2018高考高三数学一轮复习讲义精讲精练命题及其关系
最新-2018年高考数学一轮复习 第18讲命题及其关系 充

第二讲命题及其关系、充分条件与必要条件班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.“红豆生南国,春来发几枝.愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这4句诗中,哪句可作为命题( )A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思解析:因为命题是能判断真假的语句,它必须是陈述句,所以首先我们要凭借语文知识判断这4句诗哪句是陈述句,然后再看能否判定其真假.“红豆生南国”是陈述,意思是“红豆生长在中国南方”,这在唐代是事实,故本语句是命题;“春来发几枝”中的“几”是概数,无法判断其真假,故不是命题;“愿君多采撷”是祈使句,所以不是命题;“此物最相思”是感叹句,故不是命题.答案:A2.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:由|x-1|<2得-1<x<3.由x(x-3)<0得0<x<3.因为“-1<x<3成立”⇒“0<x<3成立”,但“0<x<3成立”⇒“-1<x<3成立”.故选B.答案:B评析:如果p ⇒q,q⇒p,则p是q的必要不充分条件.3.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:当a=1时,直线x+y=0和直线x-ay=0互相垂直;当直线x+y=0和直线x-ay=0互相垂直时,有a=1.故选C.答案:C评析:如果p⇒q,q⇒p,则p是q的充要条件.4.x2<4的必要不充分条件是( )A.-2≤x≤2B.-2<x<0C.0<x≤2D.1<x<3解析:x2<4即为-2<x<2,因为-2<x<2⇒-2≤x≤2,而-2≤x≤2不能推出-2<x<2,所以x2<4的必要不充分条件是-2≤x≤2.选A.答案:A5.(2018·天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:否命题是既否定题设又否定结论.因此否命题应为“若函数f(x)不是奇函数,则f(-x)不是奇函数.”答案:B6.设p:x<-2018或x>2018;q:x<-2018或x>2018,则¬p是¬q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:∵p:x<-2018或x>2018;q:x<-2018或x>2018,∴¬p:-2018≤x≤2018,¬q:-2018≤x≤2018.∵∀x∈[-2018,2018],都有x∈[-2018,2018],∴¬p⇒¬q,而∃x0∈[-2018,2018],且x0 ∉ [-2018,2018],如x0=-2018.5,∴¬p是¬q的充分不必要条件.故选A.答案:A二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(2018·江苏金陵中学三模)若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是____________________________.解析:x∉[2,5]且x∉{x|x<1或x>4}是真命题.由x5,1x42,x>⎧⎨⎩<或≤≤得1≤x<2,故x∈[1,2).答案:[1,2)8.设p、r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的________条件,r是t的________条件.(用充分、必要、充要填空)解析:由题意可画出图形:由图形可看出p是t的充分条件,r是t的充要条件.答案:充分充要9.令P(x):ax2+3x+2>0,若对任意x∈R,P(x)是真命题,则实数a的取值范围是__________.解析:对任意x∈R,P(x)是真命题,就是不等式ax2+3x+2>0对一切x∈R恒成立.(1)若a=0,不等式仅为3x+2>0不能恒成立.(2)若980aa>-∆⎧⎨=<⎩,解得a>98.(3)若a<0,不等式显然不能恒成立.综上所述,实数a>98.答案:a>9 810.已知p:log (|x|-3)>0,q:x2- x+16>0,则p是q的________条件.解析:由log (|x|-3)>0可得0<|x|-3<1,解得3<x<4或-4<x<-3.所以p:3<x<4或-4<x<-3.由x2- x+16>0可得x<13或x> ,所以q:x<13或x> .故p是q的充分不必要条件.答案:充分不必要三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.主人邀请张三、李四、王五三个人吃饭聊天,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能来了.”主人听了随口说了句:“你看看,该来的没有来.”张三听了,脸色一沉,起来一声不吭地走了,主人愣了片刻,又道了句:“哎哟,不该走的又走了.”李四听了大怒,拂袖而去.请你用逻辑学原理解释二人的离去原因.解:张三走的原因是:“该来的没有来”的逆否命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因:“不该走的又走了”的逆否命题是“该走的没有走”,李四觉得自己是应该走的.评析:利用原命题与逆否命题同真同假解题非常方便,要注意用心体会!12.已知p:113x--≤2,q:x2-2x+1-m2≤0(m>0).若¬p是¬q的充分不必要条件,求实数m的取值范围.解:由113x--≤2,得-2≤x≤10.“¬p”:A={x|x>10或x<-2}.由x2-2x+1-m2≤0,得1-m≤x≤1+m(m>0).∴“¬q”:B={x|x>1+m或x<1-m,m>0}. ∵¬p是¬q的充分而不必要条件,∴A B.结合数轴有0,110,12,mmm>⎧⎪+⎨⎪--⎩≤≥解得0<m≤3.评析:将充要条件问题用集合的关系来进行转化是解此类题目的关键.13.(2018·潍坊质检)设p:实数x 满足x 2-4ax+3a 2<0,其中a>0,命题q:实数x 满足2260,280.x x x x ⎧--⎪⎨+->⎪⎩≤ (1)若a=1,且p∧q 为真,求实数x 的取值范围;(2)若¬p 是¬q 的充分不必要条件,求实数a 的取值范围.解:先解不等式,把命题p,q 具体化,第(1)问利用真值表求x;第(2)问由互为逆否命题等价确定p 、q 之间的关系,确定关于a 的不等式,问题可解.(1)由x 2-4ax+3a 2<0得(x-3a)(x-a)<0,又a>0,所以a<x<3a.当a=1时,1<x<3,即p 为真时,实数x 的取值范围是1<x<3.由2260280x x x x --+->⎧⎪⎨⎪⎩≤.得2<x≤3, 当q 为真时,实数x 的取值范围是2<x≤3.若p∧q 为真,则p 真且q 真,所以实数x 的取值范围是2<x<3.(2)¬p 是¬q 的充分不必要条件,即¬p ⇒¬q,且¬q ⇒¬p,设A={x|¬p},B={x|¬q},则A B,又A={x|¬p}={x|x≤a 或x≥3a},B={x|¬q}={x|x≤2或x>3},则0<a≤2,且3a>3,所以实数a 的取值范围是1<a≤2.评析:本题中,¬p 是¬q 的充分不必要条件,从而推出集合A 与B 的关系,确定关于a 的不等式组,使问题获得解决.。
2018版高考一轮数学文科:第2讲-命题及其关系、充分条件与必要条件ppt课件

教学参考│课前双基巩固│课堂考点探究│教师备用例题
考试说明
1.理解命题的概念. 2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四 种命题的 相互关系. 3.理解必要条件、充分条件与充要条件的含义.
教学参考
考情分析
考点 命题的四种形式 充要条件的判断 充要条件的应用
[ 解析 ] A 根据数量积的 定义,a· b= a· bcos θ, 由 a· b= a· b可得 cos θ =1, 根据向量所成角的范 围得到 θ=0,所以 a∥b; 若 a∥b,可得向量 a 与向 量 b 共线, 即所成的角为 0 或π,所以 a· b=± a· b, 故选 A.
真题在线
■ [2016-2015]其他省份类似高考真题
1.[2015· 山东卷] 设 m∈R,命题“若 m>0,则方 程 x2+x-m=0 有实根”的逆否命题是( A.若方程 x2+x-m=0 有实根,则 m>0 B.若方程 x2+x-m=0 有实根,则 m≤0 C.若方程 x2+x-m=0 没有实根,则 m>0 D.若方程 x2+x-m=0 没有实根,则 m≤0 )
常用结论 1.充分条件、必要条件的两个结论: (1)若 p 是 q 的充分不必要条件,q 是 r 的充分不必要条件,则 p 是 r 的充分不必要条件; (2)若 p 是 q 的充分不必要条件,则綈 q 是綈 p 的充分不必要条件.
课前双基巩固
2.充分条件、必要条件与集合的关系 p 成立的对象构成的集合为 A,q 成立的对象构成的集合为 B p 是 q 的充分条件 p 是 q 的必要条件 p 是 q 的充分不必要条件 p 是 q 的必要不充分条件 p 是 q 的充要条件 A⊆B B⊆A A B B A A=B
[配套K12]2018版高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件 理
![[配套K12]2018版高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件 理](https://img.taocdn.com/s3/m/adc91b33763231126edb1147.png)
第2讲 命题及其关系、充分条件与必要条件一、选择题1.若a ∈R ,则“a=1”是“|a|=1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析 若a =1,则有|a|=1是真命题,即a =1⇒|a|=1,由|a|=1可得a =±1,所以若|a|=1,则有a =1是假命题,即|a|=1⇒a =1不成立,所以a =1是|a|=1的充分而不必要条件.答案 A2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”解析 原命题的逆命题是:若一个数的平方是正数,则它是负数.答案 B3.已知集合A ={x ∈R|12<2x<8},B ={x ∈R|-1<x<m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A .m≥2B .m≤2C .m>2D .-2<m<2解析 A ={x ∈R|12<2x<8}={x|-1<x<3} ∵x ∈B 成立的一个充分不必要条件是x ∈A ∴∴m +1>3,即m>2.答案 C4.命题:“若x2<1,则-1<x<1”的逆否命题是( )A .若x2≥1,则x≥1或x≤-1B .若-1<x<1,则x2<1C .若x>1或x<-1,则x2>1D .若x≥1或x≤-1,则x2≥1解析 x2<1的否定为:x2≥1;-1<x<1的否定为x≥1或x≤-1,故原命题的逆否命题为:若x≥1或x≤-1,则x2≥1.答案 D5.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( ).A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数解析 否命题既否定题设又否定结论,故选B.答案 B6.方程ax 2+2x +1=0至少有一个负实根的充要条件是( ).A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0 解析 法一 (直接法)当a =0时,x =-12符合题意. 当a ≠0时,若方程两根一正一负(没有零根),则⎩⎪⎨⎪⎧ Δ=4-4a >0,1a <0⇔⎩⎪⎨⎪⎧ a <1,a <0⇔a <0;若方程两根均负,则⎩⎪⎨⎪⎧ Δ=4-4a ≥0,-2a<0,1a >0⇔⎩⎪⎨⎪⎧ a ≤1,a >0⇔0<a ≤1.综上所述,所求充要条件是a ≤1.法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B ,所以选C.答案 C二、填空题7.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p1:|a +b|>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3 p2:|a +b|>1⇔θ∈⎝ ⎛⎦⎥⎤2π3,π p3:|a -b|>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3 p4:|a -b|>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π其中真命题的个数是____________.解析 由|a +b|>1可得a2+2a·b+b2>1,因为|a|=1,|b|=1,所以a·b>-12,故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a·b>-12,|a +b|2=a2+2a·b+b2>1,即|a +b|>1,故p1正确.由|a -b|>1可得a2-2a·b+b2>1,因为|a|=1,|b|=1,所以a·b<12,故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立,p4正确. 答案 28.若“x2>1”是“x<a”的必要不充分条件,则a 的最大值为________.解析 由x2>1,得x<-1或x>1,又“x2>1”是“x<a”的必要不充分条件,知由“x<a”可以推出“x2>1”,反之不成立,所以a≤-1,即a 的最大值为-1.答案 -19.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x<8,x ∈R ,B ={x|-1<x<m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案 (2,+∞)10.“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件. 解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14. 答案 充分不必要三、解答题11.写出命题“已知a ,b ∈R ,若关于x 的不等式x2+ax +b≤0有非空解集,则a2≥4b”的逆命题、否命题、逆否命题,并判断它们的真假.解 (1)逆命题:已知a ,b ∈R ,若a2≥4b,则关于x 的不等式x2+ax +b≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x2+ax +b≤0没有非空解集,则a2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a2<4b ,则关于x 的不等式x2+ax +b≤0没有非空解集,为真命题.12.求方程ax2+2x +1=0的实数根中有且只有一个负实数根的充要条件.解 方程ax2+2x +1=0有且仅有一负根.当a =0时,x =-12适合条件. 当a≠0时,方程ax2+2x +1=0有实根,则Δ=4-4a≥0,∴a≤1,当a =1时,方程有一负根x =-1.当a<1时,若方程有且仅有一负根,则x1x2=1a<0, ∴a<0.综上,方程ax2+2x +1=0有且仅有一负实数根的充要条件为a≤0或a =1.13.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若ab =0,则a =0或b =0;(2)若x2+y2=0,则x ,y 全为零.解 (1)逆命题:若a =0或b =0,则ab =0,真命题.否命题:若ab≠0,则a≠0且b≠0,真命题.逆否命题:若a≠0且b≠0,则ab≠0,真命题.(2)逆命题:若x ,y 全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x ,y 不全为零,真命题.逆否命题:若x ,y 不全为零,则x2+y2≠0,真命题.14.已知p :x2-8x -20≤0,q :x2-2x +1-a2≤0(a>0).若p 是q 的充分不必要条件,求实数a 的取值范围.解 p :x2-8x -20≤0⇔-2≤x≤10,q :x2-2x +1-a2≤0⇔1-a≤x≤1+a.∵p ⇒q ,q ⇒/ p ,∴{x |-2≤xx |1-a ≤x ≤1+a }. 故有⎩⎪⎨⎪⎧ 1-a ≤-2,1+a ≥10,a >0,且两个等号不同时成立,解得a ≥9.因此,所求实数a 的取值范围是[9,+∞).15.已知集合M ={x|x<-3,或x>5},P ={x|(x -a)·(x-8)≤0}.(1)求M∩P={x|5<x≤8}的充要条件;(2)求实数a 的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.解 (1)由M∩P={x|5<x≤8},得-3≤a≤5,因此M∩P={x|5<x≤8}的充要条件是-3≤a≤5;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a=0,此时必有M∩P={x|5<x≤8};反之,M∩P ={x|5<x≤8}未必有a=0,故a=0是M∩P={x|5<x≤8}的一个充分不必要条件.。
2018高考数学文科一轮复习讲义 12.1 第一节 命题及其关系、充分条件与必要条件

第十二板块选修1-1第一章常用逻辑用语【学科点悟】传道解惑,高屋建瓴高考纵横:逻辑是研究思维形式及其规律的一门学科,是人们认识和研究问题不可缺少的工具,是为了培养学生的推理技能,发展学生的思维能力.要正确理解“充分条件”“必要条件”“充要条件”的概念.了解逻辑联结词“或”、“且”、“非”的含义,理解全称量词与存在量词等有关概念,学会使用常用的逻辑用语准确地表达数学内容;体会逻辑用语在表述和论证中的作用,形成自觉地利用逻辑知识对一些命题间的逻辑关系进行分析和推理的意识,发展学生利用数学语言准确贴切地描述问题、规范简洁地阐述论证过程的能力,从而能够更好地进行数学交流;激发学生数学学习的兴趣,优化学生数学思维的品质,帮助学生逐步养成良好的学习习惯.新课标高考中本章内容一般为中档题,集合与常用逻辑用语的考查点往往是与其它章节的一些知识点交汇考查,体现了数形结合、分类讨论等数学思想方法的重要应用.通过集合语言表达出的数学对象也往往是简洁和准确的,体现数学的简洁美. 而逻辑用语在表述和论证中体现出了其准确贴切地描述问题、规范简洁地阐述论证过程巧妙,优化了考生的数学思维品质.命题趋向:1.简易逻辑的考查趋向较多的是与其他知识的交汇问题,其中涉及简易逻辑的知识考查较为基础,较为稳定.2.有关“充要条件”、命题真伪的试题.主要是对数学概念有准确的记忆和深层次的理解.试题以选择题、填空题为主,难度不大,考查对数学概念的准确记忆和深层次的理解.要求对基本知识、基本题型,求解准确熟练.状元心得:1.数学概念的定义具有对称性,即数学概念的定义可以看成充要条件,既是概念的判断依据,又是概念所具有的性质.2.依据多个命题间的关系,判断其中两个命题之间的关系.解这类问题,需要明确两者之间的关系,可先用推出符号“ ”作运载工具,将各命题之间的联系找出来,最后找到所求命题之间的关系.学科知识体系结构图:第一节 命题及其关系、充分条件与必要条件【考点点知】知己知彼,百战不殆常用逻辑用语是数学学习、数学思维的工具,新课标高考中有加大比例的趋势,既可以用客观题直接考查,也可以在解答题中隐性考查,形式灵活.根据最新考试大纲,新高考对本讲知识的考查将保持原有的特色,重点是命题的四种形式及命题的等价性和充要条件的判定.主要考查命题转换、逻辑推理能力.考点一: 四种命题及其相互关系1.四种命题:(1)在两个命题中,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题;(2)一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题,把其中一个命题叫做原命题,另一个就叫做原命题的否命题;(3)一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题互为逆否命题, 把其中一个叫原命题,另一个叫做原命题的逆否命题.2.四种命题之间的关系:(1)互逆关系:原命题与逆命题;否命题与逆否命题.(2)互否关系:原命题与否命题;逆命题与逆否命题.(3)互为逆否关系(等价关系):原命题与逆否命题;逆命题与否命题.3.真假关系:原命题为真,它的逆命题不一定为真;原命题为真,它的否命题不一定为真;原命题为真,它的逆否命题一定为真.考点二: 充要条件1.充分条件:如果已知p ⇒q ,即若p 则q ,称p 是q 的充分条件.2.必要条件:如果已知q ⇒p ,即若q 则p ,即称p 是q 的必要条件.3.充要条件:如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,这时p 既是q 的充分条件,又是q 的必要条件,我们就说p 是q 的充分必要条件,简称充要条件.4.既不充分又不必要条件:如果p 、q 之间关系为:p q 且q p ,这时就称p 是q的既不充分也不必要条件.【考题点评】分析原因,醍醐灌顶例1.(基础·2007重庆,2)命题“若21x <,则11x -<<”的逆否命题是( )A.若21x ≥,则1x ≥或1x -≤B.若11x -<<,则21x < C.若1x >或1x <-,则21x > D.若1x ≥或1x -≤,则21x ≥ 思路透析:命题“若21x <,则11x -<<”的逆否命题是“若1x ≥或1x -≤,则21x ≥”,故应选D.点评:在推理与论证的命题中,此类命题需要重新组合,而且对于每一个命题中条件与结论的否定必须准确判断,因而此类问题既具有一定的开放性,又具有一定的难度.例2.(基础·2007浙江,1)“1x >”是“2x x >”的( )A.充分而不必要条件 B.必要而不充分条件C.充分不必要条件 D.既不充分也不必要条件思路透析:∵{ x | x 2>x }={ x | x >1或x <0},∴{ x | x >1}⊂≠{ x | x >1或x <0},即“1x >”是“2x x >”的充分而不必要条件, 故应选A .点评:要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.例3.(综合·2007山东卷理科9)下列各小题中,p 是q 的充要条件的是①:2p m <-或6;m > 2:3q y x mx m =+++有两个不同的零点. ②():1()f x p f x -=; :()q y f x =是偶函数. ③:cos cos ;p αβ= :tan tan q αβ=.④:p A B A = ; U U :B A q ⊆痧. (A) ①② (B)②③(C)③④ (D) ①④ 思路透析:函数23y x mx m =+++有两个不同的零点24(3)062m m m m ⇔∆=-+>⇔><-或,即①中命题p 是q 的充要条件; 由()1()f x f x -=可得()()f x f x =- (且()0f x ≠), 即得函数()f x 为偶函数,反之不成立,即得②中命题p 是q 的充分不必要条件;由cos cos tan tan αβαβ=⇒=±或正切值不存在,反之t a n t a n c αβαβ=⇒=±,即得③命题中p 是q 的既不充分与不必要条件;U U A B A A B A B =⇔⊆⇔⊇ 痧, 即得④中命题p 是q 的充要条件.综上所述, p 是q 的充要条件是①④, 故应选D.点评:本题错误率较高,考生往往因为单一命题的判断不正确而出现误选,另外充要条件的判断,对命题的条件认识不到位将充分性与必要性搞混淆也是出错的重要原因之一.解此类问题时,应当先确定命题的条件,再分析是充分还是必要条件,要学会特殊化思想在解题中的灵活应用.例4.(综合·2006湖北省八校二联)下列判断正确的是( )A .若y x ,是实数,则22y x ≠⇔y x ≠或y x -≠B .命题:“b a ,都是偶数,则b a +是偶数”的逆否命题是“若b a +不是偶数,则b a ,都不是偶数”C .若“p 或q ”为假命题,则“非p 且非q ”是真命题D .已知c b a ,,是实数,关于x 的不等式2ax +bx +0≤c 的解集是空集,必有0>a 且△≤0思路透析:考察A :对于实数y x ,,易知{}(,),R x y x y x y x y ≠≠-∈或且, ={}R ),(∈y x y x ,.很显然{}R ,),(22∈≠y x y x y x ,且是{}R ),(∈y x y x ,的真子集,故A 不正确;也可以举反例.考察B : b a ,是否为偶数应分四种情形:b a ,都是偶数、a 是偶数b 不是偶数、b 是偶数a 不是偶数、b a ,都不是偶数;所以对于“b a ,都是偶数”的否定是“b a ,不都是偶数”,从而命题:“b a ,都是偶数,则b a +是偶数”的逆否命题应是“若b a +不是偶数,则b a ,不都是偶数”. 故B 不正确;考察C : “p 或q ”为假命题当且仅当p 、q 均为假命题,则“非p 、非q ”都是真命题.故C 正确.考察D :如1,0===c b a ,使得2ax +bx +0≤c 的解集是空集,但是不满足0>a 且△≤0,故D 不正确.故应选C.点评:本题以开放题形式考查了命题真假的判断,该命题汇集一元二次不等式的解集、四种命题、集合运算函数的奇偶性等知识于一体,展现了充要条件命题空间的广阔性及延展性.例5.(创新探究·2007上海,10)在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异面直线的充分条件: .思路透析:若两条直线在一个平面内的射为一对平行直线,则这两直线平行或异面, 由此结论知,只需要该对直线在另一平面内的射影满足是两条相交直线即可.故可以填: 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交).点评:本题考查了本题考查了充要条件,解题过程中可以列举反例论证或应用图形来图解,考查了考生灵活选择方法解选择题的策略.从集合观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 、B 互为充要条件.例6.(创新探究·2008天津摸底)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.思路透析: ①必要性:由已知得,线段AB 的方程为y =-x +3(0≤x ≤3)由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y (*)有两个不同的实数解.消元得:x 2-(m +1)x +4=0(0≤x ≤3)设f (x )=x 2-(m +1)x +4,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤<⇒≥++-=≥=>⨯-+=∆3210310304)1(39)3(04)0(044)1(2m m m f f m ②充分性:当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >0 3216)1310(1310216)1(1222=-+++≤-+-+=m m x ∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组(*)有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件3<m ≤310. 点评:在论述命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).【画龙点睛】探索规律,豁然开朗1.规律总结:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假.但原命题与逆命题、否命题都不等价;当一个命题的真假不易判断时,可考虑判断其等价命题的真假. (2)判断命题充要条件的三种方法:①定义法:关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件.②从集合角度解释,利用集合间的包含关系判断:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若B A ⊆,则A 是B 的必要条件或B 是A 的充分条件;若A=B ,则A 是B 的充要条件.③等价法:即利用等价关系"A B A "⌝⇒⌝⇔⇒B 判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.2.学以致用:(1)已知三个不等式:000cd ab bc ad a b>->->,,(其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( )A. 0B. 1C. 2D. 3(2)原命题:“设a 、b 、c R ∈,若22ac bc >则a b >”的逆命题、否命题、逆否命题真命题共有:( )A .0个B .1个C .2个D .3个(3)设p q ,是两个命题:12:log (||3)0p x ->,251:066q x x -+>,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(4)若已知A 是B 的充分条件,C 是D 的必要条件,而B 是D 的充要条件,则D 是C 的_______条件;D 是A 的_______条件;A 是C 的_______条件,D 是B 的_______条件.答案:(1)D 解析:上述命题中可推得000>-⇒>->bd a c ad bc ab ,,; 00c d ab bc ad a b >-⇒->, ;00c d bc ad ab a b->-⇒>,,正确的命题有3个,故应选D. (2)B 解析:若22ac bc >,则a b >,即原命题正确;而若a b >,则22ac bc >,不一定成立(0c =不成立),即得其逆命题为假命题.∴逆否命题为真命题,否命题为假命题,真命题共的1个,故应选B.(3)A 解析:由命题p 可得33x x ><-或, 由命题q 可得1123x x ><或, ∵113323x x x x ><-⇒><或或, ∴p 是q 的充分而不必要条件,故应选A. (4)充分 必要 充分 充要 解析:A ⇒B ⇔D ⇒C , D 是C 的充分条件,D 是A 的必要条件,A 是C 的充分条件,D 是B 的充要条件.3.易错分析:(1)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定而命题的否定仅对命题的结论否定(2)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“"A B A "⌝⇒⌝⇔⇒B ”判断其真假,这也是反证法的理论依据.(3)有关充要条件的计算或证明题,必有两方面的证明:充分性和必要性.一般先证明充分性,其次证明必要性.(4)充要条件的证明关键是根据定义确定哪个是已知条件,哪个是结论,再去确定充分性是证明哪一个命题,必要性是证明哪一个命题.【能力训练】学练结合,融会贯通一、选择题:1.设M N ,是两个集合,则“M N ≠∅ ”是“M N ≠∅ ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件2.若命题p 的否命题是q ,命题q 的逆命题是r,则r 是p 的逆命题的A .原命题 B.逆命题 C.否命题 D.逆否命题3.若数列{}n a 为等比数列,则“3516a a =”是“44a =”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知,,a b c R ∈,则“a b >”是“ac bc >”的( )A .充分不必要条件B .必要不充分条件C .充要条件 D.既不充分也不必要条件5.若21:20,:0,|1|x p x x q x +--<>-则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D.既不充分也不必要条件6.给出下列关于互不相同的直线l,m,n 和平面α,β,γ的三个命题① 若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;② 若α∥β,l ⊂α,m ⊂β,则l ∥m;③ 若α∩β=l, β∩γ=m, γ∩α=n,l ∥γ,则m ∥n.其中真命题的个数为A.3B.2C.1D.0二、填空题:7.命题“若两个三角形相似,则这两个三角形面积之比等于对应高的平方比”的逆否命题是 . (填:真命题, 或假命题)8.已知P=}4|{<a x x -,Q=}034|{2<+-x x x ,且x ∈P 是x ∈Q 的必要条件,则实数a 的取值范围是_________________9.如果不等式1||<-a x 成立的充分不必要条件是1322x <<,则实数a 的取值范围是 .10.下列四个命题中,真命题的序号有 (写出所有真命题的序号). ①将函数y =1+x 的图象按向量y =(-1,0)平移,得到的图象对应的函数表达式为y =x ②圆x 2+y 2+4x -2y +1=0与直线y =x 21相交,所得弦长为2③若sin(α+β)=21 ,则sin(α-β)=31,则tan αcot β=5 ④如图,已知正方体ABCD- A 1B 1C 1D 1,P 为底面ABCD 内一动点,P 到平面AA 1D 1D 的距离与到直线CC 1的距离相等,则P 点的轨迹是抛物线的一部分.三、解答题:11.若()12)2(2422+----=p p x p x x f 在[-1,1]上至少存在一点c 使()0f c >,求实数p 的取值范围.12.已知a ,b ,c 都是实数,证明ac <0是关于x 的方程ax 2+bx +c =0有一个正根和一个负根的充要条件.13.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点.(Ⅰ)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.14.已知关于x 的一元二次方程mx 2-4x +4=0, ①x 2-4mx +4m 2-4m -5=0. ②求使方程①②都有实根的充要条件.【能力训练】参考答案一、选择题:1. B2. C3. B4. D5. D6. C二、填空题:7. 真命题 8. -1≤a ≤5 9. ]23,21[ 10. ③④三、解答题:11.解析:该题可利用其否命题来解.该命题的否命题是: ()12)2(2422+----=p p x p x x f 在[-1,1]不存在点C 使()0f c >即对任意x ∈[-1,1], ()f x ≤0 .即R A =ð{|p 在]1,1[-上函数()()}01222422≤+----=p p x p x x f⎪⎩⎪⎨⎧≤++-=-≤+--=∴012)1(0932)1(22p p f p p f 解之得332p p ≤-≥或, 即3|32R A p p p ⎧⎫=≤-≥⎨⎬⎩⎭或ð , ∴⎭⎬⎫⎩⎨⎧<<-=233|p p A 故实数p 的取值范围为3(3,)2p ∈- . 12.证明:(1)充分性:若ac <0,则Δ=b 2-4ac >0.方程ax 2+bx +c =0有两个相异的实根,设为x 1,x 2.∵ac <0,∴x 1x 2=ac <0. 即x 1、x 2的符号相反,即方程有一个正根和一个负根.(2)必要性:若方程ax 2+bx +c =0有一个正根和一个负根,设为x 1,x 2,且x 1>0,x 2<0,则x 1x 2=ac <0,∴ac <0. 由(1)(2)知ac <0是方程ax 2+bx +c =0有一个正根和一个负根的充要条件.13.证明:(1)设过点T(3,0)的直线l 交抛物线y 2=2x 于点A(x 1,y 1)、B(x 12,y 2).当直线l 的斜率不存在时,直线l 的方程为x=3,此时,直线l 与抛物线相交于点A(3,6)、B(3,-6).∴⋅=3当直线l 的斜率存在时,设直线l 的方程为y=k(x -3),其中k≠0.当 y 2=2x 得ky 2-2y -6k=0, 则y 1y 2=-6.y=k(x -3) 又∵x 1=21y 21, x 2=21y 22, ∴⋅=x 1x 2+y 1y 2=21221)(41y y y y +=3. 综上所述, 命题“如果直线l 过点T(3,0),那么⋅=3”是真命题.(2)逆命题是:设直线l 交抛物线y 2=2x 于A 、B 两点,如果⋅=3,那么该直线过点T(3,0).该命题是假命题.例如:取抛物线上的点A(2,2),B(21,1),此时OB OA ⋅=3, 直线AB 的方程为Y=32(X+1),而T(3,0)不在直线AB 上. 说明:由抛物线y 2=2x 上的点A(x 1,y 1)、B(x 12,y 2)满足OB OA ⋅=3,可得y 1y 2=-6. 或y 1y 2=2,如果y 1y 2=-6.,可证得直线AB 过点(3,0);如果y 1y 2=2, 可证得直线AB 过点(-1,0),而不过点(3,0).14.解析:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1; 方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45. ∴方程①②都有实数根的充要条件是-45≤m ≤1.。
【课标通用】2018届高考数学(理)一轮课件:2-命题及其关系、充分条件和必要条件

等于圆的半径,所以直线与圆相切,故③为真命题.故选 C.
考点3
考点4
试做真题
高手必备 萃取高招 对点精练
4.(2017北京,理13)能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c” 是假命题的一组整数a,b,c的值依次为 . 【答案】 -1,-2,-3(答案不唯一) 【解析】 答案不唯一,如令a=-1,b=-2,c=-3,则a>b>c,而a+b=-3=c, 能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题.
考点3
考点4
试做真题
高手必备 萃取高招 对点精练
1.(2017广西南宁一模)下列有关命题的说法正确的是( ) A.命题“若x2=4,则x=2”的否命题为“若x2=4,则x≠2” B.命题“∃x∈R,x2+2x-1<0”的否定是“∀x∈R,x2+2x-1>0” C.命题“若x=y,则sin x=sin y”的逆否命题为假命题 D.若“p∨q”为真命题,则p,q至少有一个为真命题 【答案】 D 一个命题的否命题是对命题的条件和结论同时否定, 对于A,只否定结论,未否定条件,故A错;对于B,命题“∃x∈R,x2+2x1<0”的否定是“∀x∈R,x2+2x-1≥0”,故B错;对于C,命题“若x=y,则sin x=sin y”是真命题,所以该命题的逆否命题为真命题,故C错;对于D, 若“p∨q”为真命题,则p,q至少有一个为真命题是正确的,故选D.
【答案】 C V'= πr3= π
4 3 4 3
4 3 设球半径为 R,缩小后半径为 r,则 V= πR , 3 3 1 1 4 1 ������ = × πR3,所以该球体积缩小到原来的 ,故①为 2 8 3 8 1 2 1 2
[配套K12]2018届高考数学一轮复习 第一章 集合与常用逻辑用语 第二节 命题及其关系、充分条件
![[配套K12]2018届高考数学一轮复习 第一章 集合与常用逻辑用语 第二节 命题及其关系、充分条件](https://img.taocdn.com/s3/m/4b55e1eb195f312b3169a583.png)
第二节命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.知识点一命题及四种命题1.命题的概念用语言、符号或式子表达的,可以________的陈述句叫做命题,其中判断为真的语句叫做________,判断为假的语句叫做________.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有________的真假性;②两个命题互为逆命题或互为否命题,它们的真假性________.答案1.判断真假真命题假命题2.(1)若q,则p若綈p,则綈q若綈q,则綈p(2)①相同②没有关系1.(选修1-1P8习题1.1A组第2(1)题改编)命题“若a,b都是奇数,则a+b是偶数”的逆否命题为________.解析:“a,b都是奇数”的否定为“a,b不都是奇数”,“a+b是偶数”的否定为“a +b不是偶数”,故其逆否命题为“若a+b不是偶数,则a,b不都是奇数”.答案:若a+b不是偶数,则a,b不都是奇数2.命题“单调函数不是周期函数”的逆否命题是________.解析:命题可改写为“若函数是单调函数,则函数不是周期函数”,故其逆否命题是“若函数是周期函数,则函数不是单调函数”,简化为“周期函数不是单调函数”.答案:周期函数不是单调函数知识点二充分条件与必要条件1.若p⇒q且q⇒p,则p是q的____________条件,q是p的__________条件;若p⇒q且q⇒p,则p是q的________条件,q也是p的________条件.2.若A、B为两个集合,满足A B,则A是B的__________条件,B是A的__________条件;若A=B,则A是B的________条件.答案1.充分不必要必要不充分充分必要充分必要2.充分不必要必要不充分充分必要3.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:由x>y推不出x>|y|,由x>|y|能推出x>y,所以“x>y”是“x>|y|”的必要而不充分条件.答案:C4.(选修1-1P12习题1.2A组第4题改编)圆(x-a)2+(y-b)2=r2经过原点的一个充要条件是( )A.ab=0 B.a=0且b=0C.a2+b2=r2D.r=0解析:圆(x-a)2+(y-b)2=r2经过原点的一个充要条件是:原点(0,0)是此方程的解,即a2+b2=r2,故选C.答案:C5.设x∈R,则x>2的一个必要不充分条件是( )A.x>1 B.x<1C.x>3 D.x<3解析:x>2⇒x>1,但x>1⇒x>2.答案:A热点一四种命题及其关系【例1】(1)命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为( )A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题(2)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)【解析】(1)根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.(2)①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x +y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.【答案】(1)C (2)①③设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:“方程x2+x-m=0有实根”的否定是“方程x2+x-m=0没有实根”;“m>0”的否定是“m≤0”,故命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案:D热点二充分必要条件的判定考向1 定义法判断充分必要条件【例2】(2016·天津卷)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n-1+a2n<0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【解析】由题意得,a n=a1q n-1(a1>0),a2n-1+a2n=a1q2n-2+a1q2n-1=a1q2n-2(1+q).若q<0,因为1+q的符号不确定,所以无法判断a2n-1+a2n的符号;反之,若a2n-1+a2n<0,即a1q2n-2(1+q)<0,可得q<-1<0.故“q<0”是“对任意的正整数n,a2n-1+a2n<0”的必要而不充分条件,选C.【答案】 C考向2 集合法判断充分必要条件【例3】 (2017·中原名校联考)已知p :a <0,q :a 2>a ,则綈p 是綈q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 因为綈p :a ≥0,綈q :0≤a ≤1,所以綈q ⇒綈p 且綈p ⇒綈q ,所以綈p 是綈q 的必要不充分条件. 【答案】 B考向3 等价转化法判断充分必要条件【例4】 已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 因为p :x +y ≠-2,q :x ≠-1,或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1.因为綈q ⇒綈p 但綈p ⇒綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件. 故选A.【答案】 A(1)若p :φ=π2+k π,k ∈Z ,q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件(2)(2017·安徽合肥质检)“x >2”是“x 2+2x -8>0”成立的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件(3)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:(1)(定义法)若φ=π2+k π,k ∈Z ,则f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π2+k π=cos(ωx +k π)=⎩⎪⎨⎪⎧cos ωx ,k 为偶数,-cos ωx ,k 为奇数,所以函数f (x )是偶函数;若f (x )=sin(ωx +φ)(ω≠0)是偶函数,则φ=π2+k π,k ∈Z .故选A.(2)(集合法)记集合A ={x |x >2},由x 2+2x -8>0,可解得x <-4或x >2,记为集合B ={x |x <-4或x >2},因为A B ,所以“x >2”是“x 2+2x -8>0”成立的充分不必要条件.故选B.(3)(等价法)因为綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p ⇒q ,其逆否命题为p ⇒綈q 但綈q ⇒p ,所以p 是綈q 的充分不必要条件.答案:(1)A (2)B (3)A 热点三 充分必要条件的应用【例5】 (1)若“m -1<x <m +1”是“x 2-2x -3>0”的充分不必要条件,则实数m 的取值范围是________.(2)若“x <m -1或x >m +1”是“x 2-2x -3>0”的必要不充分条件,则实数m 的取值范围是________.【解析】 (1)由不等式x 2-2x -3>0,得x >3或x <-1.因为“m -1<x <m +1”是“x 2-2x -3>0”的充分不必要条件,所以{x |m -1<x <m +x |x >3或x <-1},所以m +1≤-1或m -1≥3,解得m ≤-2或m ≥4,故m 的取值范围为(-∞,-2]∪[4,+∞).(2)由不等式x 2-2x -3>0,得x >3或x <-1.因为“x <m -1或x >m +1”是“x 2-2x -3>0”的必要不充分条件,所以{x |x >3或x <-x |x <m -1或x >m +1},所以⎩⎪⎨⎪⎧m -1≥-1,m +1≤3,解得0≤m ≤2,故m 的取值范围为[0,2].【答案】 (1)(-∞,-2]∪[4,+∞) (2)[0,2]设p :实数x 满足x 2-4ax +3a 2<0(a <0),q :实数x 满足x 2-x -6<0或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,则a 的取值范围是________.解析:∵x 2-4ax +3a 2<0(a <0),∴3a <x <a ,∵x 2-x -6<0,∴-2<x <3.∵x 2+2x -8>0,∴x <-4或x >2,∴q :{x |x <-4或x >-2}.∵綈p 是綈q 的必要不充分条件,∴p 是q 的充分不必要条件,∴{x |3a <x <a ,ax |x <-4或x >-2},∴a ≤-4或3a ≥-2,解得a ≤-4或a ≥-23.又a <0,∴a 的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫-23,0. 答案:(-∞,-4]∪[-23,0)1.对于命题正误的判断是高考的热点之一,理应引起大家的关注,命题正误的判断可涉及各章节的内容,覆盖面宽,也是学生的易失分点.命题正误的判断的原则是:正确的命题要有依据或者给以论证;不一定正确的命题要举出反例,绝对不要主观臆断,这也是最基本的数学逻辑思维方式.2.判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【例】 命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( ) A .若f (x )是偶函数,则f (-x )是偶函数 B .若f (x )不是奇函数,则f (-x )不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数【解析】由于一个命题的否命题就是命题的条件与结论分别否定,故原命题的否命题是“①若f(x)不是奇函数;则②f(-x)不是奇函数”.【答案】 B解题策略:①②中均可能出现否定不当的错误,对“f(x)是奇函数”的否定只能是“f(x)不是奇函数”,而不能是“f(x)是偶函数”,因为除了奇函数和偶函数之外,还有非奇非偶函数,所以在否定时要特别注意细微的差异.(1)命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是( )A.若log a2≥0(a>0,a≠1),则函数f(x)=log a x在其定义域内不是减函数B.若log a2<0(a>0,a≠1),则函数f(x)=log a x在其定义域内不是减函数C.若log a2≥0(a>0,a≠1),则函数f(x)=log a x在其定义域内是增函数D.若log a2<0(a>0,a≠1),则函数f(x)=log a x在其定义域内是增函数(2)命题“若a2+b2=0,则a=b=0”的否命题是( )A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a2+b2=0,则a≠0且b≠0D.若a2+b2=0,则a≠0或b≠0解析:(1)易知原命题的逆否命题是“若log a2≥0(a>0,a≠1),则函数f(x)=log a x在其定义域内不是减函数”.(2)命题“若a2+b2=0,则a=b=0”的否命题是“若a2+b2≠0,则a≠0或b≠0”.答案:(1)A (2)B。
高考数学一轮复习讲义第一章命题和其关系充分条件与必要条件
例 1 以下关于命题的说法正确的有_______ (填写所有正确
命题的序号).
①“若 log2a>0,则函数 f(x)=logax (a>0,a≠1)在其定义 域内是减函数”是真命题;
②命题“若 a=0,则 ab=0”的否命题是“若 a≠0,则
ab≠0”;
③命题“若 x,y 都是偶数,则 x+y 也是偶数”的逆命
一轮复习讲义
命题及其关系、充 分条件与必要条件
高考数学一轮复习讲义第 一章命题与其关系充分条
要点梳理
忆一忆知识要点
1.命题的概念
在数学中把用语言、符号或式子表达的,能够 判断真假 的
陈述句叫做命题.其中判断为真的语句叫真命题,判断为假
的语句叫假命题.
2.四种命题及其关系
(1)四种命题
命题
表述形式
原命题
高考数学一轮复习讲义第 一章命题与其关系充分条
对于①,若 log2a>0=log21,则 a>1,所以函数 f(x) =logax 在其定义域内是增函数,因此①是假命题,故①不 正确;
对于②,依据一个命题的否命题的定义可知,该说法正确;
对于③,原命题的逆命题是“若 x+y 是偶数,则 x、y 都 是偶数”,是假命题,如 1+3=4 是偶数,但 3 和 1 均为 奇数,故③不正确;
对于④,不难看出,命题“若 a∈M,则 b∉M”与命题“若 b∈M,则 a∉M”是互为逆否命题,因此二者等价,所以④ 正确.
综上可知正确的说法有②④.
答案 ②④
高考数学一轮复习讲义第 一章命题与其关系充分条
探究提高
(1)熟悉四种命题的概念是正确书写或判四种命题真假 的关键;(2)根据“原命题与逆否命题同真同假,逆命题与 否命题同真同假”这一性质,当一个命题直接判断不易进 行时,可转化为判断其等价命题的真假;(3)认真仔细读题, 必要时举特例.
2018高考高三数学一轮复习讲义精讲精练:命题及其关系、充分条件和必要条件03Word版含答案(共15张PPT)
题型二 充分条件、必要条件的判断
6.已知P: x+y≠2009;Q:x≠2000且y≠9,则P是Q 的 既不充分又不必要 条件. ___________________ 解: 逆否命题是x=2000或y=9 ⇒x+y=2009不成立,
P¿ Q
显然其逆命题也不成立.
P¾ Q
题型三 充要条件的证明
例2.求证:关于x的方程x2+mx+1=0有两个负实根的充要 条件是m≥2.
1 1 a ≤ 2 , a 2 , 或 a 1 1. a 1 ≥ 1.
从而p是q的充分不必要条件,即 A Ü B. 从而 p 是 q 的充分不必要条件,即 A Ü B ,
2 2 ]. 故所求实数a的取值范围是 [0, 1 2
解之,得 0 a ≤ 1 , 或0 ≤ a 1 ,
题型四 与充要条件有关的参数问题
若 p 是 q 的必要不充分条件,求实数 a 的取值范围.
例 3.设命题 p:(4x-3)2≤1;命题 q:x2-(2a+1)x+a(a+1)≤0,
解:设A={x|(4x-3)2≤1}, B={x|x2-(2a+1)x+a(a+1)≤0}, 易知A={x| 1 2 ≤x≤1}, B={x|a≤x≤a+1}. 由 p 是 q 的必要不充分条件,
证明:(2)必要性:因为x2+mx+1=0的两个实根x1,x2均为负, 且x1x2=1,
所以m-2=-(x1+x2)-2 ( x1 1 ) 2 x1
所以m≥2. 综合(1)(2)知命题得证.
( x1 1)2 ≥ 0, x1
变式 1. 求关于x的方程ax2+2x+1=0至少有一个负实
1 4mn
逆否命题:
【高考数学】2018最新高三数学课标一轮复习课件:1.2 命题及其关系、充分条件与必要条件(PPT课件)
-5-
2.四种命题及其关系 (1)四种命题的表示及相互之间的关系
(2)四种命题的真假关系 ①互为逆否的两个命题 等价 ( 同真 或 同假 ②互逆或互否的两个命题 不等价 .
). 偶数 个.
③在四种形式的命题中真命题的个数只能是
第一章
知识梳理 双击自测
1.2 命题及其关系、充分条件与必要条件
条件.
关闭
满足条件p的集合A={x|x<1},满足条件q的集合B={x||x|<1}.
满足条件r的集合C={x|-1<x<1}.
由于A⫌B,故p是q的必要不充分条件; 由于C⫋A,故r是p的充分不必要条件;
由于B=C,故q是r的充要条件. 必要不充分 充分不必要 充要
解析
关闭
答案
第一章
知识梳理 双击自测
-7-
(3)充分条件和必要条件与集合的关系: (p成立的对象的集合为A,q成立的对象的集合为B)
p 是 q 的 充分不必要 条 p⇒q,且 q p 件 p 是 q 的 必要不充分 条 q⇒p,且 p q 件 p是q的 件 A 与 B 关系:
A是B的真子集
A 与 B 关系:
B是A的真子集
A 与 B 关系:
第一章
1.2 命题及其关系、充分条件与必要条件
考情概览 知识梳理 核心考点 学科素养
-3-
2017 2016 2015 2014 2013 高考对这部分知识考查主要两个方面,一是命题及其关 系判断,一般都是以其他数学知识为载体进行考查,难度 考向分 往往较大;二是充分条件和必要条件的判定,多数是与函 析 数、不等式、三角函数、立体几何、解析几何等知识 点进行结合命题,一般是低档题或中档题为主,两者题型 多为选择题. 年份
2018-2019年高三人教版A版数学(理)高考一轮复习课件:第一章 第二节 命题及其关系、充分条件与必要条件
知识点二
又否定结论,而命题的否定是只否定命题的结论. 必备方法 由于互为逆否命题的两个命题具有相同的真假性,
因ห้องสมุดไป่ตู้当判断一个命题的真假比较困难时,可转化为判断它的逆否 命题的真假.
知识点一
[自测练习]
1.命题“若 x2+3x-4=0,则 x=-4” 的逆否命题及其真假性为( C ) A.“若 x=-4,则 x2+3x-4=0”为真 命题 B.“若 x≠-4,则 x2+3x-4≠0”为真 命题 C.“若 x≠-4,则 x2+3x-4≠0”为假 命题 D.“若 x=-4,则 x2+3x-4=0”为假 命题
2
试题
解析
A 中逆命题为“若 x>|y|,则 x>y”是真命题; B 中否命题为“若 x≤1,则 x2≤1”是假命题; C 中否命题为“若 x≠1,则
题组训练
C.命题“若 x=1,则 x +x-2=0”的 否命题 D.命题“若 x >0,则 x>1”的逆否命题
2
2
x2+x-2≠0”是假命题; D 中原命题是假命题,从而 其逆否命题也为假命题.
考点一
试题
解析
题组训练
3 . 以 下 关 于 命 题 的 说 法 正 确 的 有 对于①, 若 log2a>0=log21, 则 ②④ 填写所有正确命题的序号). ________( a>1,所以函数 f(x)=logax 在 ①“若 log2a>0,则函数 f(x)=logax(a>0, 其定义域内是增函数,故①不 a≠1) 在其定义域内是减函数”是真命 正确;对于②,依据一个命题 题; 的否命题的定义可知,该说法 ②命题“若 a=0,则 ab=0”的否命题 正确;对于③,原命题的逆命 是“若 a≠0,则 ab≠0”; 题是“若 x+y 是偶数,则 x, ③命题“若 x,y 都是偶数, 则 x+y 也是 y 都是偶数”,是假命题, 如1 偶数”的逆命题为真命题; +3=4 是偶数, 但 3 和 1 均为 ④命题“若 a∈M, 则 b∉M”与命题“若 奇数,故③不正确;对于④, b∈M,则 a∉M”等价.