2020年高考数学冲刺复习知识点精讲:统计图表的应用含解析
随机抽样与常用统计图表-高考数学复习

各层样本数量
=
=
.
总样本量 各层个体数量
目录
高中总复习·数学
1. 用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为
3的样本,其中某一个体 a “第一次被抽到”的可能性与“第二次被
抽到”的可能性分别是(
解析:
)
1
第一次被抽到,显然为 ;第二次被抽到,首先第一次
10
9
1
1
不能被抽到,第二次才被抽到,可能性为 × = .
B. 该企业2023年1月至6月的平均收入低于2023年7月至12月的平均
收入
C. 该企业2023年8月至12月的支出持续增长
D. 该企业2023年11月份的月利润最大
目录
高中总复习·数学
解析:
因为图中的实线与虚线的相对高度表示当月利润.由折线
统计图可知1月至6月的相对高度的总量要比7月至12月的相对高度总
目录
1
C O N T E N T S
2
3
知识 逐点夯实
考点 分类突破
课时 跟踪检测
PART
1
知识 逐点夯实
课前自修
必备知识 系统梳理 基础重落实
目录
高中总复习·数学
1. 随机抽样
(1)总体、个体、样本、样本容量
统计含义
总体 把调查对象的 全体
称为总体
个体 组成总体的每一个 调查对象
称为个体
个体
7481
目录
高中总复习·数学
解析:根据题意,依次读出的数据为65(舍去),72(舍
去),08,02,63(舍去),14,07,02(舍去,重复),43
(舍去),69(舍去),97(舍去),28(舍去),01.故选D.
高考必备-2020年高考数学一轮复习对点提分专题9.2用样本估计总体及统计图表(文理科通用)(学生版

第九篇 统计专题 9.02 用样本估计总体及统计图表【考试要求】1. 能根据实际问题的特点,选择恰当的统计图表对数据进行可视化描述,体会合理使用统计图表的重要 性;2.能用样本估计总体的集中趋势参数 (平均数、中位数、众数 ),理解集中趋势参数的统计含义;3. 能用样本估计总体的离散程度参数 (标准差、方差、极差 ),理解离散程度参数的统计含义;4.了解样本估计总体的取值规律; 5.能用样本估计百分位数,理解百分位数的统计含义 . 知识梳理】1. 频率分布直方图 (1) 频率分布表的画法:第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表 .组频率距,每个小矩形的面积表示样本落在该组内的频率2. 频率分布折线图和总体密度曲线(1) 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图 .(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会 越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线 .3. 样本的数字特征(1) 众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数 .(2) 中位数:把 n 个数据按大小顺序排列,处于最中间位置的一个数据 (或最中间两个数据的平均数组数据的中位数 .第一步:求极差,决定组数和组距,组距= 极差; 组数;(2) 频率分布直方图:反映样本频率分布的直方图 (如图 ))叫做这横轴表示样本数据,纵轴表示a1+a2 +⋯+a n(3)平均数:把1+2+n⋯+n称为a1,a2,⋯,a n这n 个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,⋯,x n的平均数为x,则这组数据的标准差和方差分别是s=1n[ (x1-x)2+( x2-x) 2+⋯+( x n-x)2],1---s2=n[(x1-x)2+( x2-x)2+⋯+(x n-x)2].4.百分位数如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数.可表示为:一组n 个观测值按数值大小排列.如,处于p%位置的值称第p 百分位数【微点提醒】1.频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.平均数、方差的公式推广(1)若数据x1,x2,⋯,x n的平均数为x,那么mx1+a,mx2+a,mx3+a,⋯,mx n+a 的mx+a. 平均数是(2)数据x1,x2,⋯,x n 的方差为s2.①数据x1+a,x2+a,⋯,x n+a 的方差也为s2;②数据ax1,ax2,⋯,ax n 的方差为a2s2.3.中位数相当于第50 百分位数.疑误辨析】1.判断下列结论正误(在括号内打“√”或“×” )(1) 平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的方差越大,说明这组数据越集中.( )(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越大.( )教材衍化】2.(必修3P1002(1)改编)一个容量为32 的样本,已知某组样本的频率为0.25,则该组样本的频数为( )3.(必修 3P70 示例改编 )若某校高一年级 8 个班参加合唱比赛的得分分别为87,89,90, 91,92,93,94,96,则这组数据的中位数和平均数分别是 ( ) A. 91.5 和 91.5 B.91.5 和 92 C.91 和 91.5 D.92 和 92真题体验】4. (2018 全·国 Ⅰ 卷)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番 地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图所示的 饼图:A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半5.(2019 新·余二模 )为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为 100 的样本,其中城镇户籍与农村户籍各 50 人;男性 60 人,女性 40 人,绘制不同群体中倾向选择生育二胎与 倾向选择不生育二胎的人数比例图 (如图所示 ),其中阴影部分表示倾向选择生育二胎的对应比例,则下列 叙述中错误的是 ( )A.4B.8C.12D.16.为更好地了解该则下面结论中不正确的是()A.是否倾向选择生育二胎与户籍有关B.是否倾向选择生育二胎与性别无关C.倾向选择生育二胎的人员中,男性人数与女性人数相同D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数6.(2019 上·海黄浦区质检)已知样本容量为200,在样本的频率分布直方图中,共有n 个小矩形,若中间一个小矩形的面积等于其余(n-1)个小矩形面积和的31,则该组的频数为.3【考点聚焦】考点一频率分布直方图【例1】(2019·石家庄模拟)“一带一路”是“丝绸之路经济带”和“21 世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90 分及以上为认知程度高).现从参赛者中抽取了x人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30 ,35),第四组:[35,40),第五组:[40 ,45] ,得到如图所示的频率分布直方图,已知第一组有 6 人.(1)求x;(2)求抽取的x 人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取 6 人,42 人,36 人,24人,12人,分别记为1~5组,从这 5 个按年龄分的组和 5 个按职业分的组中每组各选派 1 人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5 组的成绩分别为93,96,97,94,90,职业组中1~ 5组的成绩分别为93,98,94,95,90.(ⅰ)分别求 5 个年龄组和 5 个职业组成绩的平均数和方差;(ⅱ)以上述数据为依据,评价 5 个年龄组和 5 个职业组对“一带一路”的认知程度,并谈谈你的感想.规律方法】 1.频率分布直方图的性质 频率(1)小长方形的面积=组距 ×组距 =频率;(2) 各小长方形的面积之和等于 1;频率 (3) 小长方形的高= 组矩 ,所有小长方形的高的和为2.要理解并记准频率分布直方图与众数、中位数及平均数的关系 .【训练 1】 某公司为了解用户对其产品的满意度,从 A ,B 两地区分别随机调查了 40个用户,根据用户对产品的满意评分,得到 A 地区用户满意度评分的频率分布直方图和 B 地区用户满意度评分的频率分布表 .A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频率分布表满意度评分分组 [50,60)[60,70)[70,80)[80, 90)[90 ,100]频数2814106(1) 在图②中作出 B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度 (不要求计算出具体值,给出结论即可 );B 地区用户满意度评分的频率分布直方图1组距(2)根据用户满意度评分,将用户和满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由考点二样本的数字特征【例2】(1)(2017 ·全国Ⅰ卷)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A.x1,x2,⋯,x n 的平均数 B. x1,x2,⋯,x n 的标准差C.x1,x2,⋯,x n的最大值D. x1,x2,⋯,x n的中位数(2)(2019 聊·城模拟)已知某7 个数的平均数为4,方差为2,现加入一个新数据4,此时这8 个数的平均数为x ,方差为s2,则( )A.x =4,s2<2B.x=4,s2>2C.x >4,s2<2D.x>4,s2>22.用样本估计总体就是利用样本的数字特征来描述总体的数字特征.【训练2】抽样统计甲、乙两位射击运动员的 5 次训练成绩(单位:环) ,结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为【反思与感悟】1.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2) 标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大3.频率分布表和频率分布直方图都可直观描述样本数据的分布规律.【易错防范】直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.【核心素养提升】【数据分析】——百分位数的统计含义1.数据分析是指针对研究对象获取数据,运用数学方法对数据进行整理、分析和推断,形成关于研究对象知识的素养.数据分析过程主要包括:收集数据,整理数据,提取信息,构建模型,进行推断,获得结论2.数据分析是研究随机现象的重要数学技术,是大数据时代数学应用的主要方法,也是“互联网+”相关领域的主要数学方法,数据分析已经深入到科技术、工程和现代社会生活的各个方面.3.数据分析主要表现为:收集和整理数据,理解和处理数据,获得和解释结论,概括和形成知识.4.百分位数是统计学述语,百分位数用于描述一组数据某一百分位置的水平,多个百分位数结合应用,可全面描述一组观察值的分布特征;百分位数还可用于确定非正态分布资料的医学参考值范围.但应用百分位数时,样本含量要足够大,否则不宜取太靠近两端的百分位数.【案例】阶梯电价的设计(此材料见2017 版课程标准P130)【情境】为了实现绿色发展,避免浪费能源,某市政府计划对居民用电采用阶梯收费的方法.为此,相关部门在该市随机调查了200 户居民六月份的用电量(单位:kW·h),以了解这个城市家庭用电量的情况.数据如下:107 101 78 99 208 127 74 223 31 131214 135 89 66 60 115 189 135 146 127203 97 96 62 65 111 56 151 106 8162 91 67 93 212 159 61 63 178 194194 216 101 98 139 78 110 192 105 9622 50 138 251 120 112 100 201 98 84137 203 260 134 156 61 70 100 72 164174 131 93 100 163 80 76 95 152 18288 247 191 70 130 49 114 110 163 202265 18 94 146 149 147 177 339 57 109107 182 101 148 274 289 82 213 165 224142 61 108 137 90 254 201 83 253 113130 82 170 110 108 63 250 237 120 84154 288 170 123 172 319 62 133 130 127107 71 96 140 77 106 132 106 135 132167 82 258 542 51 107 69 98 72 48109 134 250 42 320 113 180 144 116 530200 174 135 160 462 139 133 304 191 283121 132 118 134 124 178 206 626 120 274141 80 187 88 324 136 498 169 77 57 根据以上数据,应当如何确定阶梯电价中的电量临界值,才能使得电价更为合理?【评析】分位数是用于衡量数据的位置的量度,但它所衡量的,不一定是中心位置.百分位数提供了有关各数据项如何在最小值与最大值之间分布的信息.对于无大量重复的数据,第p 百分位数将它分为两个部分.大约有p%的数据项的值比第p 百分位数小;而大约有(100-p)%的数据项的值比第p 百分位数大.对第p百分位数,严格的定义如下:第p 百分位数是这样一个值,它使得至少有p%的数据项小于或等于这个值,且至少有(100-p)%的数据项大于或等于这个值.【案例应用1】对于考试成绩的统计,如果您的成绩处在95 的百分位数上,则意味着95%的参加考试者得到了和您一样的考分或还要低的考分,而不是您答对了95%的试题.也许您只答对了20% ,即使如此,您取得的成绩也与95%的参加考试者一样好,或者比95%的参加考试者更好.【案例应用2】假设想为退休存够钱.可创建一个包括所有不确定变量的模型,如投资年回报率、通货膨胀、退休时的开支等,得到概率分布的结果如下图所示,如果选择平均值,钱不够的概率就会有50%.所以选第90 百分位数所对应的投资数,这样钱不够的概率将只有10%.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.某班的全体学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60 分的人数是15,则该班的学生人数是()的平均数、极差及中位数相同的是 (B. 平均数 D.都不相同A.45B.50C.55D.602.甲、乙、丙、丁四人参加某运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁-平均环数 x 8.3 8.8 8.8 8.7 方差 s 23.53.62.25.4A.甲B.乙C.丙D. 丁3.甲、乙两人在一次射击比赛中各射靶 5 次,两人成绩的条形统计图如图所示,则A. 甲的成绩的平均数小于乙的成绩的平均数B. 甲的成绩的中位数等于乙的成绩的中位数4.(2019 茂·名联考 )甲组数据为: 5,12,16, 21,25,37,乙组数据为: 1,6,14,18,38, 39,则甲、乙A. 极差 C.中位数( )8. 某校 2019 届高三文 (1)班在一次数学测验中,全班 在 110~120的学生有 14 人.N 名学生的数学成绩的频率分布直方图如下,已知分数、填空题5. 某校女子篮球队 7 名运动员身高 (单位: cm )的数据分别为: 171,172,17x ,174,175, 180,181,已知记录的平均身高为 175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为 x ,那 么 x 的值为 ____ .6. 对某市“四城同创”活动中 800 名志愿者的年龄抽样调查统计后得到频率分布直方图为[25,30)的数据不慎丢失,则依据此图可得:(1)[25 ,30)年龄组对应小矩形的高度为7. 已知样本数据 x 1,x 2,⋯, x n 的平均数 x = 5,则样本数据 2x 1+1, 2x 2+1,⋯, 2x n + 1 的平均数为三、解答题(如图 ),但是年龄组(2)据此估计该市“四城同创”活动中志愿者年龄在 [25,35)的人数为(1) 求总人数 N 和分数在 120~125 的人数 n ;(2) 利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?9. (2017 北·京卷 )某大学艺术专业 400 名学生参加某次测评, 从中随机抽取了 100 名学生,记录他们的分数,将数据分成(2) 已知样本中分数小于 40 的学生有 5人,试估计总体中分数在区间 [40 , 50)内的人数;(3) 已知样本中有一半男生的分数不小于 70,且样本中分数不小于 70 的男女生人数相等 .试估计总体中男生 和女生人数的比例 .根据男女学生人数比例,使用分层抽样的方法 7 组: [20 ,30),[30 ,40),⋯, [80 ,90],并 70 的概率;整理得到如下频率分布直估计其分数小11.(2019 北·京海淀区模拟 )已知样本 x 1,x 2,⋯, x n 的平均数为 x ;样本 y 1, y 2,⋯, y m 的平均数为 y (x ≠ y ),1*若样本 x 1,x 2,⋯, x n , y 1, y 2,⋯, y m 的平均数 z =ax +(1-a )y ,其中 0< a< 2,则 n , m(n , m ∈ N *)的大小 关系为 ( )A.n =mB.n ≥ mC.n<m D.n>m能力提升题组】 (建议用时: 20分钟 )10.(2019 湖·北部分重点中学模拟 )某商场对某一商品搞活动,已知该商品每一个的进价为 3 元,销售价为 8 元,每天售出的第 20 个及之后的半价出售 .该商场统计了近 10 天这种商品的销量,如图所示,设 x (个)为每天商品的销量, y (元)为该商场每天销售这种商品的利润 .从日利润不少于 96元的几天里任选 2 天, 则选出的 这 2天日利润都是 97 元的概率是 ( ) 1 C.15 1 D.18A.9B.1012.若样本数据x1,x2,⋯,x10的标准差为8,则数据2x1-1,2x 2-1,⋯,2x10-1 的标准差为____________________________________________________________________________________ 13.从某企业生产的某种产品中抽取100 件,测量这些产品的一项质量指标值,由测量结果得如下频数分布(2) 估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?。
2020年高考数学一轮复习考点与题型总结:第十章统计与统计案例(附解析)

第十章统计与统计案例第一节随机抽样一、基础知识1.简单随机抽样(1)定义:一般地,设一个总体含有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本 (n≤ N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.(2)常用方法:抽签法和随机数法.2.分层抽样 (1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.系统抽样 (1)定义:当总体中的个体数较多时,可以将总体分成均衡的几部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样的方法叫做系统抽样.(2)系统抽样的步骤假设要从容量为 N 的总体中抽取容量为 n的样本.①先将总体的 N 个个体编号;②确定分段间隔 k,对编号进行分段.当N(n 是样本容量 )是整数时,取 k=N; nn当总体中的个体数不能被样本容量整除时,可先用简单随机抽样的方法从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行.这时在整个抽样过程中每个个体被抽取的可能性仍然相等.③在第 1 段用简单随机抽样确定第一个个体编号l(l≤k);④按照一定的规则抽取样本.通常是将 l 加上间隔 k 得到第 2 个个体编号 l + k,再加 k 得到第 3 个个体编号 l + 2k,依次进行下去,直到获取整个样本.、常用结论(1)不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.(2)系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k 的整数倍.(3)分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.(4)三种抽样方法的特点、联系及适用范围考点一简单随机抽样[典例 ] 下列抽取样本的方式属于简单随机抽样的个数有 ( )①从无限多个个体中抽取 100 个个体作为样本;②盒子里共有 80个零件,从中选出 5 个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③用抽签方法从 10件产品中选取 3 件进行质量检验;④某班有 56 名同学,指定个子最高的 5 名同学参加学校组织的篮球赛.A.0 个B.1个C.2个D.3 个[解析 ] ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样,因为它是有放回抽样;③明显为简单随机抽样;④不是简单随机抽样,因为不是等可能抽样.[答案 ] B[ 解题技法 ] 应用简单随机抽样应注意的问题 (1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.[ 题组训练 ]1.总体由编号为 01,02,⋯, 19,20 的 20 个个体组成,利用下面的随机数表选取 5 个个体,选取方法是 从随机数表第 1 行的第 5 列和第 6 列数字开始由左到右依次选取两个数字,则选出来的第 5 个个体的编号为 ()7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481B .07C .02考点二 系统抽样[典例] (1)某校为了解 1 000 名高一新生的身体生长状况,用系统抽样法 (按等距的规则 )抽取 40名同学进行检查, 将学生从 1~1 000进行编号, 现已知第 18组抽取的号码为 443,则第一组用简单随机抽样抽取的 号码为 ( )A .16B . 17C .18D .19(2) 中央电视台为了解观众对某综艺节目的意见,准备从 502 名现场观众中抽取 10%进行座谈,现用系统 抽样的方法完成这一抽样,则在进行分组时,需剔除 __________________ 个个体,抽样间隔为 ___________________________________________ .[解析 ] (1)因为从 1 000 名学生中抽取一个容量为 40的样本,所以系统抽样的分段间隔为 140000=25,设第一组随机抽取的号码为 x ,则抽取的第 18 组编号为 x +17×25=443,所以 x = 18.(2)把 502 名观众平均分成 50组,由于 502除以 50的商是 10,余数是 2,所以每组有 10 名A.08 D .01解析: 选 D 由随机数法的随机抽样的过程可知选出的 5个个体是 08,02,14,07,01,所以第 5 个个体的编 号是 01.2.利用简单随机抽样,从 n 个个体中抽取一个容量为 10 的样本.若第二次抽取时,余下的每个个体被 抽到的概率为 13,则在整个抽样过程中,每个个体被抽到的概率为()1 A.4 1 B.13 5 C.14 10 D.27解析:选C 根据题意, n -91=31,解得 n = 28.故在整个抽样过程中每个个体被抽到的概率为10= 5. 28=14.观众,还剩 2 名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从 502 名观众中抽取 2名观众,这 2 名观众不参加座谈;再将剩下的 500名观众编号为 1,2,3,⋯,500,并均匀分成 50段,每段含500=10个个体.所50 以需剔除 2 个个体,抽样间隔为 10.[答案 ] (1)C (2)2 10[ 变透练清 ]1. 变结论若本例 (1) 的条件不变,则编号落入区间 [501,750] 的人数为.解析:从 1 000名学生中抽取一个容量为 40的样本,系统抽样分 40组,每组140000=25 个号码,每组抽取一个,从 501 到 750 恰好是第 21 组到第 30 组,共抽取 10 人.答案: 102.(2018 ·南昌摸底调研 )某校高三 (2)班现有 64 名学生,随机编号为 0,1,2,⋯, 63,依编号顺序平均分成 8 组,组号依次为 1,2,3 ,⋯, 8.现用系统抽样方法抽取一个容量为 8 的样本,若在第 1 组中随机抽取的号码为 5,则在第 6 组中抽取的号码为.解析:由题知分组间隔为64=8,又第 1 组中抽取的号码为 5,所以第 6组中抽取的号码为5× 8+ 5= 45. 8答案: 45[ 解题技法 ] 系统抽样中所抽取编号的特点系统抽样又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第 1 组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.[提醒 ] 系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.考点三分层抽样[典例] 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有 20 000人,其中各种态度对应的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽取 100 人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为 ( )A .25,25,25,25B . 48,72,64,16C.20,40,30,10 D .24,36,32,8100 1 1[解析 ] 法一:因为抽样比为201 00000=2010,所以每类人中应抽取的人数分别为 4 800× 2100=24,750A .不全相等B .均不相等C .都相等,且为2 019D .都相等,且为140[答案 ] D[ 解题技法 ] 分层抽样问题的类型及解题思路 (1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.(3)分层抽样的计算应根据抽样比构造方程求解,其中“抽样比= 样本容量=各层样本数量”总体容量 =各层个体数量 ”[ 题组训练 ]1. (2019 ·山西五校联考 )某校为了解学生的学习情况,采用分层抽样的方法从高一 人、高三 n 人中抽取 81 人进行问卷调查,若高二被抽取的人数为30,则 n = ( )A .860B . 720C .1 020答案: 85[课时跟踪检测 ]1.从 2 019 名学生中选取 50名学生参加全国数学联赛,若采用以下方法选取:先用简单随机抽样法从 2200×1 200 36, 6 400 × 1 200 32,1 600× 12008. 法二: 最喜爱、喜爱、一般、不喜欢的比例为 4 800∶7 200∶6 400∶1 600=6∶9∶8∶2, 所以每类人中应抽取的人数分别为 ×100= 6+9+ 8+224, 9 6+9+8+× 100= 36, 8 6+9+8+×100=32,26+9+8+×100=8.1 000 人、高二 1 200 D .1 040解析: 选 D 由已知条件知抽样比为 30 1 410,从而 81 1 000+1 20041,解得 n =1 040 ,故选D.2.(2018 广·州高中综合测试 )已知某地区中小学学生人数如图所示.为 参加某项社会实践活动的意向, 拟采用分层抽样的方法来进行调查. 若高 名学生,则小学与初中共需抽取的学生人数为 ____________________________________________ .20x +20 解得 x =85. 019 名学生中剔除 19 名学生,剩下的 2 000 名学生再按系统抽样的方法抽取,则每名学生入选的概率 () 了解该区学生 中 需 抽 取20 错误 ! =解析:选 C 从 N个个体中抽取 M 个个体,则每个个体被抽到的概率都等于M N,故每名学生入选的概率都相等,且为50.22.福利彩票“双色球”中红球的号码可以从01,02,03,⋯, 32,33 这 33 个两位号码中选取,小明利用如下所示的随机数表选取红色球的 6 个号码,选取方法是从第 1行第 9 列的数字开始,从左到右依次读取数据,则第四个被选中的红色球的号码为 ( )A.12 B . 33C.06 D .16解析:选 C 被选中的红色球的号码依次为 17,12,33,06,32,22,所以第四个被选中的红色球的号码为06.3.某班共有学生 52人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知 5 号、 18号、44 号同学在样本中,那么样本中还有一个同学的座号是 ( )A .23B . 27C.31 D .3352解析:选 C 分段间隔为542= 13,故样本中还有一个同学的座号为 18+13= 31.4.某工厂在 12 月份共生产了 3 600 双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b, c,且 a,b,c 构成等差数列,则第二车间生产的产品数为 ( )A.800 双B.1 000 双C.1 200双D.1 500 双解析:选 C 因为 a,b,c 成等差数列,所以 2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占 12 月份生产总数的三分之一,即为 1 200 双皮靴.5.(2018 南·宁摸底联考 )已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取 2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 ( )A .100,20B . 200,20C.200,10 D .100,10解析:选 B 由题图甲可知学生总人数是 10 000,样本容量为 10 000×2%=200,抽取的高中生人数是 2 000×2%=40,由题图乙可知高中生的近视率为50%,所以抽取高中生的近视人数为40× 50%=20,故选 B.6.一个总体中有 100 个个体,随机编号为 0,1,2,⋯, 99.依编号顺序平均分成 10 个小组,组号依次为 1,2,3,⋯, 10.现用系统抽样方法抽取一个容量为10 的样本,如果在第一组随机抽取的号码为m,那么在第 k组中抽取的号码个位数字与 m+k 的个位数字相同.若 m= 6,则在第 7 组中抽取的号码是()A .63B . 64C.65 D .66解析:选 A 若 m=6,则在第 7 组中抽取的号码个位数字与 13的个位数字相同,而第 7 组中的编号依次为 60,61,62,63,⋯,69,故在第 7 组中抽取的号码是 63.7.采用系统抽样方法从 960 人中抽取 32 人做问卷调查,为此将他们随机编号为 1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的 32人中,编号落入区间 [1,450] 的人做问卷 A,编号落入区间(450,750]的人做问卷 B,其余的人做问卷 C.则抽到的人中,做问卷 B 的人数为()A .7 B.9C.10 D .15解析:选 C 960÷32=30,故由题意可得抽到的号码构成以9 为首项,以 30 为公差的等差数列,其通项公式为 a n=9+30(n-1)=30n-21.由 450<30n-21≤750,解得 15.7<n≤25.7.又 n为正整数,所以 16≤n≤25,故做问卷 B 的人数为 25- 16+ 1= 10.故选 C.8.某企业三月中旬生产 A,B,C 三种产品共 3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中 A, C产品的有关数据已被污染看不清楚,统计员记得 A 产品的样本容量比C产品的样本容量多 10,根据以上信息,可得 C 的产品数量是件.x 解析:设样本容量为 x,则 3 000×1 300=130,∴x=300.∴A 产品和 C 产品在样本中共有 300-130=170(件).设 C产品的样本容量为 y,则 y+ y+10= 170,∴ y=80.∴C 产品的数量为3300000×80=800(件).答案:8009.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取 100 件做使用寿命的测试,则第一分厂应抽取的件数为_ ;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为 1 020 小时、 980 小时、 1 030 小时,估计这个企业所生产的该产品的平均使用寿命为小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为 1 020×0.5+ 980×0.2+1030×0.3=1 015.答案: 50 1 01510.将参加冬季越野跑的 600 名选手编号为: 001,002,⋯, 600,采用系统抽样方法抽取一个容量为50 的样本,把编号分为 50 组后,在第一组的 001 到 012这 12 个编号中随机抽得的号码为 004,这600 名选手穿着三种颜色的衣服,从 001 到 301 穿红色衣服,从 302 到 496 穿白色衣服,从 497 到 600 穿黄色衣服,则抽到穿白色衣服的选手人数为.解由题意及系统抽样的定义可知,将这 600 名学生按编号依次分成 50 组,每一组各有 12 第 k(k∈N *)组抽中的号码是 4+12(k-1).令 302≤4+12(k-1)≤496,得 2556≤k≤42,因此抽到穿白色衣服的选手人数为 42- 25=17(人).答案:1711.某初级中学共有学生 2 000 名,各年级男、女生人数如下表:已知在全校学生中随机抽取 1 名,抽到初二年级女生的概率是 0.19.(1)求 x 的值;(2)现用分层抽样的方法在全校抽取 48 名学生,问应在初三年级抽取多少名?x解: (1)∵=0.19,∴ x= 380.2 000(2)初三年级人数为 y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在48 名学全校抽取生,应在初三年级抽取的人数为240800×500=12(名 ).第二节 用样本估计总体、基础知识1.频率分布直方图频率 频率(1)纵轴表示 组距,即小长方形的高= 组距;频率(2)小长方形的面积=组距× 组距 =频率;(3)各个小方形的面积总和等于 1 .2.频率分布表的画法(3)方差 s 2=n [( x 1- x )2+ (x 2- x )2+⋯+ (x n - x )2].第一步:求极差,决定组数和组距,组距=极差; 组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表.3.茎叶图茎叶图是统计中用来表示数据的一种图, 茎是指中间的一列数,叶就是从茎的旁 边生长出来的数.4.中位数、众数、平均数的定义(1) 中位数将一组数据按大小依次排列, 处于最中间位置的一个数据 (或最中间两个数据的平均数 位数.)叫做这组数据的中 (2) 众数 一组数据中出现次数最多的数据叫做这组数据的众数.(3)平均数一组数据的算术平均数即为这组数据的平均数, n 个数据 x 1,x 2,⋯,x n 的平均数 x 1 = n (x 1+ x 2+⋯+5. 样本的数字特征如果有 n 个数据 x 1,x 2,⋯, x n ,那么这 n个数的 1 (1) 平均数 x = n (x 1+ x 2+⋯(2) 标准差s =、常用结论1.频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2.平均数、方差的公式推广(1)若数据 x1,x2,⋯,x n的平均数为 x,则 mx1+a,mx2+a,mx3+a,⋯,mx n+a 的平均数是 mx + a.(2)若数据 x1,x2,⋯, x n的方差为 s2,则数据 ax1+b,ax2+b,⋯, ax n+b 的方差为 a2s2.考点一茎叶图[典例 ] (2017 山·东高考 )如图所示的茎叶图记录了甲、乙两组各产量数据 (单位:件 ).若这两组数据的中位数相等,且平均值也相等,5名工人某日的则 x 和 y 的值分别为 ( )A .3,5B . 5,5C.3,7 D .5,7[解析 ] 由两组数据的中位数相等可得 65= 60+ y,解得 y= 5,又它们的平均值相等,所以1×[56+62+65+74+(70+x)]=1×(59+61+67+ 65+78),解得 x=3.55[答案 ] A[ 解题技法 ] 茎叶图的应用(1)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.(2)给定两组数据的茎叶图,比较数字特征时,“重心”下移者平均数较大,数据集中者方差较小.[ 题组训练 ]1.在如图所示一组数据的茎叶图中,有一个数字被污染后模糊不清,数据的极差与中位数之和为 61,则被污染的数字为 ( )A.1 B.2C.3 D.4解析:选 B 由图可知该组数据的极差为48- 20=28,则该组数据的中位数为 61-28=33,易得被污染的数字为 2.2.甲、乙两名篮球运动员 5 场比赛得分的原始记录如茎叶图所示,若甲、乙两人的平均得分分别为x 甲,x 乙,则下列结论正确的是 ( )A. x 甲< x 乙;乙比甲得分稳定B. x甲> x 乙;甲比乙得分稳定C. x甲 > x 乙;乙比甲得分稳定D. x 甲< x 乙;甲比乙得分稳定2+7+8+ 16+22 8+12+18+21+ 25解析:选 A 因为 x 甲== 11, x 乙== 16.8,所以 x 甲< x 乙且乙比55甲成绩稳定.考点二频率分布直方图[典例]某城市 100 户居民的月平均用电量 (单位:千瓦时 ),以[160,180) ,[180,200) ,[200,220) ,[220,240) ,[240,260) ,[260,280) ,[280,300]分组的频率分布直方图如图.(1) 求直方图中 x 的值;(2)求月平均用电量的众数和中位数.[解] (1)由(0.002 + 0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,解得 x=0.0075. 即直方图中 x 的值为 0.007 5.220+ 240(2)月平均用电量的众数是= 230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,∴月平均用电量的中位数在 [220,240) 内.设中位数为 a,则 0.45+0.012 5×(a-220)=0.5,解得 a= 224,即中位数为 224.[ 变透练清 ]1.某校随机抽取 20 个班,调查各班有出国意向的人数,所得数据的茎叶图如图所示.以 5 为组距将数据分组为 [0,5),[5,10),⋯,[30,35) , [35,40] ,所作的频率分布直方图是 ( )解析:选 A 以 5 为组距将数据分组为 [0,5) ,[5,10) ,⋯,[30,35) ,[35,40] ,各组的频数依次为 1,1,4,2,4,3,3,2,可知画出的频率分布直方图为选项 A 中的图.2. 变结论在本例条件下,在月平均电量为 [220,240) ,[240,260) ,[260,280) ,[280,300] 的四组用户中,用分层抽样的方法抽取 11 户居民,则月平均用电量在 [220,240) 的用户中应抽取 _____________________________________________________________________ 户.解析:月平均用电量在 [220,240) 的用户有 0.012 5 ×20×100 =25(户).同理可得月平均用电量在 [240,260) 的用户有 15 户,月平均用电量在 [260,280] 的用户有 10 户,月平均用电量在[280,300] 的用户有 5 户,故抽取比例为1125+ 15+ 101.5.答案: 53.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年 100位居民每人的月均用水量 (单位:吨 ),将数据按照 [0,0.5),[0.5,1),⋯,[4,4.5]分成 9组,制成了如图所示的频率分布直方图.(1) 求直方图中 a 的值;(2)设该市有 30万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由.解: (1)由频率分布直方图可知,月均用水量在 [0,0.5)的频率为 0.08×0.5=0.04.同理,在[0.5,1) ,[1.5,2) ,[2,2.5) ,[3,3.5) , [3.5,4) , [4,4.5] 6 组的频率分别为 0.08,0.21,0.25,0.06,0.04,0.02.由 1- (0.04+ 0.08+0.21+0.25+0.06+ 0.04+ 0.02) = 0.5× a+ 0.5×a,解得 a= 0.30.(2)估计全市居民中月均用水量不低于3 吨的人数为 3.6 万.理由如下:由(1)知, 100位居民中月均用水量不低于 3 吨的频率为 0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30 万居民中月均用水量不低于3 吨的人数为300 000×0.12=36 000=3.6(万).考点三样本的数字特征考法 (一 ) 样本的数字特征与频率分布直方图交汇[典例 ] (2019 辽·宁师范大学附属中学模拟 )某校初三年级有 400 名学生,随机抽查了 40 名学生测试 1 分钟仰卧起坐的成绩 (单位:次 ),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是 ( )A .该校初三学生1 分钟仰卧起坐的次数的中位数为 25B.该校初三学生1 分钟仰卧起坐的次数的众数为 24C.该校初三学生1 分钟仰卧起坐的次数超过 30 的人数约有 80D.该校初三学生1 分钟仰卧起坐的次数少于 20 的人数约为 8[解析 ] 第一组数据的频率为 0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则 x×0.08=0.5-0.1-0.3=0.1,∴ x =1.25,∴中位数为 26.25 ,故 A 错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故 B错误; 1 分钟仰卧起坐的次数超过 30 的频率为 0.2,∴超过 30 次的人数为 400×0.2=80,故 C 正确; 1分钟仰卧起坐的次数少于 20 的频率为 0.1,∴1 分钟仰卧起坐的次数少于 20 的人数为400×0.1= 40,故 D 错误.故选 C.[答案 ] C[ 解题技法 ]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考法 (二) 样本的数字特征与茎叶图交汇[典例 ] 将某选手的 9个得分去掉 1个最高分,去掉 1个最低分, 7 个剩余分数的平均分为91.现场作的 9 个分数的茎叶图后来有 1 个数据模糊,无法辨认,在图中以________________ x表示,则 7 个剩余分数的方差为.[解析 ] 由茎叶图可知去掉的两个数是 87,99,所以 87+90× 2+91× 2+94+90+x=91×7,解得 x=4.1 36故 s2=7[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=7.[答案 ] 376[ 解题技法 ]样本的数字特征与茎叶图综合问题的注意点(1)在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.(2)茎叶图既可以表示两组数据,也可以表示一组数据,用它表示的数据是完整的数据,因此可以从茎叶图中看出数据的众数(数据中出现次数最多的数)、中位数(中间位置的一个数,或中间两个数的平均数)等.考法(三)样本的数字特征与优化决策问题交汇[典例 ] (2018 周·口调研)甲、乙两人在相同条件下各射击 10 次,每次中靶环数情况如图所示.(1)请填写下表(写出计算过程):(2)从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中 9 环及 9 环以上的次数相结合看(分析谁的成绩好些);③从折线图上两人射击命中环数的走势看(分析谁更有潜力).[解 ] 由题图,知甲射击 10 次中靶环数分别为 9,5,7,8,7,6,8,6,7,7.将它们由小到大排列为 5,6,6,7,7,7,7,8,8,9.乙射击 10 次中靶环数分别为 2,4,6,8,7,7,8,9,9,10.将它们由小到大排列为 2,4,6,7,7,8,8,9,9,10.1(1) x 甲=10× (5+6×2+7×4+ 8×2+9)=7(环),1x 乙=10×(2+4+6+7× 2+8×2+9×2+10)=7(环),s2甲=110×[(5-7)2+(6- 7)2×2+(7- 7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,1s2乙=10×[(2-7)2+(4- 7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+ 9)= 5.4.填表如下:(2)①∵平均数相同, s2甲< s2乙,∴甲成绩比乙稳定.②∵平均数相同,命中 9 环及 9 环以上的次数甲比乙少,∴乙成绩比甲好些.③∵甲成绩在平均数上下波动,而乙处于上升势头,从第三次以后就没有比甲少的情况发生,∴乙更有潜力.[解题技法]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.[题组训练]1.对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示 ),则该样本中的中位数、众数、极差分别是 ( )C .47,45,56极差为 68- 12=56,故选 A.2.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是 ( )A .甲 C .丙解析: 选 C 由表格中数据可知,乙、丙平均环数最高,但丙方差最小,说明成绩好,且技术稳定,选 C.3.某仪器厂从新生产的一批零件中随机抽取 40 个进行检测,如图是根据抽样检测得到的零件的质量(单位:克)绘制的频率分布直方图,样本数据按照 [80,82) ,[82,84) ,[84,86) ,[86,88) ,[88,90) ,[90,92) ,[92,94) ,[94,96]分成 8 组,将其按从左到右的顺序分别记为第一组,第二组,⋯⋯,第八组.则样本数据的中位数在 第 组.解析:由题图可得, 前四组的频率为 (0.037 5+ 0.062 5+0.075 0+ 0.100 0)× 2= 0.55,则其频数为 40×0.55 =22,且第四组的频数为 40×0.100 0×2=8,故中位数在第四组.答案: 四D .45,47,53 解析: 选 A 样本共 30 个,中位数为 45+47= 46;显然样本数据出现次数最多的为45,故众数为 45; B .乙 D .丁[课时跟踪检测]A级1.一个频数分布表 (样本容量为则估计样本在 [40,60) 内的数据30)不小心被损坏了一部分,只记得样本中数据在[20,60) 上的频率为 0.8,()A .14B . 15C.16 D .17解析:选 B 由题意,样本中数据在 [20,60) 上的频数为 30×0.8=24,所以估计样本在[40,60)内的数据个数为 24-4- 5=15.2.(2019 ·长春质检 )如图所示是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y 关于测试序号 x 的函数图象,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图象,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为 ( )A.0 B.1C.2 D.3解析:选 D ①由图可知一班每次考试的平均成绩都在年级平均成绩之上,故①正确.②由图可知二班平均成绩的图象高低变化明显,可知成绩不稳定,波动程度较大,故②正确.③由图可知三班平均成绩的图象呈上升趋势,并且图象的大部分都在年级平均成绩图象的下方,故③正确.故选 D.3.(2018 ·贵阳检测)在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为 5 组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是 40,则成绩在 80~100 分的学生人数是()A .15 B.18C.20 D.25解析:选 A 根据频率分布直方图,得第二小组的频率是 0.04×10=0.4,∵频数是 40,∴样本容量是400.4 =100,又成绩在 80~ 100 分的频率是(0.01+0.005)×10=0.15,∴成绩在 80~100 分的学生人数是 100×0.15 = 15.故选 A.4.2017 年 4 月,泉州有四处湿地被列入福建省首批重要湿地名录,其中 A,B 两地选择一处进行实地考察.因此,他通过网站了解上周去过的人对它们的综合评分,并将评分数据记录为右图的茎叶图,记A,数据的均值分别为 x A, x B,方差分别为 s A2, s2B.若以备受好评为依据,某B两同学决定从这两个地方地综合评分则下述判断较合理的是(A .因为 x A> x B, s2A>s B2,所以应该去 A地 B.因为 x A> x B, s2A < s2B,所以应该去 A 地 C.因为 x A< x B, s2A > s2B,所以应该去B 地D .因为x A< x B,s2A<s B2,所以应该去 B 地11解析:选 B 因为 x A=×(72+86+87+89+ 92+94)≈86.67, x B=×(74+73+88+86+95+94)=。
高考数学总复习(一轮)(人教A)教学课件第九章 统计、成对数据的统计分析第1节 随机抽样、统计图表

解析:(2)最先读到的4袋牛奶的编号是614,593,379,242,向右读得
到203,722,104,再下一个数是887,887大于850,故舍去,再下一个
数是088.
考点二
分层随机抽样
角度一
条形图和
直观描述不同类别或分组数据的
直方图
折线图
频数和频率
描述数据随时间的变化趋势
4.频率分布直方图的制作步骤
(1)求极差:极差为一组数据中 最大值
与最小值的差.
(2)决定组距与组数:当样本量不超过100时,常分成 5~12
组,
一般取等长组距,并且组距应力求“取整”.
(3)将数据分组.
(4)列频率分布表:一般分四列,即分组、 频数累计、频数、 频率 .
A.0.61
B.0.675
)
C.0.74
D.0.8
√
解析:(2)由分层抽样可得高三(1)班抽取的人数 n1=
×10=6,
+
高三(2)班抽取的人数 n2=
于是总的样本平均数 =
×10=4,
+
×+×.
=1.2,
所以总的样本方差
2
2
2
s = ×[1+(1-1.2) ]+ ×[0.35+(1.5-1.2) ]=0.8.故选 D.
容量为20的一个样本,则每个个体被抽到的概率为(
A.
B.
C取到的概率是
.故选D.
=
2020版高考数学一轮复习 第十章 统计、统计案例 第3讲 理(含解析)新人教A版

第3讲 变量相关关系与统计配套课时作业1.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1答案 D解析 因为所有的点都在直线上,所以它就是确定的函数关系,所以相关系数为1. 2.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程:y ^=0.56x +a ^,据此模型预报身高为172 cm 的高三男生的体重为( )A .70.09 kgB .70.12 kgC .70.55 kgD .71.05 kg答案 B解析 x =160+165+170+175+1805=170,y =63+66+70+72+745=69.∵回归直线过点(x ,y ),∴将点(170,69)代入回归直线方程得y ^=0.56x -26.2,代入x =172 cm ,则其体重为70.12 kg.3.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6.则实数a ^的值是( )A.116 B.18 C.14 D.12答案 B解析 依题意可知样本点的中心为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ^,解得a ^=18.4.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y ^=bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量约为________件.⎝ ⎛⎭⎪⎪⎫参考公式:b =∑ni =1x i y i -n x -y -∑ni =1x 2i -n x 2,a =y -b x答案 46解析 由所提供数据可计算得出x =10,y =38,将b ≈-2代入公式a =y -b x -可得a =58,即线性回归方程y ^=-2x +58,将x =6代入可得y ^=46.5.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________; (2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________. 答案 (1)乙 (2)数学解析 (1)由图分析,乙的语文成绩名次略比甲的语文成绩名次靠前,但总成绩名次靠后,所以甲、乙两人中,语文成绩名次比其总成绩名次靠前的是乙.(2)根据丙在这两个图中对应的点的横坐标相同,找出丙在第一个图中对应的点.观察易得,丙同学成绩名次更靠前的科目是数学.6.(2019·赣州模拟)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x 6,y 6)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,6)都在曲线y =bx 2-13附近波动.经计算∑6i =1x i =11,∑6i =1y i=13,∑6i =1x 2i =21,则实数b 的值为________. 答案 57解析 令t =x 2,则曲线的回归方程变为线性的回归方程,即y =bt -13,此时t =∑6i =1x 2i6=72,y =∑6i =1y i 6=136,代入y ^=bt -13,得136=b ×72-13,解得b =57. 7.(2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图. 为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.解 (1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 y ^=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.(以上给出了2种理由,考生答出其中任意一种或其他合理理由,均可得分.) 8.(2019·合肥高三调研)统计学中,经常用环比、同比来进行数据比较,环比是指本期统计数据与上期比较,如2017年7月份与2017年6月份相比.同比是指本期数据与历史同时期比较,如2017年7月份与2016年7月份相比,环比增长率=本期数-上期数上期数×100%,同比增长率=本期数-同期数同期数×100%.下表是某地区近17个月来的消费者信心指数的统计数据:(1)①求该地区2018年5月份消费者信心指数的同比增长率(百分比形式下保留整数); ②除2017年1月以外,该地区消费者信心指数月环比增长率为负数的有几个月? (2)由以上数据可以判断,序号x 与该地区消费者信心指数y 具有线性相关关系,写出y 关于x 的线性回归方程y =b ^x +a ^(a ^,b ^保留两位小数),并依此预测该地区解 (1)①该地区2018年5月份消费者信心指数的同比增长率为124-112.6112.6×100%≈10%.②由已知知环比增长率为负数,即本期数<上期数,从表中可以看出,2017年3月、2017年6月、2017年8月、2018年2月、2018年4月共5个月的环比增长率为负数.(2)由已知计算得,b ^=∑i =117x i y i -n x -y-∑i =117x 2i -n x 2≈1.16,a ^=y -b ^x ≈115-1.16×9=104.56,∴线性回归方程为y ^=1.16x +104.56.当x =18时,y ^≈125.4,即预测该地区2018年6月份的消费者信心指数为125.4. 9.(2019·河北六校联考)高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,请完成下列2×2列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为是否为“移动支付活跃用户”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中随机抽取4名用户.①求抽取的4名用户中,既有男“移动支付达人”,又有女“移动支付达人”的概率; ②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为X ,求X 的分布列及数学期望.附公式及表如下:K 2=n ad -bc 2a +bc +d a +cb +d解 (1)由表格数据可得2×2列联表如下:将列联表中的数据代入公式计算得K 2=n ad -bc 2a +bc +d a +cb +d=100×25×40-15×20240×60×55×45=2450297≈8.249. 所以在犯错误的概率不超过0.005的前提下,能认为是否为“移动支付活跃用户”与性别有关.(2)视频率为概率,在我市“移动支付达人”中随机抽取1名用户,该用户为男“移动支付达人”的概率为13,女“移动支付达人”的概率为23.①抽取的4名用户中,既有男“移动支付达人”,又有女“移动支付达人”的概率为P =1-⎝ ⎛⎭⎪⎫134-⎝ ⎛⎭⎪⎫234=6481.②记抽出的男“移动支付达人”人数为Y ,则X =300Y .由题意得Y ~B ⎝ ⎛⎭⎪⎫4,13,P (Y =0)=C 04⎝ ⎛⎭⎪⎫130⎝ ⎛⎭⎪⎫234=1681;P (Y =1)=C 14⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫233=3281;P (Y =2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=2481;P (Y =3)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231=881;P (Y =4)=C 44⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫230=181. 所以Y 的分布列为所以X 的分布列为由E (Y )=4×13=43,得X 的数学期望E (X )=300E (Y )=400.。
高考数学第一轮复习第十章 §10.2统计用表

基础自测
JICHUZICE
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × ) (3)频率分布直方图中,小矩形的面Байду номын сангаас越大,表示样本数据落在该区间的频率 越大.( √ ) (4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写, 相同的数据可以只记一次.( × ) (5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( ) (6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( )
91 2 5 6 8 80 0 1 2 4 5 7 8 70 2 2 3 3 3 4 5 5 6 9 60 2 2 3 4 4 4 5 7 7 8 9 56 6 8 9
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
命题点2 折线图 例2 (2017·全国Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量, 收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据, 绘制了下面的折线图. 根据该折线图,下列结论错误的是
A地区用户满意度评 分的频率分布直方图
B地区用户满意度评 分的频率分布直方图
图①
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
图②
例3.(2017·全国Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块 地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评 估这种农作物亩产量稳定程度的是 A.x1,x2,…,xn的平均数
2020高考数学(文科,通用)复习课件:专题7 第2讲统计与统计案例.ppt
第三组中没有疗效的有6人,则第三组中有疗效的
人数为( )
思维启迪 根据第一组与第二组
的人数和对应频率估计
样本总数,然后利用第
三组的频率和无疗效人
数计算;
A.6
B.8 C.12 D.18
解析 志愿者的总人数为0.16+200.24×1=50,
所以第三组人数为50×0.36=18, 有疗效的人数为18-6=12. 答案 C
热点一 抽样方法
例1 (1)(2013·陕西)某单位有840名职工,现采用
系 统 抽 样 方 法 抽 取 42 人 做 问 卷 调 查 , 将 840 人 按
1,2,…,840随机编号,则抽取的42人中,编号落
入区间[481,720]的人数为( )
A.11
B.12 C.13 D.14
思维启迪
系统抽样时需要抽取几个个体,样本就分成几组,且抽
思维启迪 分层抽样最重要的是各层的比例.
解析 本题属于分层抽样,设该学校的教师人数为x, 所以3126000=160-x 150,所以 x=200.
(1)随机抽样各种方法中,每个个体被抽到的概率
思 都是相等的;(2)系统抽样又称“等距”抽样,被 维 抽到的各个号码间隔相同;分层抽样满足:各层
升
华 抽取的比例都等于样本容量在总体容量中的比例.
2.常用的统计图表 (1)频率分布直方图
频率 ①小长方形的面积=组距×组距=频率;
②各小长方形的面积之和等于1;
③小长方形的高=频 组率 距,所有小长方形的高的和为组1距.
(2)茎叶图 在样本数据较少时,用茎叶图表示数据的效果较好. 3.用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数
数字特
2023年高考数学复习----《统计图表》规律方法与典型例题讲解
2023年高考数学复习----《统计图表》规律方法与典型例题讲解【规律方法】1、制作频率分布直方图的步骤.第一步:求极差,决定组数和组距,组距=极差组数第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表;第四步:画频率分布直方图.2、解决频率分布直方图问题时要抓住3个要点.(1)直方图中各小矩形的面积之和为1;(2)直方图中纵轴表示频率组距,故每组样本的频率为组距⨯频率组距(3)直方图中每组样本的频数为频率⨯总体个数.3、用频率分布直方图估计众数、中位数、平均数的方法.(1)众数为频率分布直方图中最高矩形底边中点的横坐标;(2)中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标;(3)平均数等于每个小矩形面积与小矩形底边中点横坐标之积的和.【典型例题】例1.(2022·云南昆明·昆明一中模拟预测)为了响应教育部门疫情期间“停课不停学”的号召,某校实施网络授课,为了检验学生上网课的效果,在高三年级进行了一次网络模拟考试,从中抽取了100人的数学成绩,绘制成频率分布直方图(如下图所示),其中数学成绩落在区间[110,120),[120,130),[130,140]的频率之比为4:2:1.(1)根据频率分布直方图求学生成绩在区间[110,120)的频率,并求抽取的这100名同学数学成绩的中位数(2)若将频率视为概率,从全校高三年级学生中随机抽取3个人,记抽取的3人成绩在[100,130)内的学生人数为X ,求X 的分布列与数学期望.【解析】(1)由直方图可知,数学成绩落在区间[70,110)内的频率为(0.0040.0120.0190.030)10+++⨯=0.65,所以数学成绩落在区间[110,140]内的频率为10.650.35−=,因为数学成绩落在区间[110,120),[120,130),[130,140]的频率之比为4:2:1,所以数学成绩落在区间[110,120)的频率为40.35421⨯++0.2=, 数学成绩落在区间[70,100)的频率为(0.0040.0120.019)100.35++⨯=, 所以中位数落在区间[100,110)内,设中位数为x ,则(100)0.0300.50.35x −⨯=−,解得105x =, 所以抽取的这100名同学数学成绩的中位数为105.(2)由(1)知,数学成绩落在区间[100,130)内的频率为0.0310⨯+0.2+20.35421⨯++0.6=,由题意可知,3~(3,)5X B ,X 的所有可能取值为0,1,2,3,033338(0)C ()(1)55125P X ==⋅−=,12333(1)C (1)55P X ==⋅⋅−36125=, 22333(2)C ()(1)55P X ==⋅⋅−54125=,330333(3)C ()(1)55P X ==⋅−27125=,所以X 的分布列为:所以数学期望8365427()0123125125125125E X =⨯+⨯+⨯+⨯95=.例2.(2022·贵州贵阳·贵阳六中校考一模)某校组织1000名学生进行科学探索知识竞赛,成绩分成5组:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,得到如图所示的频率分布直方图.若图中未知的数据a ,b ,c 成等差数列,成绩落在区间[)60,70内的人数为400.(1)求出直方图中a ,b ,c 的值;(2)估计中位数(精确到0.1)和平均数(同一组中的数据用该组区间的中点值代替); (3)若用频率估计概率,设从这1000人中抽取的6人,得分在区间[]90,100内的学生人数为X ,求X 的数学期望.【解析】(1)依题意可得:4001000100.04a =÷÷=,又a ,b ,c 成等差数列,所以2b a c =+且(0.0050.005)101a b c ++++⨯=,解得:0.02,0.03c b == 所以0.04,0.03,0.02a b c ===.(2)因为(0.0050.04)100.450.5+⨯=<,设中位数为x , 则[70,80)x ∈,所以()()0.0050.0410700.030.5x +⨯+−⨯=,解得:71.7x ≈,即中位数约为71.7,平均数为(550.005650.04750.03850.02950.005)1073⨯+⨯+⨯+⨯+⨯⨯=. (3)由题意可知:得分在区间[]90,100内概率为10.0051020⨯=, 根据条件可知:X 的所有可能值为0,1,2,3,4,5,6,且1(6,)20X ,所以1()60.320E X np ==⨯=.例3.(2022·全国·高三专题练习)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委为所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X 都在[75,100)内,再以5为组距画分数的频率分布直方图(设“Y=频率组距”)时,发现Y 满足:7,15,15019,16,30011,16,1520n Y n k n n ⎧=⎪⎪⎪==⎨⎪⎪−⋅>⎪−⎩,55(1)n N n X n *∈≤<+. (1)试确定n 的所有取值,并求k ;(2)组委会确定:在第一阶段比赛中低于85分的同学无缘获奖也不能参加附加赛;分数在[95,100)内的同学评为一等奖;分数在[90,95)内的同学评为二等奖,但通过附加赛有111的概率提升为一等奖;分数在[85,90)内的同学评为三等奖,但通过附加赛有17的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级,且附加赛获奖等级在第一阶段获奖等级基础上,最多升高一级).已知学生A 和B 均参加了本次比赛,且学生A 在第一阶段获得二等奖.①求学生B 最终获奖等级不低于学生A 最终获奖等级的概率;②已知学生A 和B 都获奖,记A ,B 两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.【解析】(1)根据题意,X 在[75,100)内,按5为组距可分成5个小区间, 分别是[75,80),[80,85),[85,90),[90,95),[95,100),因为75100X ≤<,由55(1)n X n ≤<+,n N *∈,所以15,16,17,18,19n =.每个小区间的频率值分别是7,15,30195,1660115,17,18,19320n P Y n k n n ⎧=⎪⎪⎪===⎨⎪⎪−⋅=⎪−⎩由719111511306032k ⎛⎫++−++= ⎪⎝⎭,解得350k =. (2)①由于参赛学生很多,可以把频率视为概率.由(1)知,学生B 的分数属于区间[75,80),[80,85),[85,90),[90,95),[95,100)的概率分别是:730,1960,1460,1160,260.我们用符号ijA (或ijB )表示学生A (或B )在第一轮获奖等级为i ,通过附加赛最终获奖等级为j ,其中(,1,2,3)j i i j ≤=记“学生B 最终获奖等级不低于学生A 的最终获奖等级”为事件W , 则()12122223222()P W P B B B A B A =+++()()()()()()12122223222P B P B P B P A P B P A =+++2111111010141105160601160111160711220=+⋅+⋅⋅+⋅⋅=.②学生A 最终获得一等奖的概率是111A P =,学生B 最终获得一等奖的概率是21112116060272711272796060B P =+⋅=+=,1180(0)1111999P ξ⎛⎫⎛⎫==−−= ⎪⎪⎝⎭⎝⎭,111118(1)1111911999P ξ⎛⎫⎛⎫==⋅−+−⋅=⎪ ⎪⎝⎭⎝⎭, 111(2)11999P ξ==⋅=.所以ξ的分布列为:801812001299999999E ξ=⋅+⋅+⋅=.。
知识点39 统计图表2020
一、选择题5.(2020·黔西南州)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5B.5,4C.4,4D.5,5{答案}A{解析}本题考查了求一组数据的中位数,众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.出现次数最多的数据叫做这组数据的众数.将4,3,5,5,2,5,3,4,1按由小到大的顺序排列为:1,2,3,3,4,4,5,5,5,处在最中间的数是4,所以中位数是4,其中5出现了3次,出现次数最计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1105.(2020·河北)图3是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元/千克,发现这四个单价的中位数恰好也是众数,则A.9B.8C.7D.6{答案}B{解析}当a=8时,四个单价按从小到大的顺序排列为6,8,8,9,此时中位数是8+82=8,众数是8,即中位数()A. 乙的最好成绩比甲高B. 乙的成绩的平均数比甲小{答案}A{解析}从一组数据中出现次数最多的数据称为这组数据的众数,x的值最大,故x>16.2.(2020·广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图1的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四{答案}A{解析}本题考查了众数,一组数据中出现次数最多的数据就是这一组数据的众数.由图1可得,选“套餐一”的人数最多,达到了调查人数的一半,因此本题选A.7.(2020·威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多【分析】根据条形统计图和扇形统计图中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【解析】:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确;选“责任”的有600×72°360°=120(人),故选项B中的说法正确;扇形统计图中“生命”所对应的扇形圆心角度数为360°×132600=79.2°,故选项C中的说法错误;人数图1套餐种类四三一1020304050o(第8题)选“感恩”的人数为:600﹣132﹣600×(16%+18%)﹣120=144,故选“感恩”的人数最多,故选项D 中的说法正确; 故选:C .14.(2020·温州)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生猪有 头.{答案}140 {解析}本题考查了频数分布直方图,由图可知质量超过77.5kg 的头数为:90+30+20=140,因此本题答案为140. 14.(2020台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与S 乙2,则s 甲2 < S 乙2.(填“>”、“=”、“<“中的一个) 【分析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.【解答】解:由折线统计图得乙同学的成绩波动较大,所以s 甲2<S 乙2.故答案为:<. 他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 千克.{答案}90{解析}估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克).14.(2020·湖北孝感)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长≤5分钟;B 类:5分钟<总时长≤10分钟;C 类:10分钟<总时长≤15分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.可回收垃圾干垃圾20%有害垃圾5%湿垃圾60%某养猪场200头生猪质量的频数直方图频数质量(kg )908580757010080604020该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有________人. {答案}336.{解析}由题意可得调查的总人数为10÷10%=100,所以D 类的人数为100×10%=21(人),所以B 类的人数为100-41-10-21=28(人).1200×28100=336(人).故本题答案为336.11.(2020·达州)2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤: ①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比 其中正确的统计顺序是 . {答案}②③①{解析}先收集数据,后整理数据,再分析数据,故正确的统计顺序为②③①.14.(2020·永州)永州市教育部门为了了解全市中小学安全教育情况,对某校进行了“防溺水”安全知识的测试.从七年级随机抽取了50名学生的测试成绩(百分制),整理样本数据,得到下表:根据抽样调查结果,估计该校七年级600名学生中,80分(含80分)以上的学生有_________人. 【答案】480 13. (2020·攀枝花)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM 课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有 人.{答案}600{解析}∵参加STEAM 课程兴趣小组的人数为120人,百分比为20%,∴参加各兴趣小组的学生共有120÷20%=600(人).三、解答题19.(2020•丽水)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20(2020·衢州)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.(1)求组别C的频数m的值;(2)求组别A的圆心角度数;(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数,根据上述图表信息,你对视力保护有什么建议?{解析}(1)根据B的频数及百分率可求出样本容量,然后根据样本容量进而得到m的值;(2)用A组的频数除以样本容量再乘以360˚即可得到A组的圆心角度数;(3)根据统计图中的数据,可以得到该市25000名九年级学生达到“视力良好”的人数,并提出合理化建议,建议答案不唯一,只要对保护眼睛好即可.{答案}解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308.(2)组别A的圆心角度数是:360°25500⨯=18°,即组别A的圆心角度数是18°.(3)2500025115500+⨯=7000(人).答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.21.(2020·宁波)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如下统计图(部分信息未给出).所抽取的学生知识测试成绩的频数直方图所抽取的学生知识测试成绩的扇形统计图由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?{解析}本题考查了统计图表的综合应用,用样本估计总体的思想方法.(1)根据基本合格的学生数及占总体的百分比计算出调查总人数,再计算出合格学生人数并补全频数直方图;(2)根据成绩为良好的学生数与实际调查学生总数的比计算圆心角度数;(3)计算中位数的位置,从而作出判断;(4)根据样本数据估计总体.{答案}21.解:(1)30÷15%=200(人),200-30-80-40=50(人).补全频数直方图如答题图:(2)360°×80200=144°.(3)这次测试成绩的中位数的等第是良好.(4)40200×1500=300(人)答:该校获得优秀的学生共有300人.18.(2020·杭州)某工厂生产某种产品,3月份的产量为5 000件,4月份的产量为10 000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数最多?为什么?{解析}本题考查了从扇形统计图,条形统计图中读取信息的能力.(1)由条形统计图得4月份生产的该产品抽样检测的合格数为132+60+200=492(件),抽样总数为8+132+160+200=500(件),所以抽样检测的合格率为492÷500×100%=98.4%.(2)利用样本估计总体的思想求解,利用3月份和4月份中抽样检测的不合格率分别乘以相应的生产总数,得到3月份和4月份的不合格件数,通过比较大小得出结论.{答案}解:(1)因为(132+60+200)÷(8+132+160+200)×100%=98.4%.答:4月份生产的该产品抽样检测的合格率是98.4%.(2)3月份生产的产品中,不合格的件数是5 000×2%=100,4月份生产的产品中,不合格的件数是10 000×(1-98.4%)=160,因为100<160,所以估计4月份生产的产品中不合格的件数多.19.(2020·绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验.并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)10090807060不合格率2%合格率98%某工厂3月份生产的某种产品检测情况的扇形统计图某工厂4月份生产的某种产品检测综合得分的频数直方图频数综合得分(分)20016013284080120160200A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?{解析}本题考查了统计图表等知识.在第(1)小题中,根据图表中“C组”的频数和占抽查总数的55%,可求出抽查总数,进而求出“A组”的频数,即m的值;同时可以求出“B组”所占总数的百分比,从而求出相应的圆心角的度数;在第(2)小题中,计算“B组”“C组”的频率的和即为合格率;求出“不合格”所占的百分比,即可求出不合格的数量.{答案}解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只),即m=20,360°×4001000=144°.答:表中m的值为20,图中B组扇形的圆心角的度数为144°.(2)40055095095%100010001000+==,12×10×(1﹣95%)=120×5%=6(只).答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.21.(2020·嘉兴)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.{解析}本题考查了从扇形统计图、条形统计图和折线统计图获取信息解决问题.F(1)由条形统计图可知B 最大,由折线统计图知月平均销售量最稳定的是C品牌。
统计图表、用样本估计总体-高考数学复习课件
=28,
1 +20+2 +20+···+ +20
所以 '=
=20+28=48.
1
2
因为 s = [( x 1- )2+( x 2- )2+···+( xn - )2]=4,
1
2
所以s' = {[ x
2+[ x +20-( +20)]2+·
+20-(
+20)]
100
考点三
例4
样本的数字特征
(2021·全国乙卷)某厂研制了一种生产高精产品的设备,为检验新
设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产
了10件产品,得到各件产品该项指标数据如下:
旧设备
9.8
10.3 10.0 10.2
9.9
9.8
10.0 10.1 10.2
9.7
新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5
482 485
485 485 486
488 490 490
491 492 493
495
495 495
496 497 497
498 499 500
500 501 502
505
506 508
508 508 509
509
由25%×30=7.5,75%×30=22.5,
可知样本数据的第25,75百分位数分别为第8,23项数据,所以估计30
的学生给予表彰,授予“数学学科素养优
秀标兵”称号,一名学生本次竞赛成绩为
79分,请你判断该学生能否被授予“数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计图表的应用一、考情分析统计图表有频率分布直方图、茎叶图、折线图、条形图、饼形图、雷达图等,它们广泛应用于实际生活之中,也是历年高考的热点,求解此类的关键是由图表读出有用的数据,再根据数据进行分析.二、经验分享1.明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.2.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.3.频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.三、知识拓展统计图是利用点、线、面、体等绘制成几何图形,以表示各种数量间的关系及其变动情况的工具。
表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
按图尺的数字性质分类,有实数图、累积数图、百分数图、对数图、指数图等;其结构包括图名、图目(图中的标题)、图尺(坐标单位)、各种图线(基线、轮廓线、指导线等)、图注(图例说明、资料来源等)等。
折叠基本用途统计图一般由图形、图号、图目、图注等组成。
在行政职业能力测验中常见的有条形统计图、扇型统计图、折线统计图和网状统计图。
基本类型(1)条形统计图:又称直条图,表示独立指标在不同阶段的情况,有两维或多维,图例位于右上方。
(2)扇形统计图:描述百分比(构成比)的大小,用颜色或各种图形将不同比例表达出来。
(3)折线统计图:用线条的升降表示事物的发展变化趋势,主要用于计量资料,描述两个变量间关系。
(4)半对数线图:纵轴用对数尺度,描述一组连续性资料的变化速度及趋势。
(5)直方图:描述计量资料的频数分布。
(6)散点图:描述两种现象的相关关系。
(7)统计地图:描述某种现象的地域分布。
条形图用一个单位长度(如1厘米)表示一定的数量,根据数量的多少,画成长短相应成比例的直条,并按一定顺序排列起来,这样的统计图,称为条形统计图。
条形统计图可以清楚地表明各种数量的多少。
条形图是统计图资料分析中最常用的图形。
按照排列方式的不同,可分为纵式条形图和横式条形图;按照分析作用的不同,可分为条形比较图和条形结构图。
条形统计图的特点:(1)能够使人们一眼看出各个数据的大小。
(2)易于比较数据之间的差别。
(3)能清楚的表示出数量的多少。
扇形图以一个圆的面积表示事物的总体,以扇形面积表示占总体的百分数的统计图,叫作扇形统计图。
也叫作百分数比较图。
扇形统计图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系。
扇形统计图的特点:(1)用扇形的面积表示部分在总体中所占的百分比。
(2)易于显示每组数据相对于总数的大小。
折线图折线统计图以折线的上升或下降来表示统计数量的增减变化的统计图,叫作折线统计图。
与条形统计图比较,折线统计图不仅可以表示数量的多少,而且可以反映同一事物在不同时间里的发展变化的情况。
折线图在生活中运用的非常普遍,虽然它不直接给出精确的数据,但只要掌握了一定的技巧,熟练运用"坐标法"也可以很快地确定某个具体的数据。
折线统计图的特点: (1)能够显示数据的变化趋势,反映事物的变化情况。
网状图网状统计图的特点是:母代表的意义,在具体的答题过程中就可以脱离字母,较简便找出答案。
统计图的意义:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
茎叶统计图茎叶图又称"枝叶图",它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
茎叶图有三列数:左边的一列数统计数,它是上(或下)向中心累积的值,中心的数(带括号)表示最多数组的个数;中间的一列表示茎,也就是变化不大的位数;右边的是数组中的变化位,它是按照一定的间隔将数组中的每个变化的数一一列出来,象一条枝上抽出的叶子一样,所以人们形象地叫它茎叶图。
茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。
将茎叶图茎和叶逆时针方向旋转90度,实际上就是一个直方图,可以从中统计出次数,计算出各数据段的频率或百分比。
从而可以看出分布是否与正态分布或单峰偏态分布逼近。
茎叶图在质量管理上用途与直方图差不多,但它通常是作为更细致的分析阶段使用。
由于它是用数字组成直方图,所以在做的时候比直方图时,通常我们常使用专业的软件进行绘制。
茎叶图的特征1、用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。
2、茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观、清晰。
统计图的意义:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
网状统计图的特点是这类统计图中只有一些字母,字母所代表的意义都在题外,在答题前必弄清这些字母代表的意义,在具体的答题过程中就可以脱离字母,较简便地得出答案。
统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.根据《中国小学教民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A错;这半年中,网民对该关键词相关的信息关注度增减不确定,B错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11月份的搜索指数的稳定性,所以去年10月份的方差大于11月份的方差,C错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确,故选D.17.【贵州省黔东南州2018届高三下学期第二次模拟】甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数分别为x 甲、x 乙,标准差分别为σσ甲乙,,则A. x x σσ<<甲乙甲乙,B. x x σσ甲乙甲乙,C. x x σσ><甲乙甲乙,D. x x σσ>>甲乙甲乙,【答案】C【解析】由图可知,甲同学除第二次考试成绩略低与乙同学,其他次考试都远高于乙同学,可知x x >甲乙,图中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选C.18.【广西2018届高三下学期第二次模拟】某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于的产品为优质产品.现用两种新配方(分别称为 配方和 配方)做试验,各生产了件这种产品,并测量了每件产品的质量指标值(都在区间 内),将这些数据分成 组:, , , ,得到如下两个频率分布直方图:已知这种配方生产的产品利润(单位:百元)与其质量指标值的关系式均为.若以上面数据的频率作为概率,分别从用配方和配方生产的产品中随机抽取一件,且抽取的这件产品相互独立,则抽得的这两件产品利润之和为的概率为()A. B. C. D.【答案】B【解析】由图可知,A配方利润为-1,0,1的频率分别为0.2,0.3,0.2,B配方利润为-1,0,1的频率分别为0.1,0.35,0.35,故抽得的这两件产品利润之和为0的概率为0.2×0.35+0.3×0.35+0.2×0.1=0.07+0.105+0.02=0.195.本题选择B选项.19.【四川省2017-2018年度高三“联测促改】某中学的兴趣小组在某座山测得海拔高度、气压和沸点的六组数据绘制成散点图如图所示,则下列说法错误的是()A. 沸点与海拔高度呈正相关B. 沸点与气压呈正相关C. 沸点与海拔高度呈负相关D. 沸点与海拔高度、沸点与气压的相关性都很强【答案】A【解析】结合绘制的散点图可得:B.沸点与气压呈正相关C.沸点与海拔高度呈负相关结合BC选项的说法可知:A选项中:A.沸点与海拔高度呈负相关且:D.沸点与海拔高度、沸点与气压的相关性都很强.本题选择A选项.20.【四川省成都市第七中学2018届高三上学期模拟测试】某城市2017年12个月的PM2.5平均浓度指数如右图所示.根据图可以判断,四个季度中PM2.5的平均浓度指数方差最小的是()A. 第一季度B. 第二季度C. 第三季度D. 第四季度【答案】B【解析】方差最小的数据最稳定,所以选B.21.【2017届吉林省长春市普通高中高三下学期第二次模拟】如图是民航部门统计的2017年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A. 深圳的变化幅度最小,北京的平均价格最高B. 深圳和厦门的春运期间往返机票价格同去年相比有所下降C. 平均价格从高到低居于前三位的城市为北京、深圳、广州D. 平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门【答案】D【解析】变化幅度看在零附近的,越接近零的越小.所以A对;涨幅是负的,所以价格跌落.B对;平均价格看条形图,最高的是价格.所以C对;平均价格变化量,不应该看涨幅的绝对值还和它的价格有关.故D错.22.【安徽省示范高中(皖江八校)2018届第八联考】如下图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A. 2017年第一季度GDP增速由高到低排位第5的是浙江省.B. 与去年同期相比,2017年第一季度的GDP总量实现了增长.C. 去年同期河南省的GDP总量不超过4000亿元 .D. 2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个.【答案】D【解析】由折线图可知A、B正确;,故C正确;2017年第一季度GDP总量和增速由高到低排位均居同一位的省有江苏均第一;河南均第四,共2个.故D错误.故选D.。