A、B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为()A.15海里B.20海里C.30海里D.求不出来【分析】由上午8时,一条船从海岛A出发,以15海里的时速向正北航行,10时到达海岛B处,可求得AB的长,又由∠NAC=42°,∠NBC=84°,可得∠C=∠NAC,即可证得BC=AB,则可得从海岛B到灯塔C的距离.【解答】解:根据题意得:AB=2×15=30(海里),∵∠NAC=42°,∠NBC=84°,∴∠C=∠NBC﹣∠NAC=42°,∴∠C=∠NAC,∴BC=AB=30海里.即从海岛B到灯塔C的距离是30海里.故选:C.9.比较255、344、433的大小()A.255<344<433B.433<344<255C.255<433<344D.344<433<255【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可.【解答】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.10.如图,△ABC是等腰三角形,点O是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE+OF的值为()A.5B.7.5C.9D.10【分析】连接AO,根据三角形的面积公式即可得到AB•OE+AC•OF=15,根据等腰三角形的性质即可求得OE+OF的值.【解答】解:连接AO,如图,∵AB=AC=6,∴S△ABC=S△ABO+S△AOC=AB•OE+AC•OF=15,∵AB=AC,∴AB(OE+OF)=15,∴OE+OF=5.故选:A.11.若(3x﹣m)(x﹣1)中不含x的一次项,则()A.m=1B.m=﹣1C.m=﹣3D.m=3【分析】直接利用多项式乘以多项式计算进而得出一次项系数为零,即可得出答案.【解答】解:(3x﹣m)(x﹣1)=3x2﹣3x﹣mx+m=3x2﹣(3+m)x+m,∵(3x﹣m)(x﹣1)中不含x的一次项,∴3+m=0,解得:m=﹣3,故选:C.12.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④【分析】根据图中长方形的面积可表示为总长×总宽,也可表示成各矩形的面积和,【解答】解:表示该长方形面积的多项式①(2a+b)(m+n)正确;②2a(m+n)+b(m+n)正确;③m(2a+b)+n(2a+b)正确;④2am+2an+bm+bn正确.故选:D.二.填空题[每小题3分,共计18分)13.等腰三角形有一个底角的度数是80°,则另两个角的度数分别是80°和20°.【分析】根据等腰三角形的性质和三角形的内角和定理解答即可.【解答】解:因为等腰三角形的一个底角的度数为80°,所以另外两个内角的度数分别是80°,20°,故答案为:80°,20°.14.计算:0.252019×42020=4.【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.【解答】解:0.252019×42020=0.252019×42019×4=(0.25×4)2019×4=12019×4=4.故答案为:4.15.已知ab=a+b+1,则(a﹣1)(b﹣1)=2.【分析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得.【解答】解:当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.16.如图.现有正方形卡片A类,B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(3a+2b)的大长方形,那么需要C类卡片的张数是11.【分析】按照长方形面积公式计算所拼成的大长方形的面积,再对比卡片的面积,即可得解.【解答】解:∵(a+3b)(3a+2b)=3a2+11ab+6b2,∵一张C类卡片的面积为ab,∴需要C类卡片11张.故答案为:11.17.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,垂足为D.若∠F=30°,BE=4,则DE的长等于2.【分析】先利用三角形内角和证明∠A=∠F=30°,再根据线段的垂直平分线的性质得到EA=EB,所以∠EBA=∠A=30°,然后根据含30度的直角三角形三边的关系求DE的长.【解答】解:∵∠C=90°,FD⊥AB,而∠AED=∠CEF,∴∠A=∠F=30°,∵DE垂直平分AB,∴EA=EB,∴∠EBA=∠A=30°,∴DE=BE=×4=2.故答案为2.18.如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是34°或53.5°或100°或134°.【分析】根据等腰三角形的性质和全等三角形的判定和性质定理解答即可.【解答】解:∵AB=AC,∠B=50°,∠AED=73°,∴∠EDB=23°,∵当△DEP是以DE为腰的等腰三角形,①当点P在AB上,∵DE=DP1,∴∠DP1E=∠AED=73°,∴∠EDP1=180°﹣73°﹣73°=34°,②当点P在AC上,∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,过D作DG⊥AB于G,DH⊥AC于H,∴DG=DH,在Rt△DEG与Rt△DP2H中,,∴Rt△DEG≌Rt△DP2H(HL),∴∠AP2D=∠AED=73°,∵∠BAC=180°﹣50°﹣50°=80°,∴∠EDP2=134°,③当点P在AC上,同理证得Rt△DEG≌Rt△DPH(HL),∴∠EDG=∠P3DH,∴∠EDP3=∠GDH=100°,④当点P在AB上,EP=ED时,∠EDP=(180°﹣73°)=53.5°.故答案为:34°或53.5°或100°或134°.三、解答题(共计66分)19.(6分)计算(1)2x2yz•3xy3z2;(2)(﹣2x3)3﹣3x3(x6﹣y2).【分析】(1)直接利用单项式乘单项式运算法则计算得出答案;(2)直接利用积的乘方运算法则以及单项式乘多项式运算法则计算得出答案.【解答】解:(1)2x2yz•3xy3z2=6x3y4z3;(2)(﹣2x3)3﹣3x3(x6﹣y2)=﹣8x9﹣3x9+3x3y2=﹣11x9+3x3y2.20.(6分)先化简,再求值3x•(2x2+x﹣1)+x2(﹣4x﹣3),其中x=﹣2.【分析】先根据整式的乘法法则算乘法,再合并同类项,最后代入求出即可.【解答】解:3x•(2x2+x﹣1)+x2(﹣4x﹣3)=6x3+3x2﹣3x﹣4x3﹣3x2=2x3﹣3x,当x=﹣2时,原式=2×(﹣2)3﹣3×(﹣2)=﹣16+6=﹣10.21.(8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,△ABC的三个顶点A、B、C 都在格点上.(1)在图中画出与△ABC关于直线y成轴对称的△A1B1C1;(2)求△ABC的面积;(3)在x轴上找出一点P,使得PB+PC的值最小.(不需计算,在图上直接标记出点P的位置)【分析】(1)依据轴对称的性质,即可得到与△ABC关于直线y成轴对称的△A1B1C1;(2)依据割补法进行计算,即可得出△ABC的面积;(3)作点B关于x轴的对称点B',连接B'C交x轴于P,则PB+PC的值最小.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)△ABC的面积=3×3﹣×2×3﹣×1×2﹣×1×3=;(3)如图所示,点P即为所求.22.(8分)如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:△ABC为等腰三角形.【分析】欲证明AB=AC,只要证明∠ABC=∠ACB即可;【解答】证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF(HL),∴∠EBD=∠FCD,∵BD=CD,∴∠DBC=∠DCB,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB,∴AB=AC.23.(9分)甲乙两人共同计算一道整式乘法:(3x+a)(2x﹣b),甲把第二个多项式中b前面的减号抄成了加号,得到的结果为6x2+16x+8;乙漏抄了第二个多项式中x的系数2,得到的结果为3x2﹣10x﹣8.(1)计算出a、b的值;(2)求出这道整式乘法的正确结果.【分析】(1)先按甲乙错误的说法得出的系数的数值求出a,b的值即可;(2)把a,b的值代入原式,再根据多项式乘多项式的法则进行计算即可得出答案.【解答】解:(1)甲的算式:(3x+a)(2x+b)=6x2+(3b+2a)x+ab=6x2+16x+8,对应的系数相等,3b+2a=16,ab=8,乙的算式:(3x+a)(x﹣b)=3x2+(﹣3b+a)x﹣ab=3x2﹣10x﹣8,对应的系数相等,﹣3b+a=﹣10,ab=8,∴,解得:;(2)根据(1)可得正确的式子:(3x+2)(2x﹣4)=6x2﹣8x﹣8.24.(9分)如图,在Rt△ABC中,∠ABC=90°,点D在边AC上,且∠DBC=∠DCB (1)求证:AD=CD;(2)若∠A=30°,DE⊥AC,交AB于E,求的值.【分析】(1)直接利用直角三角形的性质结合互余两角的关系得出∠A=∠ABD,进而得出答案;(2)直接利用直角三角形的性质表示出AB,AE,BC,AC的长进而得出答案.【解答】(1)证明:∵∠DBC=∠DCB,∠C+∠A=90°,∠ABD+∠DBC=90°,∴∠A=∠ABD,BD=DC,∴AD=BD,则AD=CD;(2)解:∵∠A=30°,DE⊥AC,∴设DE=x,则AE=2x,故AD=x,则DC=x,可得BC=x,则AB=3x,故BE=x,则==.25.(10分)在平面直角坐标系中,我们不妨把横纵坐标相等的点称为“梦之点”,如(﹣1,﹣1),(0,0),(,)…都是梦之点.(1)若点P(32x+4,27x)是“梦之点”,请求出x的值;(2)若n为正整数,点M(x4n,4)是“梦之点”,求(x3n)2﹣4(x2)5n的值;(3)若点A(x,y)的坐标满足方程y=3kx+s﹣1(k,s是常数),请问点A能否成为“梦之点”若能,请求出此时点A的坐标,若不能,请说明理由.【分析】(1)根据“梦之点”的定义列出方程32x+4=27x,求出x的值即可;(2)根据“梦之点”的定义得到(x2n)2=4,再把要求的式子变形为(x2n)3﹣4(x2n)5,最后整体代入求值即可;(3)假设函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”(x,x),则有x=3kx+s﹣2,整理得(3k﹣1)x=1﹣s,再分三种情况进行讨论即可.【解答】解:(1)根据题意得:32x+4=27x,∴32x+4=33x,∴2x+4=3x,解得,x=4;(2)∵点M(x4n,4)是“梦之点”,∴x4n=4,即(x2n)2=4,∵n是正整数,∴2n是偶数,∴x2n=2,∴(x3n)2﹣4(x2)5n=(x2n)3﹣4(x2n)5,=23﹣4×25=8﹣128=﹣120;(3)假设函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”(x,x),则有y=3kx+s﹣1,整理,得(3k﹣1)x=1﹣s,当3k﹣1≠0,即k≠时,解得x=;∴A(,);当3k﹣1=0,1﹣s=0,即k=,s=1时,x有无穷多解;当3k﹣1=0,1﹣s≠0,即k=,s≠1时,x无解;综上所述,当k≠时,“梦之点”的坐标为A(,);当k=,s=1时,“梦之点”有无数个;当k=,s≠1时,不存在“梦之点”.26.(10分)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【分析】(1)根据直线解析式求出点A、B的坐标,然后得出△AOB是等腰直角三角形,再根据角平分线的定义求出∠ABD=22.5°,根据等腰三角形三线合一的性质OM⊥AB,然后根据直角三角形两锐角互余的性质与三角形的一个外角等于与它不相邻的两个内角的和求出∠OND=67.5°,∠ODB=67.5°,利用等角对等边得到ON=OD;(2)延长AE交BO于C,得△ABE≌△CBE,得到AC=2AE,再证△OAC≌△OBD得到BD=AE,从而得到BD=2AE;(3)作FH⊥OP,垂足为H,利用角角边定理可以证明△OBP与△HPF全等,根据全等三角形对应边相等可得FH=OP、PH=OB=4,再证AH=FH,∠F AH=∠OAG=45°,OG=OA=4t.【解答】(1)证明:∵直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,∴a=b=4t,当x=0时,y=4t,当y=0时,﹣x+4t=0,解得x=4t,∴点A、B的坐标是A(4t,0),B(0,4t),∴△AOB是等腰直角三角形,∵点M是AB的中点,∴OM⊥AB,∴∠MOA=45°,∵直线BD平分∠OBA,∴∠ABD=∠ABO=22.5°,∴∠OND=∠BNM=90°﹣∠ABD=90°﹣22.5°=67.5°,∠ODB=∠ABD+∠BAD=22.5°+45°=67.5°,∴∠OND=∠ODB,∴ON=OD(等角对等边);(2)答:BD=2AE.理由如下:延长AE交BO于C,∵BD平分∠OBA,∴∠ABD=∠CBD,∵AE⊥BD于点E,∴∠AEB=∠CEB=90°,在△ABE≌△CBE中,,∴△ABE≌△CBE(ASA),∴AE=CE,∴AC=2AE,∵AE⊥BD,∴∠OAC+∠ADE=90°,又∠OBD+∠BDO=90°,∠ADE=∠BDO(对顶角相等),∴∠OAC=∠OBD,在△OAC与△OBD中,,∴△OAC≌△OBD(ASA),∴BD=AC,∴BD=2AE;(3)OG的长不变,且OG=4.过F作FH⊥OP,垂足为H,∴∠FPH+∠PFH=90°,∵∠BPF=90°,∴∠BPO+∠FPH=90°,∴∠FPH=∠BPO,∵△BPF是等腰直角三角形,∴BP=FP,在△OBP与△HPF中,,∴△OBP≌△HPF(AAS),∴FH=OP,PH=OB=4t,∵AH=PH+AP=OB+AP,OA=OB,∴AH=OA+OP=OP,∴FH=AH,∴∠GAO=∠F AH=45°,∴△AOG是等腰直角三角形,∴OG=OA=4t.2020-2021 学年武汉市二桥中学八年级(上)数学十月月考试卷(无答案)一.选择题(共10 小题,共30 分)1.如图,一扇窗户打开后,用窗钩A B 可将其固定,这里所运用的几何原理是()A.两点之间线段最短 B.三角形两边之和大于第三边C.两点确定一条直线D.三角形的稳定性2.根据下列条件,能够唯一确定△ABC 的是()A.∠A=40°,AB=3.5cm,BC=2.5cm B.AB=5cm,AC=4cm,∠C=30°C.∠A=60°,BC=5cm D.AB=4cm,BC=3cm,AC=8cm3.△ABC 是直角三角形,则下列选项一定错误的是()A.∠A﹣∠B=∠C B.∠A=60°,∠B=40°C.∠A+∠B=∠C D.∠A:∠B:∠C=1:1:24.如图,在△ABC 与△EMN 中,BC=MN=a,AC=EM=b,AB=c,∠C=∠M=54°.若∠A=66°,下列结论正确的是()A.EN=c B.EN=aC.∠E=60°D.∠N=66°5.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为()A.4 B.5 C.6 D.86.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2 等于()A.40°B.60°C.80°D.140°7.在△ABC 中,∠B、∠C 的平分线交于点O,若∠BOC=132°,则∠A 的度数为()A.42°B.48°C.84°D.100°8.如图,已知在△ABC 中,AB=AC,∠A=50°,D 为BC 上一点,BF=CD,CE=BD,那么∠EDF 等于()A.55°B.60°C.65°D.70°9.如图,AB∥CD,BE 和CE 分别平分∠ABC 和∠BCD,AD 过点E,且与AB 互相垂直,点P 为线段BC 上一动点,连接PE.若AD=8,则PE 的最小值为()A.8 B.6C.5 D.410.如图,△AB C 中,A (0,B(﹣4,BC 在 x 轴上 M 为 y 轴上一点,∠BMA =105°,BM ⊥AC 交 AC 于点 E CM=2ME ,连接 MC 、OE .下列结论:①OM =OC ;②∠OEC =45°;③CE +CM =AE ; ④BM =AB ﹣CM . 其中正确的有( ) A .1 个 B .2 个 C .3 个 D .4 个 二.填空题(共 6 小题,共 18 分) 11.如图,把两根钢条 AB ,CD 的中点连在一起做成卡钳,可测量工件内槽的宽,已知 AC 的长度是 6cm ,则工件内槽的宽 B D 是 cm .12.如图,以△ABC 的顶点 A 为圆心,以 BC 长为半径作弧,再以顶点 C 为圆心,以 AB 长为半径作弧,两弧交于点 D ;连接 A D 、CD ,若∠B =56°,则∠ADC 的大小为 度.13.将一副三角板,按如图方式叠放,那么∠α的度数是 .14.已知 a 、b 、c 是三角形的三边,化简|a ﹣b ﹣c |+|b +c ﹣a |﹣|c ﹣a ﹣b |= .15.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G = .16.如图,∠A =∠B =90°,AB =60,E ,F 分别为线段 A B 和射线 B D 上的一点,若点 E 从点 B 出发向点 A 运动,同时点 F 从点 B 出发向点 D 运动,二者速度之比为 3:7,运动到某时刻同时停止,在射线 A C 上取一点 G ,使△AEG 与△BEF 全等,则 A G 的长为 .三.解答题(共8 小题)(8分)计算:(1)+|﹣5|+ ﹣(﹣1)2020;(2).(8(1)解方程组:;(2)解不等式组:,并把解集在数轴上表示出来.(8分)如图所示,在△ABC中:(1)画出BC 边上的高AD 和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.(8分)如图,在△ABC中,∠ACB=90°,D是A C上的一点,且A D=BC,DE⊥AC 于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.21.(8 分)如图,△ABC中,AB=AC,∠EAF=∠BAC,BF⊥AE 于E交AF于点F,连结C F.(1)如图1 所示,当∠EAF 在∠BAC 内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边A E、A F分别在∠BAC外部、内部时,求证:CF=BF+2BE.(10分)疫情无情,人间有爱,为扎实做好复学工作,某市教育局做好防疫物资调配发放工作,租用 A、B 两种型号的车给全市各个学校配送消毒液.已知用 2 辆 A 型车和 1 辆 B 型车装满货物一次可运货 10 吨;用 1 辆 A 型车和 2 辆 B 型车装满货物一次可运货11 吨;教育局现有 21 吨消毒液需要配送,计划租用 A、B 两种型号车 6 辆一次配送完消毒液,且 A 车至少 1 辆.根据以上信息,解答下列问题:(1)1 辆 A 型车和 1 辆 B 型车都装满货物一次可分别运货多少吨?(2)请你帮助教育局设计租车方案完成一次配送完 21 吨消毒液;(3)若 A 型车每辆需租金 80 元/次,B 型车每辆需租金 100 元/次.请选出最省钱的租车方案,并求出最少租车费.(10分)阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数 3 倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3 倍.(1)如果一个“梦想三角形”有一个角为 108°,那么这个“梦想三角形”的最小内角的度数为.(2)如图1,已知∠MON=60°,在射线OM 上取一点A,过点A 作AB⊥OM 交ON 于点B,以 A 为端点作射线AD,交线段OB 于点C(点C 不与O、B 重合),若∠ACB=80°.判定△AOB、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC,作∠ADC 的平分线交AC 于点E,在DC 上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B 的度数.(12分)如图1,已知A((b,0)且a,b满足(a﹣2)2+|4﹣b|=0.(1)求A、B 两点的坐标;(2)如图2,连接AB,若D(,,DE⊥AB于点E,B、C关于y轴对称,M是线段DE 上的一点,且DM=AB,连接AM,试判断线段AC 与AM 之间的位置和数量关系,并证明你的结论;(3)如图3,在(2)的条件下,若N 是线段DM 上的一个动点,P 是MA 延长线上的一点,且DN =AP,连接PN 交y 轴于点Q,过点N 作NH⊥y 轴于点H,当N 点在线段DM 上运动时线段QH 是否为定值?若是,请求出这个值;若不是,请说明理由.2019级八年级(上)数学第一学月月考试题总分 150分 时间 120分钟(无答案)温馨提示:请将所有答案写在答题卷上,只交答题卷...... A 卷(共100分) 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1. 实数4-,0,722,3125-,0.1010010001…(每两个1之间依次多一个0),3.0,2π中,无理数有( )A .4个B .3个C .2个D .1个 2.下列计算结果正确的是( )A .636±=B .6.3)6.3(2-=-C .2)3(3-=- D .3355-=-3. 已知一个三角形三边之比为3:4:5,则这个三角形三边上的高之比为( )A . 3∶4∶5B .5∶4∶3C .20∶15∶12D .10∶8∶2 4. △ABC 在下列条件下不是..直角三角形的是( ) A. ∠A=∠B -∠C B. 222c a b -= C. ∠A︰∠B︰∠C=3︰4︰5 D. 2:3:1::222=c b a 5.若一个正数的两个平方根分别为632-+a a 与,则a 为( ) A .36 B .9 C .4 D .1 6.三角形的三边长为(a+b )2=c 2+2ab,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形. 7.下列各组数中互为相反数的是( )A.2)2(2--与 B.382--与 C.2)2(2-与 D.22与-8.如图,已知矩形ABCD 中,BD 是对角线,∠ABD=30°,将ΔABD 沿BD 折叠,使点A 落在E 处,则∠CDE=( )A .30°B .60°C .45°D .75° 9.已知a >1,下列各式中,正确的是( )(8题图)A DCBA . a >aB .a 1>a C . a 1<a 1 D .a <a 10.如右图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). A .12 B .7 C .5 D .13第Ⅱ卷 (非选择题 共70分)二、填空题(每题4分,共16分)1136的平方根是 ,-8的立方根是 . 12.2-的倒数是 ,3 2(比较大小).13.如图,一圆柱高8cm,底面半径为π6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是________________cm 。

相关文档
最新文档